当前位置:文档之家› 光传输中继距离计算 (杰赛通信设计)

光传输中继距离计算 (杰赛通信设计)

光传输中继距离计算 (杰赛通信设计)
光传输中继距离计算 (杰赛通信设计)

概述

为了规范合理地组建光传输网,光传输中继距离是前提。光传输中继传输距离与设备的性能、所采用的光纤性能、两端光设备间线路传输的连接器件等有关。传输距离的长短影响着组建光传输网灵活性、投资规模。为提高我们组建光传输网设计的科学性,有必要对各光中继传输距离进行核算。下面将分别总结影响光传输中继距离的各种因素及计算方法。

影响光传输距离因素

在发送机与接收机之间影响信号传输距离的因素有很多,不同的物理媒介会给信号带来不同的影响。

从上面的示意图看我们可以从光设备、光缆设施和光连接器三个方面考虑影响信号传输距离的因素。

1.光设备对信号传输的影响

光信号的传输距离受限于光设备的光口类型。SDH中的光接口按传输距离和所用的技术可分为三种,即局内连接、短距离局间连接和长距离局间连接。为了便于应用,将不同的光口类型用不同的代码(如S-16.1)来表示:

第一个字母表示应用场合:I表示局内通信;S表示近距通信;L表示长距通信;V表示甚长距通信;U表示超长距;

字母后第一个字母表示STM的等级;

字母后第二个字母表示工作窗口和所用光纤类型:空白或1表示工作波长是1310nm所用光纤为G.652,2表示工作波长为1550nm所用光纤为G.652、G.654,5表示波长1550nm所用光纤为G.655。

另:电接口仅限STM-1等级、PDH接口。

2. 光纤对信号传输的影响

光在光纤中传输,主要受到光纤的衰减及色散的影响,另外我们在工程实际设计中还要考虑到两段光纤间接头的损耗、光通道代价、光缆富余度和高速传输存在的偏振模色散(PMD )等。

在光传输系统中,光纤的衰减是不可确定的因素,不同厂家的光纤在不同的环境均有不同的衰减值,不同工艺的光纤接续的衰减也不同;光纤在不同的光波长传输,损耗也不同的。具体的参数见有关厂家的资料及参照国家通信行业的有关标准。

这里介绍六种典型单模光纤的性能和应用: a .

c.

d.

e.

3.光连接器对信号传输的影响

S、R点间其他连接器损耗,如ODF等FC型平均0.8dB/个,PC型平均0.5dB/个,一般取2*0.5

光传输距离计算方法

在光传输系统中,在已选好的光纤类型上开通光传输系统,传输距离将受到损耗和色散两种因素的影响及设备的有关性能影响。

在每个中继段中,需要进行光功率预算,在允许的范围内选用合适的光接口板类型。

1.SDH的光传输距离计算方法

在SDH光传输中,目前,ITU-T已经在G.652、G.653、G.654和G.655中分别定义了4种不同设计的单模光纤。其中G.652光纤就是目前广泛使用的单模光纤,称为1310nm波长性能最佳的单模光纤,它可以应用在1310 nm 和1550nm两个波长区;G.653光纤称为1550nm波长性能最佳的单模光纤,主要应用于1550nm工作波长区;G.654光纤称为截止波长移位单模光纤,主要应用于需要很长再生段距离的海底光纤通信;G.655光纤是非零色散移位单模光纤,适于密集波分复用(DWDM)系统应用。

根据工程的具体情况,在本地网建光传输建议全部使用符合G.652建议的光纤,并根据不同的敷设方式选择不同程式的光缆。如选用符合G.655建议的光缆,应能满足1310nm窗口传输的要求。

选定了光纤的类型,在进行光传输中继段距离预算计算时,必需考虑衰减受限

距离及色散受限距离,为保证能满足最坏情况要求,选择两者之中较小值作为可用传输距离。

1.1衰减限制

衰减限制中继段长度预算L= (Ps-Pr-Ac-Pp- Mc) / (Af+As) Ps—平均发射功率

Pr —最小灵敏度

Pp —光通道代价,也就是设备富余度。由于设备时间效应(设备的老化)和温度因素对设备性能影响所需的余量,也包括注入光功率、光接受灵敏

度和连接器等性能劣化,一般取1dB或2dB

Ac —连接器衰减和,包含S和R点间除设备连接器C以外的其它连接器(如ODF等)衰减,如ODF等FC型平均0.8dB/个,PC型平均0.5dB/个,一

般取2*0.5

Af —光纤衰减系数(在1310nm中取0.36dB/km,在1550nm中取0.22dB/km)MC —线路富余度,可取0.05--0.1dB/km,在一个中继段内,光缆富裕度不宜超过5dB.一般预算距离小于30km时取0.1dB/km,大于30km时取3dB

(注:当MC取0.1dB/km时预算公式改为L= (Ps-Pr-Ac-Pp) / (Af+As+Mc))As —光纤接头平均衰减(活接头取0.5dB/个,死接头取0.08dB/个)

注:上面计算中继段距离的取值,仅作为参考

为了满足衰减限制可通过下面方法求得:

(1)最长限制传输距离

Ps取最小平均发射功率,Pr取光口最小接收灵敏度,得出长限制距离L。

(2)最短限制传输距离

Ps取最大平均发射功率,Pr取光口接收过载功率,Mc取0,得出短限制距离l。

1.2色散限制

色散限制的中继段长度 Ld= Dmax/│D│

Dmax:光传输收发两点间的允许的最大色散值;

│D│:光纤色散系数,在G.652光纤中1310nm取3.5Ps/nm.km,在1550nm 取18Ps/nm.km。

中继段范围:l~min(L,Ld).

