当前位置:文档之家› 第七章吸收吸附催化习题讲解参考资料

第七章吸收吸附催化习题讲解参考资料

第七章吸收吸附催化习题讲解参考资料
第七章吸收吸附催化习题讲解参考资料

第七章 吸收吸附催化习题讲解

吸收计算

1. 某吸收塔填料层高度为

2.7m ,在101.3kPa 压力下,用清水逆流吸收混和气中的氨,混和气入塔流率0.03kmol/(m 3s),含氨2%(体积),清水的喷淋密度为0.018kmol(m 2·s),操作条件下亨利系数E 为60kPa ,体积传质系数为k ya =0.1kmol/(m 3·s),试求排出气体中氨的浓度。

解:因为NH 3易溶于水,所以属于气相控制。可依式9.75

Z=2

1ln A A G P p aP k G 计算 又P A1=0.02×101.3×103

=2.026×103Pa

K G a=k y a/p

将题中所给数值代入式9.75,有

2.7()2

3

10026.2ln /03.0A y P P aP k ?= ∴ P A2=0.25Pa

y 2=P A2/P

=2.50×10-4/101.3

=2.47×10-4%

9.4 在温度20℃,压力1.013×105Pa 条件下,填料塔中用水洗涤含有8%SO 2的低浓度烟气。要求净化后塔顶排气中SO 2浓度降至1%,每小时净化烟气量为300m 3。试计算逆流吸收过程所需最小液流量。

解:在20℃,1.01×105Pa 条件下查表9—2得E=0.355×104kPa 。 m=P

E =5

7

1001.110355.0?? =35.1

由于低浓度气体吸收,且溶液为稀溶液,其气液关系服从亨利定律 从而最小气液比为:

2121m i n x m

y y y G L --=??? ??

30001

.35%8%1%8min ?--=∴L =9213.25m 3/h

2. 试计算用H 2SO 4溶液从气相混和物中回收氨的逆流吸收塔的填料层高度。 已知:气体混和物中NH 3的分压进口处为5×103Pa ,出口处为103p a 。吸收剂中H 2SO 4浓度;加入时为0.6kmol/m 3,排出时为0.5kmol/m 3。K G =

3.5×10-6kmol/(m 2·h ·Pa),K L =0.05m/s ,H=7.5×10-4kmol/(m 3·Pa),气体流量G=G s =45kmol/h ,总压为105Pa 。

解:NH 3与H 2SO 4反应方程式为:

NH 4OH+21H 2SO 4 =O H SO NH 2424)(2

1+ 又已知P A1=5×103Pa P A2=103Pa C B1=0.5kmol/m 3 C B2=0.6kmol/m 3 G=45kmol/m 3 P=105Pa r=1/2

代入式9.27有N A =(G/P )(P A1-P A2)

=(L/rP 1)(C B2-C B1)

N A =(45/105)(5×103-103)

=(2L/P 1)(0.6-0.5)

得L/P 1=9

计算临界浓度(C B )C :

S=P 1H/P=P 1

=0.013P 1

L/SG=9/(0.013×45)

=15.4

k L /(1+k G )=0.05/(3.5×10-6/7.5×10-4)

=11

r=PS/(r ρL )

P A1/L=5×103/0.026×105

=1.92

代入式9.77a:(G B )c =

[][])/()1/()/()/(1SG L k k P C SG L G L A m +++γ =4

.151192.15.04.15++?

=0.364kmol/m 3

∵(C B )C

Z=2

1ln A A Ga P P P K G =33

10

105ln 5.345? =2.07m

吸附计算

3 常压和30℃下,用活性炭吸附回收某厂废气中的丙酮蒸气,废气中丙酮含量为11.6%(体积计),若其吸附等温线符合朗格缪尔方程(A=0.80,B=0.25×10-3)试求:(1)活性炭的饱和吸附量;(2)若废气量为1000m 3/h (操作状态),要吸附其中丙酮的99%需要多少kg 活性炭?(3)用饱和蒸气脱附,直至离开的气流中丙酮含量降至0.16%(体积计),丙酮的回收率是多少?

解:①由题意,其朗格缪尔方程式为:

BP

BP A X T +=1 =P

P 331925.011025.08.0--?+?? 则活性炭的饱和吸附量为0.8g 丙酮/g 活性炭

②需要吸附的丙酮量为

丙酮M ?????99.04

.221%6.113032731000 =4.62×58

=268kg/h

活性炭需要量为:h kg /9.33480

.0268= ③丙酮入气含量为11.6%,出口含量为1.6%,

则其回收率为%1006

.116.16.11?- =98.6%

4. 用活性氧化铝作吸附剂的固定床吸附器,床层直径 1.1m ,处理气量为0.245m 3/s ,吸附剂为柱形,直径d p 3mm ,柱高4.2m ,填充空隙率ε为0.55,气

体吸附温度为20℃,试计算气体通过吸附床压降为多少?

解:查得20℃,101.325kP a 下空气密度1.2kg/m 3,动力粘度为1.8×10-5P d ·S ,

此时气速 u=2

1.14

245.0?π=0.258m/s 代入式(10.30) p

p d u d u Z P 2

3233175..1)1(1150ρεεμεε?-+?-=? =220.24

∴△P=220.24×4.2=924.99P a

有一处理油漆溶剂的活性炭吸附罐,装填厚度为0.8m ,活性炭对溶剂的净活性为13%,填充密度为436kg/m 3,吸附罐的死层为0.16m ,气体流速为0.2m/s ;气体含溶剂浓度为700mg/m 3,试问该吸附器的保护作用时间为多长? 解:设1m 3气体质量为wkg

Y o =W

6

10700-? G s =0.2W

则Y o Gs=0.2×700×10-6

吸附床的穿透时间: KZ Z Y G X o s s t b ==

ρτ =8.01070027.043613.06

????- =4.05×105×0.8

=3.23×105s

τo =KZ o =4.05×105×0.16=0.65×105s

τ=τb -τo =(3.23-0.65) ×105

=2.58×105s

=71.7h

5. 常压和25℃下某车间每小时排放104m 3的废气中含有0.2632%(体积计)的H 2S ,拟用分子筛脱除99%的H 2S 分子,分子筛的堆积密度为730kg/m 3,吸附塔操

