当前位置:文档之家› 光接口传输距离计算方法

光接口传输距离计算方法

光接口传输距离计算方法
光接口传输距离计算方法

光接口传输距离计算方法

再生段距离确定及系统富裕度计算:

再生段距离由光接口参数,光传输损耗,光纤色散,接续水平等因素决定。按照光传输衰耗、色散,光系统分为衰耗受限系统和色散受限系统。再生段距离计算采用ITU-T建议G.957

的最坏值法,即所有参数都按最坏值考虑。该法较为保守,计算的中继距离短,实际系统的余度较大,但可以实现设备的横向兼容,还可以在系统寿命终了(所有系统和光缆余量均已用尽)前,并处于允许的最恶劣环境条件下,仍保证系统指标要求。

再生段距离计算公式:

1)衰耗受限的再生段距离计算:

L1=(Pt-Pr-Pp-Mc-∑Ac)/(Af+As)

式中:L1—衰减受限再生段长度(km);

Pt— S点寿命终了时光发送功率(dBm);

Pr— R点寿命终了时光接收灵敏度(dBm);

Pp—光通道功率代价(dB);

Mc—光缆线路光功率余量(dB);

∑Ac—S,R点间其它连接器衰减之和(dB);

Af—光纤衰减常数(dB/km);

As—光缆固定接头平均衰减(dB/km)。

2)色散受限的再生段距离计算:

L2=Dmax/Dm

式中:Dmax —S、R间通道允许的最大总色散值(ps/nm);

Dm —光纤工作波长范围内的最大色散系数(ps/(nm.km));

L2 —色散受限的再生段长度(km)。

根据以上两公式计算结果,取较小值即为再生段中继距离。

155M光接口

(1)S1.1,

=[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km

(2)L1.1,

=[-5-(-34)-1-1]/(0.36+0.03+0.04)=62.7km

(3)L1.2,

=[-5-(-34)-1-1]/(0.22+0.03+0.04)=93.1km

622M光接口?

(1)S4.1,

=[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km

(2)L4.1,

=[-3-(-28)-1-1]/(0.36+0.03+0.04)=53.4km

(3)L4.2,

=[-3-(-28)-1-1]/(0.22+0.03+0.04)=79.3km

? 2.5G光接口

(1)S16.1

=[-5-(-18)-1-1]/(0.36+0.03+0.04)=25.5km

(2)S16.2

=[-5-(-18)-1-1]/(0.22+0.03+0.04)=37.9km

(3)L16.2

=[-2-(-28)-2-1]/(0.22+0.03+0.04)=79.3km

光传输中继距离

2009-03-01 00:06

一、概述

为了规范合理地组建光传输网,光传输中继距离是前提。光传输中继传输距离与设备的性能、所采用的光纤性能、两端光设备间线路传输的连接器件等有关。传输距离的长短影响着组建光传输网灵活性、投资规模。为提高我们组建光传输网设计的科学性,有必要对各光中继传输距离进行核算。下面将分别总结影响光传输中继距离的各种因素及计算方法。

二、影响光传输距离因素

在发送机与接收机之间影响信号传输距离的因素有很多,不同的物理媒介会给信号带来不同的影响。

从上面的示意图看我们可以从光设备、光缆设施和光连接器三个方面考虑影响信号传输距离的因素。

1. 光设备对信号传输的影响

光信号的传输距离受限于光设备的光口类型。SDH中的光接口按传输距离和所用的技术可分为三种,即局内连接、短距离局间连接和长距离局间连接。为了便于应用,将不同的光口类型用不同的代码(如S-16.1)来表示:

第一个字母表示应用场合:I表示局内通信;S表示近距通信;L表示长距通信;V表示甚长距通信;U表示超长距;

字母后第一个字母表示STM的等级;

字母后第二个字母表示工作窗口和所用光纤类型:空白或1表示工作波长是1310nm所用光纤为G.652,2表示工作波长为1550nm所用光纤为G.652、G.654,5表示波长1550nm所用光纤为G.655。

另:电接口仅限STM-1等级、PDH接口。

1

光传输中继距离总结广州杰赛通信设计院

局间

应用类型

局内

短程

长程

光源标称波长(nm)

1310

1310

1550

1310

1550

光纤类型

G.652

G.652

G.652

G.652

G.652

G.653

距离(km)