1.3偏振模色散(PMD)受限

系统偏振模色散受限距离的计算和解决方法:L=(Pt/P)2

其中:Pt指光口的PMD容限(对于10Gb/s信号,Pt=10ps=(1/A)1/2)

A为系统速率(Tb/s)),P为光缆实际测试的PMD值。

例如某段光纤PMD值为1.2ps/km1/2,那么对于10G系统来说:

PMD受限距离=(10/1.2)2=69.44km。

2.WDM的光传输距离计算方法

随着技术的进展,及数据业务的快速增长,通信业务的迅速增长,在通信行业中,越来越多的光传输采用了波分复用(WDM)。在波分复用中,要增加传输中继距离,主要是克服光纤对光波信号的衰减或由光纤引起的色散影响。

(1)规则设计法(称固定衰耗法):得用色散受限式公式1及保证系统信噪比的衰耗受限式公式2,分别计算这二式,取其较小值。此方法适用段落比较均匀的情况。

公式1中:

L为色散受限的再生段长度

Dsys为MPI-S MPI-R之间光通道允许的最大色散值(ps/nm)

1D1 为光纤色散系数(ps/nm.km)

公式2中:

L为保证信噪比的衰减受限的再生段长度(km)

n为WDM系统应用的应用代码所限制的光放段数量

Aapan为最大光放段衰耗。其值应小于并等于WDM系统采用的应用代码所限制的段落衰减(dB)

Ac为MPI-S,R’点或S’,R’或S’,MPI-R之间所有连接器衰减之和(dB)

Af为光纤衰减常数(dB/km)

Amc光线路维护每公里余量(dB/km)

(2)简易的信噪比计算方法:光规刚设计法不能满足实际应用的要求时,可采用色散受限式(公式1)及简易的信噪比计算式(公式3)进行系统设计,即利用保证色散受限和系统的信噪比来确定再生段/光放段的长度。此方法适用光放段衰耗差别不太大的情况。

OSNR N=58+P totⅠM-Nf-Aspan-101gN (公式3)为N个光放段后的每通路光信噪比(dB)

OSNR

N

M为通路数量

P totⅠM为每通路的平均输出功率(dBm)

Nf为光放大器的噪声系数

Aspan为最大光放段损耗(dB)

在信噪比(OSNR)的计算中,取光滤波器带宽0.1nm,在每个光放段R’点及MPI-R 点的各个通路的OSNR大于22dB的情况下,由光放段损耗来决定光放段的长度,也可确定通过几个OA级联的再生段长度。

(3)专用系统计算工具计算:在上述两种均不能满足系统OSNR的情况下,要采用专用系统计算OSNR来确定。

上面有关公式的一些取值,请参见中华人民共和国通信行业标准(长途光缆波分复用(WDM)传输系统工程设计暂行规定)及设备厂家的参数。

设计需要注意的问题

(1)光口板的选择

在组建传输中,要考虑到光口板接收功率、发射功率的上限值及下限值,根据不同路由长度,选择适当的光口板类型(局内、短距离、长距离、超长距离)。

在设计中,选用不同类型光口板时,在通过计算其最大的传输距离,不能满足需要时,需要增加光衰减或光功率放大器。在局内的光设备组网(或传输距离较近),一般选用局内通信用的光口板(I1)。

当传输路由长度较长时,也可考虑加光放大器来实现长传输距离的传输。在本地传输网设计中,常不作考虑。

(2)不同波长光口板的选择

在组建一个传输网络时,采用光接口板的类型影响到传输中继距离,一般,1550波长窗口的传输距离都优于1310nm波长的光接口板。在本地网设计中,一般采用1310nm窗口,长途网常采用1550nm窗口。

同一中继段内,对应的两光接口板应同时工作在同一波长(即相同的工作窗口)。

(3)光传输设备厂家的技术参数

不同光传输设备厂家的技术参数也不同,在设计中要注意设计文件中的光传输设备技术参数与所选择的光传输设备厂家是否一致。

镜头角度与距离计算方法

监控摄像头镜头可视角度表 镜头焦距搭配1/3" CCD搭配1/4" CCD二者的角度差异 2.8 mm89.9°75.6°14.3° 3.6 mm75.7°62.2°13.5° 4 mm69.9°57.0°12.9° 6 mm50.0°39.8°10.2° 8 mm38.5°30.4°8.1° 12 mm26.2°20.5° 5.7° 16 mm19.8°15.4° 4.4° 25 mm10.6°8.3° 2.3° 60 mm 5.3° 4.1° 1.2° 监控摄像头镜头可视距离表 镜头焦 距(毫米数) 距离5米 (宽×高) 距离10米 (宽×高) 距离15米 (宽×高) 距离20米 (宽×高) 距离30米 (宽×高) 2.8mm13×9.8米26×19.5米39×29.3米52×39米78×58.5米 3.6mm8.5×6.4米17×12.8米25.5×19米34×25.5米51×38.3米4mm8×6米16×12米24×18米32×24米48×36米

6mm 5.5×4.1米11×8.3米16.5×12.4米22×16.5米33×24.8米8mm 3.5×2.6米7×5.3米10.5×7.9米14×10.5米21×15.8米12mm2×1.5米4×3米6×4.5米8×6米12×9米16mm 1.5×1.1米3×2.3米 4.5×3.4米6×4.5米9×6.8米25mm 1.3×1米 2.5×1.9米 3.8×2.9米5×3.8米7.5×5.6米60mm0.5×0.4米1×0.75米 1.5×1.1米2×1.5米3×2.3米

摄像机选型、安装需要考虑的几个问题 摄像机选型、安装通常有八点需要考虑,具体如下(1)应根据监控目标的的照度选着不同灵敏度的摄像机。监控目标的最低环 境照度应高于摄像机最低照度的10倍。 监视目标的照度要求与摄像机的灵敏度密切相关,通常闭路 电视监控系统是由被监视视场所监视时刻的自然光,一般画 面的典型照度见表1-1 表1-1 一般画面的典型照度 各种天气下的自然光照度值照度估计值(lx) 直射阳光100000—130000 晴天(非阳光直射)10000—20000 阴天1000 工作场所内(白天)200—400 非常阴暗的白天100 黄昏(拂晓)10 入夜1 满月0.1 弦月0.01 没有月亮的晴朗夜空0.001 没有月亮的多云夜空0.0001 监视目标的最低环境照度应高于摄像机最低照度的10倍以上,

《光纤通信》精彩试题计算分析报告题练习

实用文档 要自信,绝对的自信,无条件的自信,时刻自信,即使在错的时候!!! 《光纤通信》计算、综合、分析练习公布 精选精炼+课后精讲(QQ在线讲解) 张延锋 2014/8/1 忍人之所不能忍,方能为人知所不能为!!!