作周期为:吸附5h ,脱附再生2h ,冷却1h ,试确定饱和吸附量为30%(重量)时分子筛用量和吸附塔的尺寸。

解:1.013×105Pa 和273k 时,废气中H 2S 的摩尔数为

4

.2210%2632.029*******

4??? =1.076×103mol/h

废气中H 2S 的质量为1.076×103×34=36.6kg/h

①分子筛需用量h kg /12230

.06.36= ② 吸附周期为8h ,所以吸附塔为分子筛的装 量为122×8=976kg

吸附塔的体积为334.1730

976m = 催化习题

6 用氨催化还原法治理硝酸车间排放含有NO x 的尾气。尾气排放量为13000m 3/h

(标态),尾气中含有NO x 为0.28%、N 2为95%、H 2O 为1.6%,使用的催化剂为ф

5mm 球形粒子,反应器入口温度为493K ,空速为18000h -1,反应温度为533K ,空气速度为1.52m/s 。求:

(1)催化固定床中气固相的接触时间;

(2)催化剂床层体积;

(3)催化床床层层高;

(4)催化剂床层的阻力。

[提示:在尾气中N 2的含量很高,在计算时可取用N 2的物理参数直接计算。

在533K 时μN2=2.78×10-5P a ·s ,ρN2=1.25kg/m 3,ε=0.92。]

解:①接触时间t no =

Vsp 1 =18000

1 =5.6×10-5h

②床层体积V R =

sp no V Q =18000

13000 =0.72m 3

③床层高度:由式f=o

no u Q =

3600052.113000? =2.38m 2

即38.242=D π

,得πD 2=9.50m 2

代入下式L=2

)1(4D V R πε- =

50.9)92.01(72.04-? =3.79m

④床层阻力雷诺准数

R em =)

1(εμρ-o s u d =)

92.01(1078.225.152.110553-?????-- =4272

摩擦阻力系数:75.1150+=em

m R λ =1.79

计算压降32)1(ε

ερλm o m d u L P -=? =3

32)92.01(105)92.01(52.125.179.379.1-??-????- =402.75Pa

7 将处理量为25mol/min 的某一种污染物送入催化反应器,要求达到74%的转化率。假定采用长6.lm ,直径为3.8cm 管式反应管,试求所需催化剂量及反应管数。设反应速度为R A =-0.15(1-X A ),单位:kmol/(催化剂min ),催化剂的填

充密度为580kg/m 3。

解:由式11.28AO s N W ρ =?A f X o A

A Y dx 得 催化剂质量W=?A F X o A

A AO s Y dx N ρ =580×25×10-3?--74.0)1(15.0o A A X dx =130kg/min

催化剂体积用量:由W=ρs V R 得

V R =W/ρs =130/580=0.224m 3/min

单管体积:V =L D 24

π 3.14/4×(3.8×10-2)2×6.1 =6.9×10-3m 3

n=V R /V=0.224/6.9×10-3

=33

8 为减少SO 2排放,拟用一催化剂将SO 2转化为SO 3。已知:进入催化器的总气

量为7320kg/d ,SO 2的质量流速为230kg/d ,进气温度为250℃。假如反应是绝

热反应,并要求不大于SO 2的允许排放量56.75kg/d ,试计算气流出口温度为多

少。SO 2氧化成SO 3的反应热Q 2SO 是171667J/mol ,废气热容是3.475J/(gK)。

解:因为反应为绝热反应所以q B =0

反应后混合气体质量:反应式为SO 2+1/202=SO 3

反应的SO 2量:230-56.75=173.25kg/d

所以产生的SO 3量:173.25×80/64=216.56kg/d

则反应后混合气体流量:7320-230+56.7+216.56=7363.31kg/d

代入式11.29N r C pm dT=N To Y AO dX A (-△H R )

7363.31×3.475dT=7320×320/7320dX A (-171667/64)

25587.5dT=616928.28dX A

且X Af =(230-56.75)/230=75.33%

代入上式并两边积分得:

(T 出-250)25587.51=616928.28×75.33%

得T 出=268.16℃

以下无正文

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.

仅供个人用于学习、研究;不得用于商业用途。

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.

Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

仅供个人用于学习、研究;不得用于商业用途。

толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.

高一地理关于地方时与区时的计算专题总结

关于地方时与区时的计算 一.地方时计算的一般步骤:某地地方时=已知地方时±4分钟×两地经度差 1.找两地的经度差: (1)若两地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)若两地不同是东经或西经,则: 经度数相加 a)若和小于180°时,则经度差=两经度和 b)若和大于180°时,则经度差=180°—两经度和 2.把经度差转化为地方时差,(1°=4分钟;15°=1小时) 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系, 东加西减——所求地在已知地的东边用加号,在已知地的西边用减号。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。 即:度数大的在东。 (2)是西经,度数越大越靠西。 即:度数大的在西。 (3)一个东经一个西经, 如果和小180°,东经在东西经在西; 如果和大于180°,则经度差=(360°—和),东经在西,西经在东 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B 点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方,所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方 8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。

第七章-磁介质习题及答案

第七章 磁介质 一、判断题 1、顺磁性物质也具有抗磁性。 √ 2、只有当M=恒量时,介质内部才没有磁化电流。 × 3、只要介质是均匀的,在介质中除了有体分布的传导电流的地方,介质内部无体分布的磁化电流。 √ 4、磁化电流具有闭合性。 √ 5、H 仅由传导电流决定而与磁化电流无关。 × 6、均匀磁化永久磁棒内B H 与方向相反,棒外B H 与方向相同。 √ 7、在磁化电流产生的磁场中,H 线是有头有尾的曲线。 √ 8、由磁场的高斯定理 0s d B ,可以得出 0 s d H 的结论。 × 9、一个半径为a 的圆柱形长棒,沿轴的方向均匀磁化,磁化强度为M ,从棒的中间部分切出一厚度为b<