<2

~15

~40

~80

STM-1

I-1

S-1.1

S-1.2

L-1.1

L-1.2

L-1.3

STM-4

I-4

S-4.1

S-4.2

L-4.1

L-4.2

L-4.3

STM等级

STM-16

I-16

S-16.1

S-16.2

L-16.1

L-16.2

L-16.3

注:表内距离用于分类而不是用于规范

2. 光纤对信号传输的影响

光在光纤中传输,主要受到光纤的衰减及色散的影响,另外我们在工程实际设计中还要考虑到两段光纤间接头的损耗、光通道代价、光缆富余度和高速传输存在的偏振模色散(PMD)等。

在光传输系统中,光纤的衰减是不可确定的因素,不同厂家的光纤在不同的环境均有不同的衰减值,不同工艺的光纤接续的衰减也不同;光纤在不同的光波长传输,损耗也不同的。具体的参数见有关厂家的资料及参照国家通信行业的有关标准。

这里介绍六种典型单模光纤的性能和应用:

a. 1310nm8.6~9.5±0.71310nm9.3±0.51550nm10.5±0.7截止波长λcc(nm)应用场合最广泛用于数据通信和模拟图像传输媒介,其缺点是工作波长为

1550nm是色散系数高达17ps/(nm·km)阻碍了高速率、远距离通信的发展性能常规单模光纤的性能及应用:零色散波长工作波长最大衰减系数(dB/km)最大色散系数(ps/(nm·km))性能模场直径(μm)1550nm<0.40要求值

λcc≤126013101310或15501550nm:0.31λcj≤12501550nm:0.21~0.25模场直径(μm)截止波长λcc(nm)零色散波长工作波长1280~1625应用场合这种光纤的优点是工作波长范围宽,即1280~1625nm,故其主要用于密集波分复用的城域网的传输系统,它可提供120个或更多的可用信道。λc≤1250要求值

λcc≤12601300~13221310nm:0.35最大色散系数(ps/(nm·km))最大衰减系数(dB/km)1310nm<0.401310nm:0λc≤1250非色散位移单模光线G.652光纤低水峰(全波)单模光纤的性能及应用:1550nm:17λcj≤1250

2

光传输中继距离总结广州杰赛通信设计院

b. 1310nm:8.3最大衰减系数(dB/km)最大色散系数

(ps/(nm·km))1550nm≤0.251525~1575nm:3.5λcj≤1270截止波长λcc(nm)零色散波长工作波长15501550λc≤1250色散位移单模光纤(G.653)的性能及应用:应用场合这种光纤的优点是在1550nm工作波长衰减系数和色散系数均很小。它最适用于单信道几千千米海底系统和长距离陆地通信干线。但用于波分复用信号传输系统时存在问题。性能模场直径(μm)要求值λcc≤1270 c. 1550nm:10.5截止波长位移单模光纤(G.654)的性能及应用:性能模场直径(μm)截止波长λcc(nm)零色散波长工作波长最大衰减系数(dB/km)最大色散系数

(ps/(nm·km))要求值

λcc≤1530131015501550nm:≤0.201500nm:201350<λc<1600应用场合这种光

纤的优点是在1550nm工作波长衰减系数极小。其弯曲性能好。它主要用于远距离无需插入有源器件的中继海底光纤通信系统,其缺点是制造困难,价格昂贵。

d. 1550nm:8~11±0.7应用场合这种光纤的优点是在1550nm工作波长处有一低的色散,保证抑制FWM等非色散线性效应,使得其能用在EDFA和波分复用结合的传输速率在10Gbit/s以上的WDM和DWDM的高速传输系统中。

1625nm:0.30λcj≤1480最大色散系数(ps/(nm·km))要求值λc c≤14801530~15651530~15651550nm:0.250.1≤|D|≤10λc≤1470非零色散位移单模光纤(G.655)的性能及应用性能模场直径(μm)截止波长λcc(nm)零色散波长工作波长最大衰减系数(dB/km) e. 1310nm:81550nm:11应用场合这种光纤的优点是在1310~1550nm工作波长范围内低色散。但其折射率剖面结构复杂,制造难度大,尤其是该光纤的衰减大,离实用距离很远。1550nm≤0.301550nm:0最大色散系数(ps/(nm·km))要求值≤12701310和15501310~

15501310nm≤0.251310nm:0色散平坦单模光纤的性能及应用:性能模场直径(μm)截止波长λcc(nm)零色散波长工作波长最大衰减系数(dB/km)

3

光传输中继距离总结广州杰赛通信设计院

f. 1550nm:6色散补偿单模光纤的性能及应用:性能模场直径(μm)截止波长λcc(nm)零色散波长工作波长最大衰减系数(dB/km)最大色散系数

(ps/(nm·km))要求值≤1260>155015501550nm:≤1.001550nm:应用场合这种光纤的优点是在1550nm工作波长范围内有很大的负色散,其主要用作G.652光纤工作波长由1310nm扩容升级至1550nm的进行色散补偿。`-80~-150