计算、综合、分析题练习 1. 一阶跃折射率光纤,纤芯折射率n 1=1.5,相对折射率差% 1 = ?,工作波长为 1310nm,试计算: (1) 为了保证单模传输,其芯径应取多大? (2) 若取芯径m 5 aμ =,求其数值孔径及其模式数。 2.设PIN光电二极管的量子效率为75%,渡越时间为10ps。问: (1) 计算该检测器的3dB带宽; (2) 计算在1.3um和1.55um波长时的响应度,并说明为什么在1.55um处光电 二极管比较灵敏。 3.已知阶跃型光纤的n 1 =1.5,△=0.5%,工作波长λ=1.31μm光纤中的导模M=2求: (1) 光纤的数值孔径NA。(2分) (2) 全反射临界角θc。(3分) (3) 光纤的纤芯半径a。(5分) 4.一个GaAsPIN光电二极管平均每两个入射光子,产生一个电子-空穴对,假设所有的电子都被接收。 (1) 计算该器件的量子效率; (2) 设在1.31um波段接收功率是10-7W,计算平均输出光生电流。 (3) 计算这个光电铒极管的长波长截止点λc(超过此波长光电二极管将不工 作)。 5. 某SI型光纤,光纤的芯径d=2a为100μm,折射率n1=1.458,包层的折射率 n2=1.450,在该光纤中传输的光波的波长λ=850nm。 (1)计算该光纤的V参数; (2)估算在该光纤传输的模式数量; (3)计算该光纤的数值孔径; (4)计算该光纤单模工作的波长。 6. 有一GaAlAs半导体激光器,其谐振腔长为300m μ,材料折射率n=3.0,两端的解理面的反射率为0.35。 (1)求因非全反射导致的等效损耗系数。 (2)求相邻纵模间的频率间隔和波长间隔。 (3)若此激光器的中心波长λ=1310nm,与此相应的纵模序数。 7.设140Mb/s的数字光纤通信系统,工作波长1300 nm,其他参数如下: 发射光功率为-3dBm,接收机的灵敏度为-38 dBm (BER=10-9),系统余量为4 dB,连接器损耗为0.5 dB /个,平均接头损耗为0.05 dB/km,光纤损耗为0.4 dB/km,试计算损耗限制传输距离。 8. 分光比为3:1的定向耦合器,假设从输入口0输入的功率为1mW,从输入口 0到输入口1的插入损耗为1.5dB,求两个输出口的输出光功率。

关于中继台的距离延伸

中继台的距离延伸 在解答朋友们众多的问题里,我发现一个很严重的问题。那就是:对中继台延伸距离的误解! 他们认为在手台或车台在通话过程中遇到盲区,或是理想距离达不到的情况下,都可以借用中继台来解决这两个问题。 举个例子:两台手台在市区内使用,直径通话极限距离为3公里。而理想中的通话距离是15公里。那么,架设中继台能否直接达到这个目的呢? 答案是:不能。 顺便说下,很多朋友认为功率越大的中转台通话距离就越远。这是不一定的。需要根据使用的环境来判断和使用的对讲机(手台或车台)。若小场合里使用大功率就有可能造成资源浪费, 首先,对讲机在市区的通话距离是为3公里,也就是说,在市区里使用,对讲机的发射信号也只能达到3公里,无法再延伸更远。若中继台架设在5公里处的高楼上,对讲机发射过来的信号,中转台就无法接收到,既然无法接收到,那么又如何将对讲机的信号转发出去呢? 那么这时候,将中转台架设在3公里处,就可以将对讲机发射出来的信号转发出去,使另一部对讲机接收到第一部对讲机发射的信号了。这就很明白,中转台有点很肯定,就是它能将距离延伸2倍。甚至更远,当然,也要对讲机接收了信号,能够将信号发射回来。 但,注意的一点是:两台对讲机相互只能接收到3公里,对讲机和中转台的之间的信号传输有可能达到3.5公里,4公里。这个跟中转台的架设位置,选择的天线有很大直接的关系。所以,在架设中转台时,一定要找到适合的,能发挥最大价值的位置。 所以,在购买中转台时,需要根据自身的条件(对讲机的功率、使用的环境)去选择中转台,避免在购买安装时造成心理落差。 上面说的是中转台改善通话距离,有效的延伸距离的例子。 特意画了简易图。目的是让大家能够更清楚,更明白,中转台在延伸距离上,能达到怎么样的效果和自己所使用对讲机的环境里,适不适合安装中转台。当然不止这么一个案例。符合条件的情况下,自己可因情况安装。

距离计算方法

1.欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的欧氏距离: 也可以用表示成向量运算的形式: 2.曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。 (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离 (2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离 5.标准化欧氏距离(Standardized Euclidean distance ) (1)标准欧氏距离的定义

标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是: 标准化后的值= (标准化前的值-分量的均值) /分量的标准差 经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的标准化欧氏距离的公式: 如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。 7.夹角余弦(Cosine) 有没有搞错,又不是学几何,怎么扯到夹角余弦了?各位看官稍安勿躁。几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2)两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦 类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。 即:

光传输设备技术要求

1.总则 1.1本技术要求适用于新疆华电红雁池发电有限责任公司光传输设备改造的技术要求。 1.2本技术要求提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范条文,供方保证提供符合招标书和工业标准的优质产品。 1.3如供方没有以书面形式对本技术要求的条文明确提出异议,需方则认为供方提供的产品完全满足技术要求。 1.4在签定合同之后,供方应积极主动地实施合同内容。 1.5本技术要求为供方提供产品依据,在执行本技术要求所列要求、标准,本规范书中未提及的内容均应满足或优于本要求所列的国家标准、行业标准和有关国际标准。有矛盾时,按较高标准执行。 1.6供方提供的产品,是成熟的、技术先进的、具有制造经验的复制品,而不是试制品,并提供安全、经济、可靠的设备和可行的布置。 2. 遵循的主要现行标准 本技术要求中涉及的所有规范、标准或材料规格(包括一切有效的补充或附录)均应为最新版本,若发现本技术要求与参照的文献之间有不一致之处,卖方应向买方指明,并按较高标准执行。 2.1引用的规范和标准 国际及国标 (1)中华人民共和国标准《同步数字体系(SDH)光缆线路系统进网要求》;(2)信息产业部《光同步传送网技术体制》; (3)ANSI T1.101 同步接口规范; (4)ITU-T G.812 局间时钟的定时要求(9/97版); (5)ITU-T G.811 国际局间原始参考钟(PRC)的定时要求; 3、设备运行的环境条件 电源:额定电压:直流-48V; 电压范围:直流–39V~–57V 工作温度:0℃~50℃