(D) r r M J 1 A 3、图是一根沿轴向均匀磁化的细长永久磁棒,磁化强度为M 图中标出的1点的B 是: (A )M 0 (B)0 (C)M 021 (D)M 021 A 4、图中一根沿轴线均匀磁化的细长永久磁棒,磁化强度为M ,图中标出的1点的H 是: (A )1/2M (B )-1/2M (C )M (D )0 B 5、图中所示的三条线,分别表示三种不同的磁介质的B —H 关系,下面四种答案正确的是: (A )Ⅰ抗磁质,Ⅱ顺磁质, Ⅲ铁磁质。 (B )Ⅰ顺磁质, Ⅱ抗磁质, Ⅲ铁磁质。 (C )Ⅰ铁磁质,Ⅱ顺磁质, Ⅲ抗磁质。 (D )Ⅰ抗磁质, Ⅱ铁磁质,Ⅲ顺磁质。 A 6、如图所示,一半径为R ,厚度为l 的盘形介质薄片被均匀磁化,磁化强度为M M ,的方 向垂直于盘面,中轴上,1、2、3各点处的磁场强度H 是: M R l H R M l H M H A 22321 ,,)( (B)M R l H R M l H H 220321 ,, ?00321 H H M H ,, (D)123H M H M H M r r r r r r ,, A 7、一块很大的磁介质在均匀外场0H 的作用下均匀磁化,已知介质内磁化强度为M ,M 的方向与H 的方向相同,在此介质中有一半径为a 的球形空腔,则磁化电流在腔中心处产生的磁感应强度是: (A )M 031 H B l R 1 23M l R

注册电气工程师考试试题和答案解析

注册电气工程师考试试题及答案(多项选择题) 1.电气接地按其接地的作用,可分为(AC )。 A.电气功能性接地 B.电气直接性接地 C.电气保护性接地 D.电气防静电接地 2.用电设备的接地及安全设计,应根据(ABC )等因素合理确定方案。 A.工程的发展规划 B.工程的地质特点 C.工程的规模 D.工程的电气设备 3.当防直击雷的人工接地体距建筑物出入口或人行通道小于3m时,为减少跨步电压,应采取的措施有( BC)。 A.水平接地体局部埋深不应小于0.8m B.水平接地体局部应包绝缘物,可采用50~80mm的沥青层,其宽度应超过接地装置2m C.采用沥青碎石地面或在接地体上面敷设50~80mm的沥青层,其宽度应超过接地装置2m D.水平接地体局部埋深不应小于0.5m

4.对辅助等电位连接线的截面要求有(ABC )。 A.当用于连接两个电气设备外露导电部分时,其截面不应小于其中较小的保护线截面 B.当用于连接电气设备与装置外可导电部分时,不应小于相应保护线截面的1/2 C.在任何情况下,其最小截面不应小于5m㎡(无机械保护时) D.在任何情况下,其最小截面不应小于5.5m㎡(有机械保护时) 5.根据使用场所的要求,洁净手术部主要选用( AC)系统接地形式。 A.TN-S B.TN-C C.IT 6.下列表述正确的是(BD )。 A.在施工现场专用的中性点直接接地的电力线路中,必须采用TN-C接零保护系统 B.绝缘子的底座、套管的法兰、保护网(罩)及母线支架等可接近裸露导体应接地(PE)或接零(PEN)可靠。不应作为接地(PR)或接零(PEN)的接续导体 C.当保护导体采用一般铜导线时,有机械保护时,其截面不应小于2.5m ㎡;无机械保护时不应小于5m㎡ D.金属电缆支架、电缆导管必须接地(PE)或接零(PEN)可靠

地方时区时和时区计算专题练习

地方时、区时和时区计算练习 一.选择题(共14小题) () .下列有关北京时间的说法,不正确的是1 中国标准时间东八区区时地方时D.A.北京的地方时B.() 时,北京的地方时为:002.当北京时间1256 ::::00 16 3.右图中的两条虚线,一条是晨昏线,另一条两侧大部分地区日期不同;()? 8日,则甲地为此时地球公转速度较慢。若图中的时间为7日和时8日4时.7日8 D.日7A.日4时 B.88时C135°5ˊE),最西端位于新疆帕中国幅员辽阔,最东端位于黑龙江与乌苏里江主航道汇合处(约题。4~6米尔高原(约73°40ˊE)。据此回答() 日,中国最东端日出时,北京时间约为月214.300 :00 :00 ::() 21日,中国最东端日出时,最西端帕米尔高原的地方时约为5.3月55 ::00 ::55 () 6.当中国最西端到达正午时,北京时间约为05 :::55 :00 题。~10读下图(阴影部分表示黑夜),据此回答7() .此时太阳直射点的地理坐标是7 B.(30°E,30°W)A.(0°,60°E) (0°,30°E)(0°,120°E)C. D.() 是.此时有两条经线两侧日期不同,这两条经线8 (0°,150°W)B.A.(0°,180°)(180°,150°E)D.(150°W,180°)C. () .此时,北京时间为9. :00 ::00 :00 10.当昏线与本初子午线重合时,北京时间可能为() 月24日2时月22日2时月21日10时月23日10时 2007年10月24日北京时间(东八区)18时05分,举世瞩目的“嫦娥一号”卫星在中国西昌卫星发射中心成功发射。据此回答11~12题: 11.“嫦娥一号”观测的目标天体是()A.太阳 B.月球C.金星D.火星 12.此时,美国纽约(西五区)的区时是() 日5时05分日13时05分日10时05分日11时05分