3. 光连接器对信号传输的影响

S、R点间其他连接器损耗,如ODF等FC型平均0.8dB/个,PC型平均0.5dB/个,一般取2*0.5

三、光传输距离计算方法

在光传输系统中,在已选好的光纤类型上开通光传输系统,传输距离将受到损耗和色散两种因素的影响及设备的有关性能影响。

在每个中继段中,需要进行光功率预算,在允许的范围内选用合适的光接口板类型。

1. SDH的光传输距离计算方法

在SDH光传输中,目前,ITU-T已经在G.652、G.653、G.654和G.655中分别定义了4种不同设计的单模光纤。其中G.652光纤就是目前广泛使用的单模光纤,称为1310nm波长性能最佳的单模光纤,它可以应用在1310 nm 和1550nm两个波长区;G.653光纤称为1550nm波长性能最佳的单模光纤,主要应用于1550nm工作波长区;G.654光纤称为截止波长移位单模光纤,主要应用于需要很长再生段距离的海底光纤通信;G.655光纤是非零色散移位单模光纤,适于密集波分复用(DWDM)系统应用。

根据工程的具体情况,在本地网建光传输建议全部使用符合G.652建议的光纤,并根据不同的敷设方式选择不同程式的光缆。如选用符合G.655建议的光缆,应能满足1310nm窗口传输的要求。

选定了光纤的类型,在进行光传输中继段距离预算计算时,必需考虑衰减受限

4

光传输中继距离总结广州杰赛通信设计院

距离及色散受限距离,为保证能满足最坏情况要求,选择两者之中较小值作为可

用传输距离。

1.1 衰减限制

衰减限制中继段长度预算 L= (Ps-Pr-Ac-Pp- Mc) / (Af+As)

Ps—平均发射功率

Pr —最小灵敏度

Pp —光通道代价,也就是设备富余度。由于设备时间效应(设备的老化)和温度因素对设备性能影响所需的余量,也包括注入光功率、光接受灵敏度和连接器等性能劣化,一般取1dB或2dB

Ac —连接器衰减和,包含S和R点间除设备连接器C以外的其它连接器(如ODF 等)衰减,如ODF等FC型平均0.8dB/个,PC型平均0.5dB/个,一般取2*0.5 Af —光纤衰减系数(在1310nm中取0.36dB/km,在1550nm中取0.22dB/km)MC —线路富余度,可取0.05--0.1dB/km,在一个中继段内,光缆富裕度不宜超过5dB.一般预算距离小于30km时取0.1dB/km,大于30km时取3dB

(注:当MC取0.1dB/km时预算公式改为L= (Ps-Pr-Ac-Pp) / (Af+As+Mc))As —光纤接头平均衰减(活接头取0.5dB/个,死接头取0.08dB/个)

注:上面计算中继段距离的取值,仅作为参考

为了满足衰减限制可通过下面方法求得:

(1) 最长限制传输距离

Ps取最小平均发射功率,Pr取光口最小接收灵敏度,得出长限制距离L。

(2) 最短限制传输距离

Ps取最大平均发射功率,Pr取光口接收过载功率,Mc取0,得出短限制距离l。

1.2 色散限制

色散限制的中继段长度Ld= Dmax/│D│

Dmax:光传输收发两点间的允许的最大色散值;

│D│:光纤色散系数,在G.652光纤中1310nm取3.5Ps/nm.km,在1550nm取18Ps/nm.km。

5

光传输中继距离总结广州杰赛通信设计院

中继段范围:l~min(L,Ld).

1.3 偏振模色散(PMD)受限

系统偏振模色散受限距离的计算和解决方法:L=(Pt/P)2 其中:Pt指光口的PMD 容限(对于10Gb/s信号,Pt=10ps=(1/A)1/2)

A为系统速率(Tb/s)),P为光缆实际测试的PMD值。

例如某段光纤PMD值为1.2ps/km1/2,那么对于10G系统来说:

PMD受限距离=(10/1.2)2=69.44km。

2. WDM的光传输距离计算方法

随着技术的进展,及数据业务的快速增长,通信业务的迅速增长,在通信行业中,越来越多的光传输采用了波分复用(WDM)。在波分复用中,要增加传输中继距离,主要是克服光纤对光波信号的衰减或由光纤引起的色散影响。

(1)规则设计法(称固定衰耗法):得用色散受限式公式1及保证系统信噪比的衰耗受限式公式2,分别计算这二式,取其较小值。此方法适用段落比较均匀的情况。

公式1中:

L为色散受限的再生段长度

Dsys为MPI-S MPI-R之间光通道允许的最大色散值(ps/nm)

1D1 为光纤色散系数(ps/nm.km)

公式2中:

L为保证信噪比的衰减受限的再生段长度(km)

n为WDM系统应用的应用代码所限制的光放段数量

Aapan为最大光放段衰耗。其值应小于并等于WDM系统采用的应用代码所限制的段落衰减(dB)

Ac为MPI-S,R’点或S’,R’或S’,MPI-R之间所有连接器衰减之和(dB)6

光传输中继距离总结广州杰赛通信设计院

Af为光纤衰减常数(dB/km)

Amc光线路维护每公里余量(dB/km)

(2)简易的信噪比计算方法:光规刚设计法不能满足实际应用的要求时,可采用色散受限式(公式1)及简易的信噪比计算式(公式3)进行系统设计,即利用保证色散受限和系统的信噪比来确定再生段/光放段的长度。此方法适用光放段衰耗差别不太大的情况。

OSNRN=58+PtotⅠM-Nf-Aspan-101gN (公式3)

OSNRN为N个光放段后的每通路光信噪比(dB)

M为通路数量

PtotⅠM为每通路的平均输出功率(dBm)

Nf为光放大器的噪声系数

Aspan为最大光放段损耗(dB)

在信噪比(OSNR)的计算中,取光滤波器带宽0.1nm,在每个光放段R’点及MPI-R 点的各个通路的OSNR大于22dB的情况下,由光放段损耗来决定光放段的长度,也可确定通过几个OA级联的再生段长度。

(3)专用系统计算工具计算:在上述两种均不能满足系统OSNR的情况下,要采用专用系统计算OSNR来确定。

上面有关公式的一些取值,请参见中华人民共和国通信行业标准(长途光缆波分复用(WDM)传输系统工程设计暂行规定)及设备厂家的参数。

四、设计需要注意的问题

(1)光口板的选择

在组建传输中,要考虑到光口板接收功率、发射功率的上限值及下限值,根据不同路由长度,选择适当的光口板类型(局内、短距离、长距离、超长距离)。

7

光传输中继距离总结广州杰赛通信设计院

在设计中,选用不同类型光口板时,在通过计算其最大的传输距离,不能满足需要时,需要增加光衰减或光功率放大器。在局内的光设备组网(或传输距离较近),一般选用局内通信用的光口板(I1)。

当传输路由长度较长时,也可考虑加光放大器来实现长传输距离的传输。在本地传输网设计中,常不作考虑。

(2)不同波长光口板的选择

在组建一个传输网络时,采用光接口板的类型影响到传输中继距离,一般,1550波长窗口的传输距离都优于1310nm波长的光接口板。在本地网设计中,一般采用1310nm窗口,长途网常采用1550nm窗口。

同一中继段内,对应的两光接口板应同时工作在同一波长(即相同的工作窗口)。(3)光传输设备厂家的技术参数

不同光传输设备厂家的技术参数也不同,在设计中要注意设计文件中的光传输设备技术参数与所选择的光传输设备厂家是否一致。

短距离光接口寿命终了时发送光功率为-15dBm,其寿命终了时发送光功率为-15dBm;其寿命

终了时的接收灵敏度为-28dBm.

1.31μm长距离:[-15-(-28)-1-1-3] / ...

1、主要原因是-3取值的问题。一般最坏值设计法中光缆富裕度,光纤长短不同取值不同,最大取值为3dB。短距时,光缆富裕度取3dB过大,一般取为0.5 dB ~ 1dB。

2、对于短距光传输衰减受限距离的理论设计,最好采取如下计算公式:L=(Ps-Pr-Pp―C)/(af+as+Mc),将光缆富裕度折算为分母值,体现了富裕度随距离而变,也符合实际情况,一般取0.03dB/km。

距离计算方法

1.欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的欧氏距离: 也可以用表示成向量运算的形式: 2.曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。 (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离 (2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离 5.标准化欧氏距离(Standardized Euclidean distance ) (1)标准欧氏距离的定义

标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为:而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是: 标准化后的值= (标准化前的值-分量的均值) /分量的标准差 经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的标准化欧氏距离的公式: 如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。 7.夹角余弦(Cosine) 有没有搞错,又不是学几何,怎么扯到夹角余弦了?各位看官稍安勿躁。几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 (1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式: (2)两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦 类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。 即:

镜头角度与距离计算方法

监控摄像头镜头可视角度表 镜头焦距搭配1/3" CCD搭配1/4" CCD二者的角度差异 2.8 mm89.9°75.6°14.3° 3.6 mm75.7°62.2°13.5° 4 mm69.9°57.0°12.9° 6 mm50.0°39.8°10.2° 8 mm38.5°30.4°8.1° 12 mm26.2°20.5° 5.7° 16 mm19.8°15.4° 4.4° 25 mm10.6°8.3° 2.3° 60 mm 5.3° 4.1° 1.2° 监控摄像头镜头可视距离表 镜头焦 距(毫米数) 距离5米 (宽×高) 距离10米 (宽×高) 距离15米 (宽×高) 距离20米 (宽×高) 距离30米 (宽×高) 2.8mm13×9.8米26×19.5米39×29.3米52×39米78×58.5米 3.6mm8.5×6.4米17×12.8米25.5×19米34×25.5米51×38.3米4mm8×6米16×12米24×18米32×24米48×36米

6mm 5.5×4.1米11×8.3米16.5×12.4米22×16.5米33×24.8米8mm 3.5×2.6米7×5.3米10.5×7.9米14×10.5米21×15.8米12mm2×1.5米4×3米6×4.5米8×6米12×9米16mm 1.5×1.1米3×2.3米 4.5×3.4米6×4.5米9×6.8米25mm 1.3×1米 2.5×1.9米 3.8×2.9米5×3.8米7.5×5.6米60mm0.5×0.4米1×0.75米 1.5×1.1米2×1.5米3×2.3米

摄像机选型、安装需要考虑的几个问题 摄像机选型、安装通常有八点需要考虑,具体如下(1)应根据监控目标的的照度选着不同灵敏度的摄像机。监控目标的最低环 境照度应高于摄像机最低照度的10倍。 监视目标的照度要求与摄像机的灵敏度密切相关,通常闭路 电视监控系统是由被监视视场所监视时刻的自然光,一般画 面的典型照度见表1-1 表1-1 一般画面的典型照度 各种天气下的自然光照度值照度估计值(lx) 直射阳光100000—130000 晴天(非阳光直射)10000—20000 阴天1000 工作场所内(白天)200—400 非常阴暗的白天100 黄昏(拂晓)10 入夜1 满月0.1 弦月0.01 没有月亮的晴朗夜空0.001 没有月亮的多云夜空0.0001 监视目标的最低环境照度应高于摄像机最低照度的10倍以上,

《光纤通信》精彩试题计算分析报告题练习

实用文档 要自信,绝对的自信,无条件的自信,时刻自信,即使在错的时候!!! 《光纤通信》计算、综合、分析练习公布 精选精炼+课后精讲(QQ在线讲解) 张延锋 2014/8/1 忍人之所不能忍,方能为人知所不能为!!!

计算、综合、分析题练习 1. 一阶跃折射率光纤,纤芯折射率n 1=1.5,相对折射率差% 1 = ?,工作波长为 1310nm,试计算: (1) 为了保证单模传输,其芯径应取多大? (2) 若取芯径m 5 aμ =,求其数值孔径及其模式数。 2.设PIN光电二极管的量子效率为75%,渡越时间为10ps。问: (1) 计算该检测器的3dB带宽; (2) 计算在1.3um和1.55um波长时的响应度,并说明为什么在1.55um处光电 二极管比较灵敏。 3.已知阶跃型光纤的n 1 =1.5,△=0.5%,工作波长λ=1.31μm光纤中的导模M=2求: (1) 光纤的数值孔径NA。(2分) (2) 全反射临界角θc。(3分) (3) 光纤的纤芯半径a。(5分) 4.一个GaAsPIN光电二极管平均每两个入射光子,产生一个电子-空穴对,假设所有的电子都被接收。 (1) 计算该器件的量子效率; (2) 设在1.31um波段接收功率是10-7W,计算平均输出光生电流。 (3) 计算这个光电铒极管的长波长截止点λc(超过此波长光电二极管将不工 作)。 5. 某SI型光纤,光纤的芯径d=2a为100μm,折射率n1=1.458,包层的折射率 n2=1.450,在该光纤中传输的光波的波长λ=850nm。 (1)计算该光纤的V参数; (2)估算在该光纤传输的模式数量; (3)计算该光纤的数值孔径; (4)计算该光纤单模工作的波长。 6. 有一GaAlAs半导体激光器,其谐振腔长为300m μ,材料折射率n=3.0,两端的解理面的反射率为0.35。 (1)求因非全反射导致的等效损耗系数。 (2)求相邻纵模间的频率间隔和波长间隔。 (3)若此激光器的中心波长λ=1310nm,与此相应的纵模序数。 7.设140Mb/s的数字光纤通信系统,工作波长1300 nm,其他参数如下: 发射光功率为-3dBm,接收机的灵敏度为-38 dBm (BER=10-9),系统余量为4 dB,连接器损耗为0.5 dB /个,平均接头损耗为0.05 dB/km,光纤损耗为0.4 dB/km,试计算损耗限制传输距离。 8. 分光比为3:1的定向耦合器,假设从输入口0输入的功率为1mW,从输入口 0到输入口1的插入损耗为1.5dB,求两个输出口的输出光功率。