湿度:10%~90%,不结露 4、技术要求 4.1一般要求 4.1.1买方光传输设备属于新疆电网干线上的一个环网节点,改造后的设备必须与之匹配运行。 4.1.2买方原设备2M业务有48端口,备用端口有19个,改造后2M业务端口必须大于48端口,并有足够的扩展槽位。 4.1.3卖方应保证改造后设备至少有2块光板,速率不小于622Mb/s,并能平滑升级,满足将来电网通信需求。 4.1.4卖方应保证改造后设备支持多业务(MSTP),应有以太网端口,满足现在和将来电网通信需求。 4.2光纤通道应能可靠的传输以下信息 4.2.1电话 4.2.2 调度自动化信息 4.2.3 通信监控 4.2.4 线路继电保护和安全自动装置信息 4.2.5 数据信息 4.2.6 综合业务数字网信息 4.2.7 MIS网络信息 4.3 光纤通信系统参考数字通道 数字传输模型 (a)假设参考数字通道(HRDP)长度为6900km。 (b)假设参考数字段(HRDS)长度为280km。 4.4 传输与复用设备类型及性能要求 4.4.1 数字光纤通信传输系统采用SDH、STM-16等级,本期工程传输速率为622Mb/s, 将来设备只需更换光卡板,便能平滑升级到STM-16,2.5Gb/s或者STM-64,10Gb/s。本工程中,需要在红雁池电厂新增1套SDH光传输设备。 4.4.2 SDH622/2.5Gb/10G/s设备应具有功能强大的交叉矩阵,可在VC-12级别

中继台基础学习

中继台基础学习 在无线对讲系统中,中继台对于增大通讯距离,扩展覆盖范围扮演 着极其重要的角色。是专业无线通讯系统不可缺少的重要设备。 中继台由收信机和发信机等单元组成。通常工作于收发异频状态, 能够将接收到的已调制的射频信号解调出音频信号传输给其它设备。同时 ,还能将其它设备送来的音频信号经射频调制后发射出去。上面提到的其 它设备有各种系统使用的控制器,有无线接驳器等,也包括互联所需要的 其它中继台。将中继台收到的信号直接通过自身的发射机转发出去,这是 中继台最基本的应用。 因此,中继台必须能够全双工工作,即收发同时工作,并且发射时 不能影响接收机的正常工作。由于中继台工作的基本特点,再加上多台中 继台组合一起使用的特点,对中继台的技术指标相对于移动台要有更高的 和更特殊的要求。 除一台中继台组成的单信道常规地面通讯系统之外,还可以利用中 继台经同轴电缆,功分器,架设多幅分布天线,实现楼宇、酒店等建筑物 地下和地面的覆盖通讯,此外多台中继台组成集群系统以及各种带状或星 形结构的通讯网。 中继台调试集成安装的指标直接影响到系统的通讯距离和系统网络 语音质量及功能。 二.中继台通讯距离的工程计算 1.无线电波传输损耗工程实用公式 LM(dB)=88.1+20lgF-20lgh1h2+40lgd 式中:F—通讯工作频率(MHz) h1—通讯对象A点天线高度(m) h2—通讯对象B点天线高度(m) d—A点和B点的通讯距离(m) 上述实用公式仅限于VHF 150MHz和UHF 400~470MHz频段,并且地形起伏高 度在15m左右,通讯距离在65km范围内。 2.系统无线设备通讯距离的计算(说明)

镜头角度与距离计算方法

专用的镜头角度计算方法 镜头焦距的计算 1公式计算法:视场和焦距的计算视场系指被摄取物体的大小,视场的大小是以镜头至被摄取物体距离,镜头焦头及所要求的成像大小确定的。 1、镜头的焦距,视场大小及镜头到被摄取物体的距离的计算如下; f=wL/W 2、f=hL/h f;镜头焦距 w:图象的宽度(被摄物体在ccd靶面上成象宽度) W:被摄物体宽度 L:被摄物体至镜头的距离 h:图象高度(被摄物体在ccd靶面上成像高度)视场(摄取场景)高度 H:被摄物体的高度 ccd靶面规格尺寸:单位mm 规格 W H 1/3" 1/2" 2/3" 1" 由于摄像机画面宽度和高度与电视接收机画面宽度和高度一样,其比例均为4:3,当L不变,H或W增大时,f变小,当H或W不变,L增大时,f增大。 2视场角的计算如果知道了水平或垂直视场角便可按公式计算出现场宽度和高度。水平视场角β(水平观看的角度)β=2tg-1= 垂直视场角q(垂直观看的角度) q=2tg-1= 式中w、H、f同上水平视场角与垂直视场角的关系如下: q=或=q 表2中列出了不同尺寸摄像层和不同焦距f时的水平视场角b的值,如果知道了水平或垂直场角便可按下式计算出视场角便可按下式计算出视场高度H和视场宽度W. H=2Ltg、W=2Ltg 例如;摄像机的摄像管为17mm(2/3in),镜头焦距f为12mm,从表2中查得水平视场角为40℃而镜头与被摄取物体的距离为2m,试求视场的宽度w。W=2Ltg=2×2tg= 则H=W=×= 焦距f越和长,视场角越小,监视的目标也就小。 图解法如前所示,摄像机镜头的视场由宽(W)。高(H)和与摄像机的距离(L)决定,一旦决定了摄像机要监视的景物,正确地选择镜头的焦距就由来3个因素决定; *.欲监视景物的尺寸 *.摄像机与景物的距离 *.摄像机成像器的尺士:1/3"、1/2"、2/3"或1"。图解选择镜头步骤:所需的视场与镜头的焦距有一个简单的关系。利用这个关系可选择适当的镜头。估计或实测视场的最大宽度;估计或实测量摄像机与被摄景物间的距离;使用1/3”镜头时使用图2,使用1/2镜头时使用图3,使用2/3”镜头时使用图4,使用1镜头时使用图5。具体方法:在以W和L为座标轴的图示2-5中,查出应选用的镜头焦距。为确保景物完全包含在视场之中,应选用座标交点上,面那条线指示的数值。例如:视场宽50m,距离40m,使用 1/3"格式的镜头,在座标图中的交点比代表4mm镜头的线偏上一点。这表明如果使用4mm镜头就不能覆盖50m的视场。而用的镜头则可以完全覆盖视场。 f=vD/V 或 f=hD/H 其中,f代表焦距,v代表CCD靶面垂直高度,V代表被观测物体高度,h代表CCD靶面水平宽度,H代表被观测物体宽度。 举例:假设用1/2”CCD摄像头观测,被测物体宽440毫米,高330毫米,镜头焦点距物体2500毫米。由公式可以算出: 焦距f=440≈36毫米或 焦距f=330≈36毫米