化工原理课后习题答案第七章吸收习题解答

第七章 吸 收 7-1 总压101.3 kPa ,温度25℃时,1000克水中含二氧化硫50克,在此浓度范围内亨利定律适用, 通过实验测定其亨利系数E 为4.13 MPa , 试求该溶液上方二氧化硫的平衡分压和相平衡常数m 。(溶液密度近似取为1000kg/m 3) 解:溶质在液相中的摩尔分数:50 640.0139100050 1864 x ==+ 二氧化硫的平衡分压:* 3 4.13100.0139kPa=57.41kPa p Ex ==?? 相平衡常数:634.1310Pa 40.77101.310Pa E m P ?== =? 7-2 在逆流喷淋填料塔中用水进行硫化氢气体的吸收,含硫化氢的混合气进口浓度为5%(质量分数), 求填料塔出口水溶液中硫化氢的最大浓度。已知塔内温度为20℃,压强为1.52×105 Pa ,亨利系数E 为48.9MPa 。 解:相平衡常数为:6 5 48.910321.711.5210 E m P ?===? 硫化氢的混合气进口摩尔浓度:1534 0.04305953429 y = =+ 若填料塔出口水溶液中硫化氢达最大浓度,在出口处气液相达平衡,即: 41max 0.0430 1.3410321.71 y x m -= ==? 7-3 分析下列过程是吸收过程还是解吸过程,计算其推动力的大小,并在x - y 图上表示。 (1)含 NO 2 0.003(摩尔分率)的水溶液和含NO 2 0.06 (摩尔分率) 的混合气接触,总压为101.3kPa ,T=15℃,已知15℃时,NO 2水溶液的亨利系数E =1.68×102 kPa ;(2)气液组成及温度同(1),总压达200kPa (绝对压强)。 解:(1)相平衡常数为:513 1 1.6810Pa 1.658101.310Pa E m P ?===? * 1 1.658 0.0030.00498 y m x ==?=

求动点的轨迹方程方法例题习题答案

求动点的轨迹方程(例题,习题与答案) 在中学数学教学和高考数学考试中,求动点轨迹的方程和曲线的方程是一个难 点和重点内容(求轨迹方程和求曲线方程的区别主要在于:求轨迹方程时,题目中 没有直接告知轨迹的形状类型;而求曲线的方程时,题目中明确告知动点轨迹的形 状类型)。求动点轨迹方程的常用方法有:直接法、定义法、相关点法、参数法与 交轨法等;求曲线的方程常用“待定系数法”。 求动点轨迹的常用方法 动点P 的轨迹方程是指点P 的坐标(x, y )满足的关系式。 1. 直接法 (1)依题意,列出动点满足的几何等量关系; (2)将几何等量关系转化为点的坐标满足的代数方程。 例题 已知直角坐标平面上点Q (2,0)和圆C :122=+y x ,动点M 到圆C 的切线长等与MQ ,求动点M 的轨迹方程,说明它表示什么曲线. 解:设动点M(x,y),直线MN 切圆C 于N 。 依题意:MN MQ =,即22MN MQ = 而222NO MO MN -=,所以 (x-2)2+y 2=x 2+y 2-1 化简得:x=45 。动点M 的轨迹是一条直线。 2. 定义法 分析图形的几何性质得出动点所满足的几何条件,由动点满足的几何条件可以判断出动点 的轨迹满足圆(或椭圆、双曲线、抛物线)的定义。依题意求出曲线的相关参数,进一步写出 轨迹方程。 例题:动圆M 过定点P (-4,0),且与圆C :082 2=-+x y x 相切,求动圆圆心M 的轨迹 方程。 解:设M(x,y),动圆M的半径为r 。 若圆M 与圆C 相外切,则有 ∣M C ∣=r +4 若圆M 与圆C 相内切,则有 ∣M C ∣=r-4 而∣M P ∣=r, 所以 ∣M C ∣-∣M P ∣=±4 动点M 到两定点P(-4,0),C(4,0)的距离差的绝对值为4,所以动点M 的轨迹为双曲线。其中a=2, c=4。 动点的轨迹方程为: 3. 相关点法 若动点P(x ,y)随已知曲线上的点Q(x 0,y 0)的变动而变动,且x 0、y 0可用x 、y 表示,则 将Q 点坐标表达式代入已知曲线方程,即得点P 的轨迹方程。这种方法称为相关点法。

时区和区时的计算专题试卷一

图1 时区和区时的计算专题试卷一 6月22日,当太阳同时位于北半球甲、乙两地上中天(在天空中的位置最高)时,测得甲地太阳高度角为60°,乙地太阳高度角为36°;甲、乙两地在某地图上的距离是44.4厘米(不考虑地形因素)。据此回答1-2题。 1.关于甲、乙两地的说法,正确的是 A .甲、乙两地任何一天均不可能同时看到日出 B .甲地正午太阳高度总是大于乙地 C .甲、乙两地昼夜长短总是相同 D .甲、乙两地均可能出现极昼现象 2.该地图的比例尺为 A .1:24 000 000 B .图上1厘米代表实际距离30千米 C .六十万分之一 D .1:6000 000 3.当我国某城市(30.5°N ,115°E)市中心的标志性建筑物正午阴影面积达一年中最大时,下列四幅昼夜 分布局部图(图1)与之相符的是(阴影表示夜半球) 由图为某群岛示意图,此季节该群岛北侧附近的洋流流向是自西向东,M 线为晨昏线。据此回答4-6题: 4.此时北京时间为 A .21时 B .9时 C .13时 D .23时 5.当图中夹角a 为20?时,下列叙述正确的是 A .南极圈上出现极夜现象 B .此时北京寒冷干燥 C .北半球各地昼长正逐渐加大 D .该地区正午时的物体影子朝南 6.危及到该群岛国家经济发展和生存的主要环境问题是: A .火山、地震 B .全球性气候变暖 C .泥石流、滑坡 D .海洋环境污染 北京时间2005年7月4日13点57分,由美国发起,中、俄、德、法、加等多国科学家参与的“深度撞击号”航天器,经过半年太空遨游,成功地对太阳系中“坦普尔一号”彗星实施了撞击。据此回答7—8题。 7.下列光照图中,与深度撞击号”撞击彗星的时刻最接近的是 8.撞击彗星的瞬间,美国加州大部分地区(西八区)正值日落后3小时左右,天空完全暗 下来,许多天文爱好者目睹了“太空焰火”奇观。此日该地昼长大约为 A .10小时 B .12小时 C .14小时 D . 16小时 9.在某地24时看到北极星的仰角是40o,这时格林尼治时间是当日 18时,那么,这个地点的地理坐标是 A .90oE ,40oN B100oE ,50oN C .90oW ,50oN D .100oW ,40oN