卫生防护距离计算公式

1.1 恶臭 恶臭污染物是指一切刺激嗅觉器官引起人们不愉快及损坏生活环境的气体物质。本项目恶臭主要来源于兔舍及堆粪池。根据本项目特点,恶臭源在场区分布面较广,以低矮面源形式排放,属无组织排放。根据对同规模养殖场场界恶臭浓度的监测,本项目养殖场恶臭中臭气场界浓度小于70,满足《畜禽养殖业污染物排放标准》(GB18596-2001)中表7中恶臭污染物排放标准,恶臭中NH3、H2S的场界浓度满足《恶臭污染物排放标准》(GB14554-93)中二级新扩改建排放标准要求。 依据《制定地方大气污染物排放标准的技术方法》(GB/T13201 -91)中的规定,对无组织排放源与居住区之间应设置卫生防护距离,卫生防护距离计算公式为: 式中:C m:标准浓度限值,mg/m3; L:工业企业所需卫生防护距离,m; r:有害气体无组织排放源所在生产单元的等效半径,m。根据生产单元占地面积S(m2)计算,r=(S/π)0.5; A,B,C,D:卫生防护距离计算系数,无因次。根据项目所在地区近五年平均风速及工业企业大气污染源构成类别确定,v=2.1m/s,L≤ 1000m,工业企业大气污染源构成类型为Ⅲ类,取值A=350,B=0.021,C=1.85,D=0.84。 Q c:工业企业有害气体无组织排放量可以达到的控制水平,kg/h。 本项目恶臭污染源的卫生防护距离计算参数见表14。 表 14 本项目恶臭污染源卫生防护距离计算参数一览表 经计算,本项目运营期间产生并呈面源无组织排放恶臭中NH3和H2S的卫生防护距离均为50m,同时考虑《畜禽养殖业污染防治技术规范》(HJ/T81-2001)中的相关要求,新建、改建、扩建的畜禽养殖场选址场界与禁建区域边界最小距离不得小于500m 的要求,因此确定本项目卫生防护距离为500m。另据调查,

光传输设备技术要求

1.总则 1.1本技术要求适用于新疆华电红雁池发电有限责任公司光传输设备改造的技术要求。 1.2本技术要求提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范条文,供方保证提供符合招标书和工业标准的优质产品。 1.3如供方没有以书面形式对本技术要求的条文明确提出异议,需方则认为供方提供的产品完全满足技术要求。 1.4在签定合同之后,供方应积极主动地实施合同内容。 1.5本技术要求为供方提供产品依据,在执行本技术要求所列要求、标准,本规范书中未提及的内容均应满足或优于本要求所列的国家标准、行业标准和有关国际标准。有矛盾时,按较高标准执行。 1.6供方提供的产品,是成熟的、技术先进的、具有制造经验的复制品,而不是试制品,并提供安全、经济、可靠的设备和可行的布置。 2. 遵循的主要现行标准 本技术要求中涉及的所有规范、标准或材料规格(包括一切有效的补充或附录)均应为最新版本,若发现本技术要求与参照的文献之间有不一致之处,卖方应向买方指明,并按较高标准执行。 2.1引用的规范和标准 国际及国标 (1)中华人民共和国标准《同步数字体系(SDH)光缆线路系统进网要求》;(2)信息产业部《光同步传送网技术体制》; (3)ANSI T1.101 同步接口规范; (4)ITU-T G.812 局间时钟的定时要求(9/97版); (5)ITU-T G.811 国际局间原始参考钟(PRC)的定时要求; 3、设备运行的环境条件 电源:额定电压:直流-48V; 电压范围:直流–39V~–57V 工作温度:0℃~50℃