如何计算中继台通讯距离

领先的无线对讲系统解决方案提供商如何计算中继台通讯距离? 在无线对讲系统中,中继台对于增大通讯距离,扩展覆盖范围扮演着极其重要的角色。是专业无线通讯系统不可缺少的重要设备,如何精确的计算中继台通讯距离,估计大家都不了解,上海曙腾告诉你其中的奥秘: 1、无线电波传输损耗工程实用公式 LM(dB)=88.1+20lgF-20lgh1h2+40lgd 式中:F—通讯工作频率(MHz) h1—通讯对象A点天线高度(m) h2—通讯对象B点天线高度(m) d—A点和B点的通讯距离(m) 上述实用公式仅限于VHF 150MHz和UHF 400~470MHz频段,并且地形起伏高度在15m左右,通讯距离在65km范围内。 2、系统无线设备通讯距离的计算 (1)假设已知条件 a.系统工作频率: TX 465MHz RX 455MHz b.中继台参数和架设数据:

领先的无线对讲系统解决方案提供商发射功率:20W (43dBm) 接收灵敏度:-116dBm 同轴电缆损耗:2dB(1/2″馈管40m长、5dB/100m) 全向天线增益:9.8dbi 天线架设高度:30m c.对讲机参数 发射功率:4W(36dBm) 接收灵敏度:-116dBm 对讲机天线增益:0dBi 对讲机高度:1.5m 3、中继台与对讲机的系统增益 所谓系统增益就是对讲机发射信号给中继台接收机允许衰减的最大值,若不考虑电缆损耗和天线增益的条件下: 系统增益(dB)=发射功率(dBm)-接收灵敏度(dBm) 若考虑电缆损耗、天线增益的条件下,本例系统增益为: SG(dB)=Pt+PA-(RA+CL+RR)

领先的无线对讲系统解决方案提供商=36+0-(9.8-2-116) =144.2(dB) 式中:Pt——对讲机发射功率 PA——对讲机天线增益 RA——中继台天线增益 CL——同轴电缆损耗 RR——中继台接收灵敏度 4、系统增益代入电波传输损耗工程公式 如果系统增益等于电波传输的损耗,则说明通讯距离的电波能量已达极限,若系统增益小于传输损耗则表明通讯可能建立不起来。 将系统增益代入电波传输损耗工程公式: 144.2=88.1+201g455-201g1.5×30+401gd 144.2=88.1+53.2-33+401gd 35.9=401gd d=7.9km 上式仅计算了上行信号(对讲机发给中继台)可通讯的保守距离,而未计算下行信号(中继台发给对讲机)可覆盖的距离,通常由于中继台发射功率较大,其下行信

《光纤通信》试题计算分析题练习

要自信,绝对的自信,无条件的自信,时刻自信,即使在错的时候!!! 《光纤通信》计算、综合、分析练习公布 精选精炼+课后精讲(QQ在线讲解) 张延锋 2014/8/1 忍人之所不能忍,方能为人知所不能为!!!

计算、综合、分析题练习 1. 一阶跃折射率光纤,纤芯折射率n 1=1.5,相对折射率差%1=?,工作波长为1310nm ,试计算: (1) 为了保证单模传输,其芯径应取多大? (2) 若取芯径m 5a μ=,求其数值孔径及其模式数。 2. 设PIN 光电二极管的量子效率为75%,渡越时间为10ps 。问: (1) 计算该检测器的3dB 带宽; (2) 计算在1.3um 和1.55um 波长时的响应度,并说明为什么在1.55um 处光电 二极管比较灵敏。 3.已知阶跃型光纤的n 1=1.5,△=0.5%,工作波长λ=1.31μm 光纤中的导模M=2求: (1) 光纤的数值孔径NA 。(2分) (2) 全反射临界角θc 。(3分) (3) 光纤的纤芯半径a 。(5分) 4. 一个GaAsPIN 光电二极管平均每两个入射光子,产生一个电子-空穴对,假设所有的电子都被接收。 (1) 计算该器件的量子效率; (2) 设在1.31um 波段接收功率是10-7W ,计算平均输出光生电流。 (3) 计算这个光电铒极管的长波长截止点λc (超过此波长光电二极管将不工作)。 5. 某SI 型光纤,光纤的芯径d=2a 为100μm ,折射率n1=1.458,包层的折射率n2=1.450,在该光纤中传输的光波的波长λ=850nm 。 (1)计算该光纤的V 参数; (2)估算在该光纤内传输的模式数量; (3)计算该光纤的数值孔径; (4)计算该光纤单模工作的波长。 6. 有一GaAlAs 半导体激光器,其谐振腔长为300m μ,材料折射率n=3.0,两端的解理面的反射率为0.35。 (1)求因非全反射导致的等效损耗系数。 (2)求相邻纵模间的频率间隔和波长间隔。 (3)若此激光器的中心波长λ=1310nm ,与此相应的纵模序数。 7. 设140Mb/s 的数字光纤通信系统,工作波长1300 nm ,其他参数如下: 发射光功率为-3dBm ,接收机的灵敏度为-38 dBm (BER=10-9),系统余量为4 dB ,连接器损耗为0.5 dB /个,平均接头损耗为0.05 dB/km ,光纤损耗为0.4 dB/km ,试计算损耗限制传输距离。 8. 分光比为3:1的定向耦合器,假设从输入口0输入的功率为1mW ,从输入口0到输入口1的插入损耗为1.5dB ,求两个输出口的输出光功率。

光接口传输距离计算方法

光接口传输距离计算方法 再生段距离确定及系统富裕度计算: 再生段距离由光接口参数,光传输损耗,光纤色散,接续水平等因素决定。按照光传输衰耗、色散,光系统分为衰耗受限系统和色散受限系统。再生段距离计算采用ITU-T建议G.957 的最坏值法,即所有参数都按最坏值考虑。该法较为保守,计算的中继距离短,实际系统的余度较大,但可以实现设备的横向兼容,还可以在系统寿命终了(所有系统和光缆余量均已用尽)前,并处于允许的最恶劣环境条件下,仍保证系统指标要求。 再生段距离计算公式: 1)衰耗受限的再生段距离计算: L1=(Pt-Pr-Pp-Mc-∑Ac)/(Af+As) 式中:L1—衰减受限再生段长度(km); Pt— S点寿命终了时光发送功率(dBm); Pr— R点寿命终了时光接收灵敏度(dBm); Pp—光通道功率代价(dB); Mc—光缆线路光功率余量(dB); ∑Ac—S,R点间其它连接器衰减之和(dB); Af—光纤衰减常数(dB/km); As—光缆固定接头平均衰减(dB/km)。 2)色散受限的再生段距离计算: L2=Dmax/Dm 式中:Dmax —S、R间通道允许的最大总色散值(ps/nm); Dm —光纤工作波长范围内的最大色散系数(ps/(nm.km)); L2 —色散受限的再生段长度(km)。 根据以上两公式计算结果,取较小值即为再生段中继距离。 155M光接口 (1)S1.1, =[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km (2)L1.1,