化工原理第七章习题答案

7-1.g 100水中溶解31gNH ,从手册查得C 200 时3NH 的平衡分压为86.6Pa 9,在此浓度以内服从亨利定律。试求溶解度系数H (单位为1 3 kPa m kmol --??)和相平衡常数m ,总压力为kPa 100。 (答:13 kPa m 0.59kmol --??=H , 0.943m =) 解:3m kmol 582.010******* 1-?== c , 31m Pa mol 59.09866.0582 .0--??===Pe c H , 0099.03.101100760 4.7== e y , 0105.01810017117 1=+= x , 943.00105 .00099 .0== =x y m e 。 7-2.C 100 时氧在水中的溶解度的表达式x p 6*10313.3?=,式中*p 为氧在气相中的平衡分压,kPa ;x 为溶液中氧的摩尔分数。空气中氧的体积分数为%21,试求总压为kPa 101时,每3m 水中可溶解多少g 氧(答:3m g 4.11-? ,或3m 0.35mol -? ) 解:kPa 3.213.10121.0=?=Pe , 66 61042.610313.33 .2110313.3-?=?=?=Pe x , 36m g 4.111000 1832 1042.6--?=???= c 。 7-3.用清水吸收混合气中的 3NH ,进入常压吸收塔的气体含3NH 体积分数为%6, 吸收后气体含3NH 体积分数为%4.0,出口溶液的摩尔比为1 3kmol kmol 012.0-??NH 水。 此物系的平衡关系为X Y 52.2=* 。气液逆流流动,试求塔顶、塔底处气相推动力各为多少(答:顶00402.02=ΔY ,底034.01=ΔY ) 解:064.006.0106.01111=-=-= y y Y ,0402.0004 .01004 .01222=-=-=y y Y , 塔底:03024.0012.052.252.2=?==X Y e , 塔顶:0052.252.2=?==X Y e , 塔顶气相推动力00402.02=?Y , 塔底气相推动力034.003024.0064.01,11=-=-=?e Y Y Y 。 7-4.用水吸收空气中的甲醇蒸汽,在操作温度300K 下的溶解度系13kPa m 2kmol --??=H ,传质系数112kPa h m 0.056kmol ---???=G k , 3-112m km ol h m 0.075km ol ????=--L k 。求总传质系数G K 以及气相阻力在总阻力中所占 的分数。(答:1 1-2kPa h m 0.0408kmol --???=G K , 73.0) 解:112kPa h m kmol 0408.0075 .021 056.011 1 11---???=?+ = + = L G G HK K K , 气相阻力所占分率:

注册电气工程师基础考试真题完美解析版

2010年度全国勘察设计注册电气工程师 执业资格考试试卷 公共基础考试

一、单项选择题(共120题,每题1分。每题的备选项中只有一个最符合题意。) 1. 设直线方程为?? ? ??+-=-=+=33221 t z t y t x ,则该直线:( )。 (A )过点(-1,2,-3),方向向量为k j i 32-+ (B )过点(-1,2,-3),方向向量为k j i 32+-- (C )过点(1,2,-3),方向向量为k j i 32+- (D )过点(1,-2,3),方向向量为k j i 32+-- 答案:D 解析过程:将直线的方程化为对称式得3 3 2211--=+=-z y x ,直线过点(1,-2,3),方向向量为k j i 32-+或k j i 32+--。 主要考点:① 直线方程的参数式方程; ② 直线的方向向量反向后还是方向向量。 2. 设γβα,,都是非零向量,若γαβα?=?,则:( )。 (A )γβ= (B )βα//且γα// (C )()γβα-// (D )()γβα-⊥ 答案:C 解析过程:由γαβα?=?,有0=?-?γαβα,提公因子得()0=-?γβα,由于两向量平行的充分必要条件是向量积为零,所以()γβα-//。 3. 设()1 122+-=x x e e x f ,则:( )。 (A )()x f 为偶函数,值域为()11, - (B )()x f 为奇函数,值域为()0,∞- (C )()x f 为奇函数,值域为()11,- (D )()x f 为奇函数,值域为()∞+,0 答案:C

解析过程:因为()()x f e e e e e e e e e e x f x x x x x x x x x x -=+-=+- =+-=---2222222222111111,所以函数是奇函数; ()1lim -=-∞ →x f x ,()1lim =+∞ →x f x ,值域为()11,-。 4. 下列命题正确的是:( )。 (A )分段函数必存在间断点 (B )单调有界函数无第二类间断点 (C )在开区间内连续,则在该区间必取得最大值和最小值 (D )在闭区间上有间断点的函数一定有界 答案:B 解析:第二类间断点包括无穷间断点和震荡间断点,有界函数不可能有无穷间断点,单调函数不可能有震荡间断点,故单调有界函数无第二类间断点,应选(B )。 分段函数可以不存在间断点,闭区间上连续的函数在该区间必取得最大值和最小值,在闭区间上连续的函数一定有界,故其他三个选项都是错误的。 5. 设函数()?????>+≤+=1 ,1,12 2 x b ax x x x f 可导,则必有:( )。 (A )1=a ,2=b (B )1-=a ,2=b (C )1=a ,0=b (D )1-=a ,0=b 答案:B 解析过程:显然函数()x f 在除1=x 点外处处可导,只要讨论1=x 点则可。由于()x f 在1=x 连续,则()11 2 2 1=+= -x x f ,()b a b ax x f +=+=+1,推出1=+b a 。 ()111lim 1112 lim 122121/ 2/1-=++-=--+=?? ? ??+=→→-x x x x x x f x x ,()a x b a b ax x f x =---+=→+1lim 1/1, 所以1-=a ,2=b 时,()x f 在1=x 可导。

动点例题解析及答案

初中数学动点问题及练习题附参考答案 所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题. 关键:动中求静. 数学思想:分类思想函数思想方程思想数形结合思想转化思想 注重对几何图形运动变化能力的考查。 从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。 二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点. 专题一:建立动点问题的函数解析式 函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式。 二、应用比例式建立函数解析式。 三、应用求图形面积的方法建立函数关系式。 专题二:动态几何型压轴题 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、以动态几何为主线的压轴题。 (一)点动问题。(二)线动问题。(三)面动问题。 二、解决动态几何问题的常见方法有: 1、特殊探路,一般推证。 2、动手实践,操作确认。 3、建立联系,计算说明。