湿度:10%~90%,不结露 4、技术要求 4.1一般要求 4.1.1买方光传输设备属于新疆电网干线上的一个环网节点,改造后的设备必须与之匹配运行。 4.1.2买方原设备2M业务有48端口,备用端口有19个,改造后2M业务端口必须大于48端口,并有足够的扩展槽位。 4.1.3卖方应保证改造后设备至少有2块光板,速率不小于622Mb/s,并能平滑升级,满足将来电网通信需求。 4.1.4卖方应保证改造后设备支持多业务(MSTP),应有以太网端口,满足现在和将来电网通信需求。 4.2光纤通道应能可靠的传输以下信息 4.2.1电话 4.2.2 调度自动化信息 4.2.3 通信监控 4.2.4 线路继电保护和安全自动装置信息 4.2.5 数据信息 4.2.6 综合业务数字网信息 4.2.7 MIS网络信息 4.3 光纤通信系统参考数字通道 数字传输模型 (a)假设参考数字通道(HRDP)长度为6900km。 (b)假设参考数字段(HRDS)长度为280km。 4.4 传输与复用设备类型及性能要求 4.4.1 数字光纤通信传输系统采用SDH、STM-16等级,本期工程传输速率为622Mb/s, 将来设备只需更换光卡板,便能平滑升级到STM-16,2.5Gb/s或者STM-64,10Gb/s。本工程中,需要在红雁池电厂新增1套SDH光传输设备。 4.4.2 SDH622/2.5Gb/10G/s设备应具有功能强大的交叉矩阵,可在VC-12级别

第五章《模拟信号长距离光纤传输中的问题》小结(陈柏年)

第五章《模拟信号长距离光纤传输中的问题》小结 浙江传媒学院陈柏年 一、模拟信号长距离光纤传输的特点及其限制 1、长距离传输的范畴:光缆的长度超过40km。 二、光纤的色散特性 1、光纤色散:不同波长或不同模式的光由于传输速度不同,经光纤传输到达接收端的传输时间不同,导致光信号中的不同光频率成分或不同模式先后到达接收端,从而产生波形失真的一种物理现象。 2、色散的表示方法: (1)时域表示法——时延差Δτ 时延τ:信号传输单位长度所需要的时间。 时延差Δτ[ps/km×nm]:不同传输速度的信号,在光纤中传输相同距离时比速度最快的信号所延迟的时间。 时延差表达式Δτ=(κ0 / c)×(Δν/ν0 )×(d2β/ dκ20) (2)频域表示法——光纤带宽Δf 光纤带宽表达式Δf=350 /Δτ×Δλ×l(GHz) 3、分析光纤带宽得出的重要结论: (1)光纤的带宽与时延差,光谱线宽度和光纤长度的乘积成反比。 (2)在时延差和光谱线宽度确定时,光纤越长,光纤的带宽越窄。 (3)光纤色散是限制光纤传输距离的因素。 4、三种色散的含义: (1)模式色散:因光纤中传导模式的传输路径和速度不同所产生的色散。 (2)材料色散(折射率色散):因光纤材料折射率随传输光波波长而变化所产生的色散。 (3)波导色散(结构色散):因光纤波导参量的不同所产生的色散。

三、直接调制和外调制光发射机工作机理 (1)直接调制光发射机:将预调制的RF信号直接叠加到半导体激光二极管的偏臵电流上,对激光器输出的光强度直接进行调制的光发射机。 直接调制的问题:半导体激光二极管在强度调制的同时还受到频率调制,产生啁啾(chirp)特性,导致输出激光的光谱展宽,从而限制光纤的传输距离。 (2)外调制光发射机:将激光二极管发射的大功率光束注入电光晶体形成的外调制器,经预调制的RF信号加到电光调制器电极上,对入射光束的光强和相位进行调制,电光调制器的输出光强随调制信号而变化的光发射机。 四、光纤的非线性效应-受激布里渊散射SBS 1、SBS射物理现象、特点和产生机理。 (1)受激布里渊散射SBS射物理现象:当注入光纤功率增加到超过某一阈值光功率后,绝大部分输入光功率转换为后向散射的斯托克斯光波。 (2)受激布里渊散射SBS的特点:产生SBS的阈值光功率与入射光波的谱宽有关。 (3)受激布里渊散射SBS产生机理:泵浦光波(即注入光纤的信号光)、斯托克斯光波和声波之间的参量相互作用。泵浦光波通过对光纤的电致伸缩产生声波,该声波对光纤的折射率周期性调制,在光纤中产生折射率光栅。泵浦光通过该光栅时,由于光栅的布喇格散射,使泵浦光后向散射产生斯托克斯光。斯托克斯光的频率比泵浦光频率下移。 2 、受激布里渊散射SBS阈值光功率:不产生受激布里渊散射能注入光纤的最大功率。 3、受激布里渊散射SBS有效作用长度:泵浦光与斯托克斯光在光纤中相互作用的长度,与光纤的单位长度衰减系数和光纤长度有关。 4 、提高受激布里渊散射SBS阈值光功率Psbs (1)提高Psbs的原因:在ΔνP<ΔνB条件下,SBS的阈值光功率P SBS很低(约2mw)。为长距离光纤传输,注入光纤的光功率必需很大。如果传输65km距离,要求注入光纤的光功率为16.25dBm。为实现这一目标,SBS的阈值光功率Psbs至少应等于16.5dBm。所以,必须将Psbs从2mw提高至16.5dBm(45mw)。 (2)重要结论:SBS阈值的大小与激光光谱展宽的宽度有关,要求的SBS阈值愈高,则光谱展宽愈大。要提高SBS的阈值光功率,可以采用展宽激光光谱宽度的办法,从而满足ΔνP>ΔνB的条件。 (3)提高SBS阈值光功率Psbs的机理:在LiNbO3调制器中制作两个不同的调制器。一个为强度调制器,在其电极上加RF信号;另一个为相位调制器,在其电极上加大于2GHz 的微波等幅信号,用来展宽激光的光谱。通过控制微波信号的功率大小,改变光谱宽度,从而实现提高SBS阈值光功率的目的。 5、1310nm分系统与1550nm分系统级联时,CSO和CTB有互补作用 互补原因:1310nm光发射机与外调制1550nm光发射机的调制机制不同,对射频参数的影响也不同。所以,它们的CSO和CTB有互补作用。 1310nm直接调制光发射机中DFB-LD激光器的电光变换特性(即P-I特性)近似为偶函数,它的二阶失真比三阶失真大。 1550nm外调制光发射机中铌酸锂电光调制器的电光调制特性是奇函数,它的三阶失真大于二阶失真。 五、模拟信号长距离光纤传输技术 1、限制1550nm波长光发射机长距离传输的因素: (1)光纤损耗,(2)光纤色散和非线性效应。