=[-5-(-34)-1-1]/(0.36+0.03+0.04)=62.7km (3)L1.2, =[-5-(-34)-1-1]/(0.22+0.03+0.04)=93.1km 622M光接口? (1)S4.1, =[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km (2)L4.1, =[-3-(-28)-1-1]/(0.36+0.03+0.04)=53.4km (3)L4.2, =[-3-(-28)-1-1]/(0.22+0.03+0.04)=79.3km ? 2.5G光接口 (1)S16.1 =[-5-(-18)-1-1]/(0.36+0.03+0.04)=25.5km (2)S16.2 =[-5-(-18)-1-1]/(0.22+0.03+0.04)=37.9km (3)L16.2 =[-2-(-28)-2-1]/(0.22+0.03+0.04)=79.3km 光传输中继距离 2009-03-01 00:06 一、概述 为了规范合理地组建光传输网,光传输中继距离是前提。光传输中继传输距离与设备的性能、所采用的光纤性能、两端光设备间线路传输的连接器件等有关。传输距离的长短影响着组建光传输网灵活性、投资规模。为提高我们组建光传输网设计的科学性,有必要对各光中继传输距离进行核算。下面将分别总结影响光传输中继距离的各种因素及计算方法。 二、影响光传输距离因素 在发送机与接收机之间影响信号传输距离的因素有很多,不同的物理媒介会给信号带来不同的影响。 从上面的示意图看我们可以从光设备、光缆设施和光连接器三个方面考虑影响信号传输距离的因素。 1. 光设备对信号传输的影响 光信号的传输距离受限于光设备的光口类型。SDH中的光接口按传输距离和所用的技术可分为三种,即局内连接、短距离局间连接和长距离局间连接。为了便于应用,将不同的光口类型用不同的代码(如S-16.1)来表示:

光缆中继段测试施工工艺标准

光缆中继段测试施工工艺标准 1.施工准备 1.1 劳动组织 序项目单位数量备注 1 测试员人 1 光缆终端完 2 记录员人 1 成引入配线 3 司机人 1 1.2 工机具 序号名称单位数型号备注 1.3 材料 1 测试车辆 1 运输测试仪 2 工作台、登套 2 OTDR用 3 OTDR 台 1 测试光纤损 4 光电话机部 2 测试联络 5 酒精泵个 2 6 发电机台 2 测试电源 7 稳压器台 2 测试电源保 8 匹配尾纤盘 1 5m/ 9 手术剪把 2 10 螺丝刀大号把 2 十、一字型 11 斜口钳把 2 12 兆欧表500V 500M 个 1 序名称规格单位数量备注 1 监测尾缆根 1 2 脱脂棉包 2 3 无水乙醇ml 250 4 棉签盒 1 5 汽油升10

2.操作程序2.1 工艺流程 测试仪表就位预连接测试匹 光纤另一端 准备热设置配尾纤 测试测试 2.2 操作要领 2.2.1测试准备 (1)施工前应对光缆终端情况进行检查,核实尾纤数量、标识、出线顺序等现场情况,安置测试工作台,测试电源仪表就位,并根据线路台账,弄清中继段的基本长度。 2.2.2仪表就位设置 (1)将 OTDR测试仪表置于工作台上,连通电源,仪表预热。 (2)进行测试仪表基本测试参数的设置,包括测量模式、测量 波长、折射率、测试脉宽、测试范围、处理时间等。 2.2.3连接测试尾纤 将测试尾纤直接连接在ODTR测试仪表的输出光口上,并与待测光纤尾纤通过活动连接器连接。 2.2.4光纤测试 选择测量光纤衰减测试菜单,打开激光,向待测光纤进行轨迹取样,根据取样轨迹,移动A、B 点光标至轨迹上升沿和下降沿的始末端,仪表显示的两点衰减即为中继段衰减和两点损耗为线路衰减系 数。

最大最小距离算法以及实例

最大最小距离算法实例 10个模式样本点{x1(0 0), x2(3 8), x3(2 2), x4(1 1), x5(5 3), x6(4 8), x7(6 3), x8(5 4), x9(6 4), x10(7 5)} 第一步:选任意一个模式样本作为第一个聚类中心,如z1 = x1; 第二步:选距离z1最远的样本作为第二个聚类中心。 经计算,|| x6 - z1 ||最大,所以z2 = x6; 第三步:逐个计算各模式样本{x i, i = 1,2,…,N}与{z1, z2}之间的距离,即 D i1 = || x i - z1 || D i2 = || x i – z2 || 并选出其中的最小距离min(D i1, D i2),i = 1,2,…,N 第四步:在所有模式样本的最小值中选出最大距

离,若该最大值达到||z1 - z2 ||的一定比例以 上,则相应的样本点取为第三个聚类中心 z3,即:若max{min(D i1, D i2), i = 1,2,…,N} > θ||z1 - z2 ||,则z3 = x i 否则,若找不到适合要求的样本作为新的 聚类中心,则找聚类中心的过程结束。 这里,θ可用试探法取一固定分数,如1/2。 在此例中,当i=7时,符合上述条件,故 z3 = x7 第五步:若有z3存在,则计算max{min(D i1, D i2, D i3), i = 1,2,…,N}。若该值超过||z1 - z2 ||的一定 比例,则存在z4,否则找聚类中心的过程 结束。 在此例中,无z4满足条件。 第六步:将模式样本{x i, i = 1,2,…,N}按最近距离分到最近的聚类中心: z1 = x1:{x1, x3, x4}为第一类 z2 = x6:{x2, x6}为第二类 z3 = x7:{x5, x7, x8, x9, x10}为第三类最后,还可在每一类中计算各样本的均值,得到更具代表性的聚类中心。