地方时与区时经典练习题

专题训练——地方时区时的计算 一、有关地方时的计算 1.已知A 、B 两地经度和A 地的地方时,求B 地的地方时: B 地地方时=A 地地方时±分钟经度差41 0? 如果B 地在A 地的东面用“+”;如果B 地在A 地的西面用“-”。 例1:当东经115°的地方时为9时30分时,东经125°的地方时为多少? 解析:因为东经125°位于东经115°的东面,所以: 东经125°地方时=9时30分+4)1 115125(00 0?-分钟=9时30分+40分=10时10分, 也就是说,当东经115°为9时30分的时候,东经125°的地方时为10时10分。 例2:A 地为东经120°当时的时间为10:20,B 地为东经90°,求B 地的地方时。 解析:因为B 在A 的西面,所以: B 地地方时=10:20-41901200 0?-分钟 =10:20-120分钟 =8:20 2.已知两地的地方时和其中一地的经度,求另一地经度 所求经度=已知经度±014?分钟 地方时差 例1.当伦敦为正午时,区时为20:00的城市是…………………………………( ) A 、悉尼(150°E ) B 、上海(120°E ) C 、洛杉矶(120°W ) D 、阿克拉(0°经线附近) 解析:伦敦正午时为12:00,经度为0°;而区时为20:00的地方应该在伦敦的东部,则: 所求经度=已知经度±014?分钟地方时差=0°+014 1220?-=120°E 二、时区和区时的计算

1.已知A、B两地的时区和A地的区时,求B地的区时: B地区时=A地区时±时区差 如果B地在A地的东面用“+”;如果B地在A地的西面用“-”。 计算结果小于24时,那么日期不变,时间取计算结果; 计算结果大于24时,那么日期增加1日,时间取计算结果减24; 计算结果是负数,那么日期减1日,时间取计算结果加24; 从东向西每过一个时区减1小时;过日界线(180经线°),日期加1天; 从西向东每过一个时区加1小时;过日界线(180经线°),日期减1天。 2行程时间的计算: 由出发时间求到达时间,须加上行程时间; 由到达时间求出发时间,须减去行程时间。 例1.圣诞节(12月25日)前夜当地时间19:00时,英格兰足球超级联赛的一场比赛将在伦敦开赛。香港李先生要去伦敦观看这场比赛。自香港至伦敦,飞机飞行时间约为17小时。试回答下列问题。 (1) 开赛的时候,我国北京时间应为。 解析:A地伦敦(中时区)时间12月24日19:00,B地北京(东八区),时区差=8,B位于A 的东面,所以向东计算时: B地区时=A地区时+时区差=19:00+8:00=27:00 则:日期为12月24日+1日(12月25日),时间为27:00-24:00=3:00 即:开赛时对应的北京时间为12月25日凌晨3:00 (2)在下列香港——伦敦的航班起飞时间中,李先生选择较为合适。 A.23日15:00时B.23日18:00时C.24日7:00时D.24日10:00时 解析:这是由达到时间求出发时间,用以上计算结果再减去行程时间得: 出发时间=A地区时+时差-行程时间=19:00+8:00-17:00=10:00 即李先生本应在12月24日上午10:00出发,但不可能一下飞机就能观看比赛,还需要

【VIP专享】第七章吸收吸附催化习题讲解

第七章 吸收吸附催化习题讲解吸收计算1. 某吸收塔填料层高度为2.7m ,在101.3kPa 压力下,用清水逆流吸收混和气中的氨,混和气入塔流率0.03kmol/(m 3s),含氨2%(体积),清水的喷淋密度为0.018kmol(m 2·s),操作条件下亨利系数E 为60kPa ,体积传质系数为k ya =0.1kmol/(m 3·s),试求排出气体中氨的浓度。 解:因为NH 3易溶于水,所以属于气相控制。可依式9.75 Z=计算21ln A A G P p aP k G 又P A1=0.02×101.3×103 =2.026×103Pa K G a=k y a/p 将题中所给数值代入式9.75,有 2.7()2310026.2ln /03.0A y P P aP k ?= ∴ P A2=0.25Pa y 2=P A2/P =2.50×10-4/101.3 =2.47×10-4%9.4 在温度20℃,压力1.013×105Pa 条件下,填料塔中用水洗涤含有8%SO 2 的低浓度烟气。要求净化后塔顶排气中SO 2浓度降至1%,每小时净化烟气量为300m 3。试计算逆流吸收过程所需最小液流量。 解:在20℃,1.01×105Pa 条件下查表9—2得E=0.355×104kPa 。 m=P E =571001.110355.0?? =35.1 由于低浓度气体吸收,且溶液为稀溶液,其气液关系服从亨利定律从而最小气液比为: 2121 min x m y y y G L --=??? ??

30001.35%8%1%8min ?--=∴L =9213.25m 3/h 2. 试计算用H 2SO 4溶液从气相混和物中回收氨的逆流吸收塔的填料层高度。 已知:气体混和物中NH 3的分压进口处为5×103Pa ,出口处为103p a 。吸收剂中H 2SO 4浓度;加入时为0.6kmol/m 3,排出时为0.5kmol/m 3。K G =3.5×10- 6kmol/(m 2·h ·Pa),K L =0.05m/s ,H=7.5×10-4kmol/(m 3·Pa),气体流量G=G s =45kmol/h ,总压为105Pa 。 解:NH 3与H 2SO 4反应方程式为: NH 4OH+H 2SO 4 =21O H SO NH 2424)(21+ 又已知P A1=5×103Pa P A2=103Pa C B1=0.5kmol/m 3 C B2=0.6kmol/m 3 G=45kmol/m 3 P=105Pa r=1/2 代入式9.27有N A =(G/P )(P A1-P A2) =(L/rP 1)(C B2-C B1) N A =(45/105)(5×103-103) =(2L/P 1)(0.6-0.5) 得L/P 1=9 计算临界浓度(C B )C : S=P 1H/P=P 1 =0.013P 1 L/SG=9/(0.013×45) =15.4 k L /(1+k G )=0.05/(3.5×10-6/7.5×10-4) =11 r=PS/(r ρL ) P A1/L=5×103/0.026×105 =1.92 代入式9.77a:(G B )c =[][]) /()1/()/()/(1SG L k k P C SG L G L A m +++γ =4.151192 .15.04.15++?

动点问题中的最值、最短路径问题(解析版)

专题01 动点问题中的最值、最短路径问题 动点问题是初中数学阶段的难点,它贯穿于整个初中数学,自数轴起始,至几何图形的存在性、几何 图形的长度及面积的最值,函数的综合类题目,无不包含其中. 其中尤以几何图形的长度及面积的最值、最短路径问题的求解最为繁琐且灵活多变,而其中又有一些 技巧性很强的数学思想(转化思想),本专题以几个基本的知识点为经,以历年来中考真题为纬,由浅入深探讨此类题目的求解技巧及方法. 一、基础知识点综述 1. 两点之间,线段最短; 2. 垂线段最短; 3. 若A 、B 是平面直角坐标系内两定点,P 是某直线上一动点,当P 、A 、B 在一条直线上时,PA PB 最大,最大值为线段AB 的长(如下图所示); (1)单动点模型 作图方法:作已知点关于动点所在直线的对称点,连接成线段与动点所在直线的交点即为所求点的位 置. 如下图所示,P 是x 轴上一动点,求PA +PB 的最小值的作图.

(2)双动点模型 P 是∠AOB 内一点,M 、N 分别是边OA 、OB 上动点,求作△PMN 周长最小值. 作图方法:作已知点P 关于动点所在直线OA 、OB 的对称点P ’、P ’’,连接P ’P ’’与动点所在直线的交点 M 、N 即为所求. O B P P' P''M N 5. 二次函数的最大(小)值 ()2 y a x h k =-+,当a >0时,y 有最小值k ;当a <0时,y 有最大值k . 二、主要思想方法 利用勾股定理、三角函数、相似性质等转化为以上基本图形解答. (详见精品例题解析) 三、精品例题解析 例1. (2019·凉山州)如图,正方形ABCD 中,AB =12,AE =3,点P 在BC 上运动(不与B 、C 重合),过点P 作PQ ⊥EP ,交CD 于点Q ,则CQ 的最大值为 例2. (2019·凉山州)如图,已知A 、B 两点的坐标分别为(8,0),(0,8). 点C 、F 分别是直线x =-5 和x 轴上的动点,CF =10,点D 是线段CF 的中点,连接AD 交y 轴于点E ,当△ABE 面积取最小值时,tan ∠BAD =( )

第七章吸收吸附催化习题讲解参考资料

第七章 吸收吸附催化习题讲解 吸收计算 1. 某吸收塔填料层高度为 2.7m ,在101.3kPa 压力下,用清水逆流吸收混和气中的氨,混和气入塔流率0.03kmol/(m 3s),含氨2%(体积),清水的喷淋密度为0.018kmol(m 2·s),操作条件下亨利系数E 为60kPa ,体积传质系数为k ya =0.1kmol/(m 3·s),试求排出气体中氨的浓度。 解:因为NH 3易溶于水,所以属于气相控制。可依式9.75 Z=2 1ln A A G P p aP k G 计算 又P A1=0.02×101.3×103 =2.026×103Pa K G a=k y a/p 将题中所给数值代入式9.75,有 2.7()2 3 10026.2ln /03.0A y P P aP k ?= ∴ P A2=0.25Pa y 2=P A2/P =2.50×10-4/101.3 =2.47×10-4% 9.4 在温度20℃,压力1.013×105Pa 条件下,填料塔中用水洗涤含有8%SO 2的低浓度烟气。要求净化后塔顶排气中SO 2浓度降至1%,每小时净化烟气量为300m 3。试计算逆流吸收过程所需最小液流量。 解:在20℃,1.01×105Pa 条件下查表9—2得E=0.355×104kPa 。 m=P E =5 7 1001.110355.0?? =35.1 由于低浓度气体吸收,且溶液为稀溶液,其气液关系服从亨利定律 从而最小气液比为: 2121m i n x m y y y G L --=??? ??

30001 .35%8%1%8min ?--=∴L =9213.25m 3/h 2. 试计算用H 2SO 4溶液从气相混和物中回收氨的逆流吸收塔的填料层高度。 已知:气体混和物中NH 3的分压进口处为5×103Pa ,出口处为103p a 。吸收剂中H 2SO 4浓度;加入时为0.6kmol/m 3,排出时为0.5kmol/m 3。K G = 3.5×10-6kmol/(m 2·h ·Pa),K L =0.05m/s ,H=7.5×10-4kmol/(m 3·Pa),气体流量G=G s =45kmol/h ,总压为105Pa 。 解:NH 3与H 2SO 4反应方程式为: NH 4OH+21H 2SO 4 =O H SO NH 2424)(2 1+ 又已知P A1=5×103Pa P A2=103Pa C B1=0.5kmol/m 3 C B2=0.6kmol/m 3 G=45kmol/m 3 P=105Pa r=1/2 代入式9.27有N A =(G/P )(P A1-P A2) =(L/rP 1)(C B2-C B1) N A =(45/105)(5×103-103) =(2L/P 1)(0.6-0.5) 得L/P 1=9 计算临界浓度(C B )C : S=P 1H/P=P 1 =0.013P 1 L/SG=9/(0.013×45) =15.4 k L /(1+k G )=0.05/(3.5×10-6/7.5×10-4) =11 r=PS/(r ρL ) P A1/L=5×103/0.026×105 =1.92 代入式9.77a:(G B )c = [][])/()1/()/()/(1SG L k k P C SG L G L A m +++γ =4 .151192.15.04.15++?