OTDR测试传输距离计算说明手册

测试传输距离计算说明手册 备纤测试时OTDR的典型测试距离及计算方法: 元器件件插入损耗典型值:光连接器(Adapter)插入损耗=0. 3 dB; 光开关(OSW) 插入损耗=0. 5dB; 光纤传输的平均损耗定义:1550nm波长典型损耗0.2 dB/km;光缆接头损耗0.05dB/km(光缆盘长为2KM) 头端损耗=OSW(0. 5) +4个接头(1. 2)=1. 7 dB; 为确保测试曲线清晰,保证余量3dB,末端波形不精确区和冗余3dB; ?动态范围为39dB的典型离线测试距离(无中继): 【39dB - 3dB (末端波形不精确区和冗余) -3dB (保证余量)– 1. 7dB (头端光损耗)】/ (0. 20+0. 05) = 125.2km; ?动态范围为45dB的典型离线测试距离(无中继): 【45dB - 3dB (末端波形不精确区和冗余) -3dB (保证余量)– 1. 7dB (头端光损耗)】/ (0. 20+0. 05) = 150km; 备纤测试时光源设计: 光源选用1550nm波长的模块,150km×0.2 + -2dB(出光功率) –5dB(接头损耗) = -37dBm

OTDR的动态范围和可测试距离 1. 测试距离公式 光纤测试距离指OTDR可监测光缆的长度。其由OTDR的动态范围、光器件的介入损耗、光缆的传 输损耗、光纤接头(机械接头、熔接接头)的损耗等因素决定的;需要根据工程的具体情况进行计算确定。监测距离计算公式如右: 其中: L:光纤测试系统监测光纤最大长度 P:OTDR模块的动态范围(如安立9081D为38/36dB) Ac:介入损耗,指OTDR、光开关、WDM、滤波器等设备的介入损耗的和 Af:光缆平均衰减系数(dB/km) As:光熔接接头平均衰减系统(dB/km) Mc:光缆线路富余度(dB) Ma:测试精度富余度(dB) 公式中变量的取值: P由系统供货商提供(37/40dB) Af取值由光缆生产厂商提供,如不能提供1625nm时的平均损耗,可用光缆在1550nm 时的平均损耗替代。 As取值按光缆每2公里一个熔接接头,每个熔接接头衰减为0.08dB计算,As为0.04dB。 Ma取值为10dB。 Mc光缆线路富余度取值为3.5dB Ac的计算要将OTDR、光开关、WDM、滤波器、机械接头的介入耗损耗。 对于光缆监测距离的计算,需要先以各项目数据代入公式计算,再根据工程情况加以一定经验修正,弥补理想情况与实际情况的差距。 2. 光纤监测设备对光传输系统的介入损耗 系统对光纤在线测试(只有少数OTDR有此功能),会对传输系统产生一定的介入损耗。 这主要由接入在实用光纤中的无源光器件的介入损耗产生的。其计算方法将接入光纤中的所有光器件的介入损耗累加即可得出对光传输系统的介入损耗。在一个测试区段中,对于在用纤测试,介入损耗主要是OTDR和滤波器的影响。

长距离顶管施工中继间的分布(标准版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 长距离顶管施工中继间的分布 (标准版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

长距离顶管施工中继间的分布(标准版) 1中继间的顶力 为了留有足够的顶力储备,当顶进的过程中顶力达到中继间顶力的50%时就需要下中继间。 中继间油缸的活塞杆直径d=140mm,中继间压力等级为Pmax=31.5MPa。 中继间顶力 F中=n×Pmax×A(1) =24×31.5×106×π×(0.14/2)2 =11632kN 2顶力计算 在普通泥水平衡顶管施工中,顶力计算: F=Fo+πBcτaL(2)

式中:F——总顶力(kN); Fo——初始顶力(kN); Bc——管外径(m); τa——管子与土之间的剪切摩阻力(kPa); L——推进长度(m) 初始顶力 Fo=(Pe+Pw+ΔP)πBc2/4(3) 式中:Pe——挖掘面前土压力(根据土质情况计算,现阶段管道的埋深一般不会超过20m,考虑排泥不畅等原因,取Pe=200kPa); Pw——地下水的压力(kPa); ΔP——附加压力(一般为20kPa); (4) 式中:——管与土之间的粘着力(kPa); ——管与土的摩擦系数() (5) 式中:W——每米管子的重力(kN/m);

光传输中继距离计算 (杰赛通信设计)

概述 为了规范合理地组建光传输网,光传输中继距离是前提。光传输中继传输距离与设备的性能、所采用的光纤性能、两端光设备间线路传输的连接器件等有关。传输距离的长短影响着组建光传输网灵活性、投资规模。为提高我们组建光传输网设计的科学性,有必要对各光中继传输距离进行核算。下面将分别总结影响光传输中继距离的各种因素及计算方法。 影响光传输距离因素 在发送机与接收机之间影响信号传输距离的因素有很多,不同的物理媒介会给信号带来不同的影响。 从上面的示意图看我们可以从光设备、光缆设施和光连接器三个方面考虑影响信号传输距离的因素。 1.光设备对信号传输的影响 光信号的传输距离受限于光设备的光口类型。SDH中的光接口按传输距离和所用的技术可分为三种,即局内连接、短距离局间连接和长距离局间连接。为了便于应用,将不同的光口类型用不同的代码(如S-16.1)来表示: 第一个字母表示应用场合:I表示局内通信;S表示近距通信;L表示长距通信;V表示甚长距通信;U表示超长距; 字母后第一个字母表示STM的等级; 字母后第二个字母表示工作窗口和所用光纤类型:空白或1表示工作波长是1310nm所用光纤为G.652,2表示工作波长为1550nm所用光纤为G.652、G.654,5表示波长1550nm所用光纤为G.655。 另:电接口仅限STM-1等级、PDH接口。

2. 光纤对信号传输的影响 光在光纤中传输,主要受到光纤的衰减及色散的影响,另外我们在工程实际设计中还要考虑到两段光纤间接头的损耗、光通道代价、光缆富余度和高速传输存在的偏振模色散(PMD )等。 在光传输系统中,光纤的衰减是不可确定的因素,不同厂家的光纤在不同的环境均有不同的衰减值,不同工艺的光纤接续的衰减也不同;光纤在不同的光波长传输,损耗也不同的。具体的参数见有关厂家的资料及参照国家通信行业的有关标准。 这里介绍六种典型单模光纤的性能和应用: a .

距离计算

摘要:颜色恒常性算法通常使用距离测量是基于数学方法进行评价,如角误差。然而,并不知道这些距离与人类视觉距离是否相关。因此,本文的主要目的是分析的几个性能指标和质量之间的相关性,通过心理物理实验,用不同的颜色恒常性算法获得输出图像。随后处理的问题是性能指标的分布,表明在一个大的图像中可以提供更多附加的和替代的信息,而且得到了改进的感性意义,即人类观察者之前存在的差异得到了明显的改善。?2009美国光学学会 颜色恒常性是视觉系统的能力,无论是人或机器,尽管光源颜色发生了巨大变化也可以保持稳定的物体颜色。颜色恒常性是颜色和计算机视觉的一个主题部分。为了解决颜色恒常性的问题,通常的方法是通过估计从视觉场景中的光源,然后恢复这些反射光源。 许多的颜色恒常性的方法已经被提出,例如,[ 1,4 ]–。为基准,颜色恒常性算法的精度是通过计算在相同数据的距离度量集如[ 5,6 ]评价。事实上,这些距离的措施计算到什么程度原光源向量近似估计。两种常用的距离度量是欧氏距离和角度误差,后者可能是更广泛的应用。然而,这些距离的措施本身是基于数学原理和归一化RGB颜色空间计算,它是未知的是否与人类视觉距离措施。此外,其他的距离度量可以基于人眼视觉原理的定义。 因此,在本文中,一种颜色恒常性算法分类法不同距离的措施第一,

从数学基础的距离知觉和颜色恒常性的特定距离。然后,设置距离这些措施的颜色恒常知觉的比较。显示距离的措施和看法之间的相关性,颜色校正后的图像与视觉检测的参考光照下的原始图像相比。在这种方式中,距离度量的心理物理学实验涉及的颜色校正后的图像进行配对比较。此外,以下[ 7 ],一个绩效指标的分布的讨论,表明附加的和替代的信息可以提供进一步的洞察在一个大的组的图像的颜色恒常性算法的性能。 最后,除了性能措施的心理评估,颜色恒常性算法之间的感知差异分析。这种分析是用来提供一个获得的性能改进的感性意义的指示。换句话说,这种分析的结果可以用来表明是否观察者可以看到之间的颜色校正两颜色恒常性算法产生的图像的差异。 本文的组织如下。在2节中,讨论了颜色恒常性和图像变换。进一步,设计了一套颜色恒常性的方法。然后,进行了3不同距离的措施。第一类问题的数学方法,包括角度误差和欧氏距离。第二类型涉及测量距离在不同的色彩空间,例如,设备无关的,感性的,或直观的色彩空间。第三,两域特定距离的措施进行了分析。在4节中,心理物理实验的实验装置进行了讨论,这些实验的结果在第5节。6节各种颜色恒常性算法进行比较,表明距离测量的影响,并在7节中两种算法之间的差异的感性意义的讨论。最后,对得到的结果进行了讨论在8节。 2、颜色恒常性 朗伯表面的图像值f取决于光源的颜色e(λ),表面的反射率S(x,

如何根据所需要的信号传输距离

如何根据所需要的信号传输距离,计算光链路损耗? 首先光学损耗值是发射机和接收机之间各个独立部件损耗的总和。导致光学损耗的主要原因有以下几点: 1、光纤每公里的损耗(该损耗一般可根据如下参数估算:62.5/125多模光纤,在采用850nm波长时为3.0 dB/km,采用1300nm波长时为1.0 dB/km;9/125单模光纤,在采用1310nm波长时为0.35 dB/km,采用1550nm波长时为0.25 dB/km。 2、光纤熔接点的损耗(一般每2公里光纤有一个熔接点,每个熔接点损耗按0.1~0.2 dB计算)。 3、光纤连接器的损耗(一般ST连接器损耗为1dB,FC/SC连接器损耗为0.5dB)。 但在工程实际情况下,计算这些损耗并不可能十分准确。因此在工程中还可使用光学仪器来测量实际的损耗,如光功率计等仪器。当光链路损耗的实际损耗低于光端机的光功率预算时,光端机即可正常工作。 光纤传输链路测试及技术参数 2)光纤传输链路测试技术参数(1)1楼宇内布线使用的多模光纤,其主要的技术参数为:衰减、带宽。光纤工作在850nm,1300nm双波长窗口。在850nm下满足工作带宽160MHz?km(62.5μm),400MHz?km(50μm);在1300nm下满足工作带宽500MHz?km(62.5μm,50μm);在保证工作带宽下传输衰减是光纤链路最重要的技术参数。A光=aL=10logp1/p2 式中a——衰减系数;L——光纤光度;P1——光信号发生器在光纤链路始端注入光纤光功率;P2——光信号接收器在光纤链路末端接收到的光功率。光纤链路衰减计算:A(总)=Lc+Ls+Lf+Lm 公式(6-2) 各环节衰减分配:式中Lc——连接器衰减:≤0.5dB×2;Ls——连接头衰减:≤0.3dB×2;Lf——光纤衰减:850nm,≤3.5dB/km,1300nm,≤1.2dB/km;Lm——余量:由用户选定。一般情况下,楼宇内光纤长度不超过km/2时,在设定测试标准时,A(总)应为:850nm 下:≤3.5dB (0.5×2)+(0.3×2)+(3.5dB/km÷2)+余量=3.5dB(余量=0.15dB) 1300nm下;≤2.2dB (0.5×2)+(0.3×2)+(1.2dB/km÷2)+余量=2.2dB(余量=0dB) (2)光纤链路测试测量仪表设备(a)主机测试系统包含一个检波器,光源模块接口,发送和接收电路,主机通常使用水平链路测试仪主机配以光接收器,可以在测试中作为光功率计使用。(b)光源模块它包含有发光二极管(LED),可在850nm,1300nm,1550nm波长上(通过切换)发出预选波长的光功率,发送功率可以预置。(3)测试前校准工作测试前需要对测试系统进行校准,校准可以排除测试系统带来的偏差,因为在实际测试光链路衰减料小的情况下,系统本身的偏差可能导致测试结果出现数值不合理。校准按下图连接方法进行光纤测试的校准(4)光纤链路的测试(a)测试光纤链路的目的是要了解光信号在光纤路径上传输衰耗,该衰耗与光纤链路的长度、传导特性、连接器的数目、接头的多少有关。(b)测试按下面框图进行连接。(c)测试连接前应对光连接的插头、插座进行清洁处理,防止由于接头不干净带来附加损耗,造成测试结果不准确。(d)向主机输入测量损耗标准值。光纤链路衰减测量(e)操作测试仪,在所选择的波长上分别进行A8,B A 两个方向的光传输衰耗测试。(f)报告在不同波长下不同方向的链路衰减测试结果。“通过”与“失败”。单模光纤链路的测试同样可以参考上述过程进行,但光功率计和光源模块应当换为单模的。

相关主题
文本预览
相关文档 最新文档