注册电气工程师考试试题和答案解析试题库完整

注册电气工程师考试试题及答案 注册电气工程师考试试题及答案(多项选择题) 1. 电气接地按其接地的作用,可分为()。 A. 电气功能性接地 B. 电气直接性接地 C. 电气保护性接地 D. 电气防静电接地 2. 用电设备的接地及安全设计,应根据()等因素合理确定方案。 A. 工程的发展规划 B. 工程的地质特点 C. 工程的规模 D. 工程的电气设备 3?当防直击雷的人工接地体距建筑物出入口或人行通道小于3m时,为减少跨步电压,应采 取的措施有()。 A. 水平接地体局部埋深不应小于0.8m B. 水平接地体局部应包绝缘物,可采用50?80mm 的沥青层,其宽度应超过接地装 置2m C. 采用沥青碎石地面或在接地体上面敷设50? 80mm的沥青层,其宽度应超过接 地装置2m D. 水平接地体局部埋深不应小于0.5m 4. 对辅助等电位连接线的截面要求有()。 A. 当用于连接两个电气设备外露导电部分时,其截面不应小于其中较小的保护线截面

B. 当用于连接电气设备与装置外可导电部分时,不应小于相应保护线截面的1/2 C. 在任何情况下,其最小截面不应小于5m怦(无机械保护时) D. 在任何情况下,其最小截面不应小于5.5m m2(有机械保护时) 5. 根据使用场所的要求,洁净手术部主要选用( )系统接地形式。 A. TN-S B. TN-C C. IT 6. 下列表述正确的是( )。 A. 在施工现场专用的中性点直接接地的电力线路中,必须采用TN-C 接零保护系统 B. 绝缘子的底座、套管的法兰、保护网(罩)及母线支架等可接近裸露导体应接地(PE)或接零(PEN)可靠。不应作为接地(PR)或接零(PEN)的接续导体 C. 当保护导体采用一般铜导线时,有机械保护时,其截面不应小于 2.5m m ;无机械保护时不应小于5m m D. 金属电缆支架、电缆导管必须接地(PE)或接零(PEN)可靠 7. 电气功能性接地,主要包括( )等。 A. 防静电接地 B. 直流接地 C. 交流接地 D. 信号接地 8. 当变电所的高压系统与低压系统采用共用接地装置时,在向低压系统供电的变电所的高压侧,一旦发生高压系统接地故障的情况,只要满足( )时,则认为变电所和设备是安全的。 A. 暖气管作接地线或保护线 B. 薄壁钢管或外皮作接地线或保护线

圆的动点问题--经典习题及答案

圆的动点问题 25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分) 已知:在Rt ABC △中,∠ACB =90°,BC =6,AC =8,过点A 作直线MN ⊥AC ,点E 是直线 MN 上的一个动点, (1)如图1,如果点E 是射线AM 上的一个动点(不与点A 重合),联结CE 交AB 于点P .若 AE 为x ,AP 为y ,求y 关于x 的函数解析式,并写出它的定义域; (2) 在射线AM 上是否存在一点E ,使以点E 、A 、P 组成的三角形与△ABC 相似,若存在求 AE 的长,若不存在,请说明理由; (3)如图2,过点B 作BD ⊥MN ,垂足为D ,以点C 为圆心,若以AC 为半径的⊙C 与以ED 为半径的⊙E 相切,求⊙E 的半径. A B C P E M 第25题图1 D A B C M 第25题图2 N

25.(本题满分14分,第(1)小题6分,第(2)小题2分,第(3)小题6分) 在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y . (1) 如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2) 如图2,当点F 在⊙O 上时,求线段DF 的长; (3) 如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长. A B E F C D O A B E F C D O

25.如图,在半径为5的⊙O中,点A、B在⊙O上,∠AOB=90°,点C是弧AB上的一个动点,AC与OB的延长线相交于点D,设AC=x,BD=y. (1)求y关于x的函数解析式,并写出它的定义域; (2)如果⊙O1与⊙O相交于点A、C,且⊙O1与⊙O的圆心距为2,当BD=OB时,求⊙O1 的半径; (3)是否存在点C,使得△DCB∽△DOC?如果存在,请证明;如果不存在,请简要说明理由.

区时计算专题例题讲解电子教案

区时计算专题例题讲 解

区时专题例题讲解 区时在地方时(使用不方便)的基础上,人为制定了理论区时,实行分区(24个时区)计时(相邻两时区相差1小时)的办法。区时是以各时区的中央经线的地方时为计时标准,这样使用起来就有了一个统一的标准。 ①特别的计时方法不少国家根据本国的具体情况,在理论区时的基础上,采用了一些变通的办法计时,如我国采用北京时间即是一例。 ②时区的划分注意要点: A由于地球不停地自西向东自转,不同经度的地方,便产生了不同的时刻。这种因经度不同而造成的不同时刻,叫地方时。 B.经度相差1°,地方时相差4分钟。东边地点的时刻总是早于西边。 C.为了统一时间,国际上采用每隔经度15°,划分一个时区的方法,全球共分为24个时区。 D.每个时区都以本区中央经线上的地方时,作为全区共同使用的时间,即区时。 E.北京时间就是北京所在东八区的中央经线120°E上的地方时。 ◆区时的计算 ●方法 (1)公式法: 所求区时=已知区时±时区差 正负号选取原则:东加西减。(所求区时的时区位于已知区时时区的东侧,取“+”;若位于西侧,则取“—”)。 (2)数轴法:

画一个简单的示意图是进行区时计算的好方法。计算时遵循东加西减、一区一时的计算法则,注意日期的变化。 ●区时的性质: ①严格按照各时区中央经线(地方时)与太阳光照的关系来确定某时区的时刻,同一时区不会因经度的变化而改变区时。 ②严格按照“东早西晚,东加西减,区区计较,整时换算”进行区时计算。 ③由于区时是对时区(跨经度15°)而言的,有平面二维空间(区域),具有相对统一性、一致性和稳定性(同区同时),使用方便,克服了时间在钟点上的混乱。实际上,每个国家或地区,为了采用统一的时间,一般都不严格沿经线划分时区,而是按自己的行政边界和自然边界来确定时区。 ●区时的计算方法: ①用已知经度推算时区:

相关主题
文本预览
相关文档 最新文档