镜头角度与距离计算方法

专用的镜头角度计算方法 镜头焦距的计算 1公式计算法:视场和焦距的计算视场系指被摄取物体的大小,视场的大小是以镜头至被摄取物体距离,镜头焦头及所要求的成像大小确定的。 1、镜头的焦距,视场大小及镜头到被摄取物体的距离的计算如下; f=wL/W 2、f=hL/h f;镜头焦距 w:图象的宽度(被摄物体在ccd靶面上成象宽度) W:被摄物体宽度 L:被摄物体至镜头的距离 h:图象高度(被摄物体在ccd靶面上成像高度)视场(摄取场景)高度 H:被摄物体的高度 ccd靶面规格尺寸:单位mm 规格 W H 1/3" 1/2" 2/3" 1" 由于摄像机画面宽度和高度与电视接收机画面宽度和高度一样,其比例均为4:3,当L不变,H或W增大时,f变小,当H或W不变,L增大时,f增大。 2视场角的计算如果知道了水平或垂直视场角便可按公式计算出现场宽度和高度。水平视场角β(水平观看的角度)β=2tg-1= 垂直视场角q(垂直观看的角度) q=2tg-1= 式中w、H、f同上水平视场角与垂直视场角的关系如下: q=或=q 表2中列出了不同尺寸摄像层和不同焦距f时的水平视场角b的值,如果知道了水平或垂直场角便可按下式计算出视场角便可按下式计算出视场高度H和视场宽度W. H=2Ltg、W=2Ltg 例如;摄像机的摄像管为17mm(2/3in),镜头焦距f为12mm,从表2中查得水平视场角为40℃而镜头与被摄取物体的距离为2m,试求视场的宽度w。W=2Ltg=2×2tg= 则H=W=×= 焦距f越和长,视场角越小,监视的目标也就小。 图解法如前所示,摄像机镜头的视场由宽(W)。高(H)和与摄像机的距离(L)决定,一旦决定了摄像机要监视的景物,正确地选择镜头的焦距就由来3个因素决定; *.欲监视景物的尺寸 *.摄像机与景物的距离 *.摄像机成像器的尺士:1/3"、1/2"、2/3"或1"。图解选择镜头步骤:所需的视场与镜头的焦距有一个简单的关系。利用这个关系可选择适当的镜头。估计或实测视场的最大宽度;估计或实测量摄像机与被摄景物间的距离;使用1/3”镜头时使用图2,使用1/2镜头时使用图3,使用2/3”镜头时使用图4,使用1镜头时使用图5。具体方法:在以W和L为座标轴的图示2-5中,查出应选用的镜头焦距。为确保景物完全包含在视场之中,应选用座标交点上,面那条线指示的数值。例如:视场宽50m,距离40m,使用 1/3"格式的镜头,在座标图中的交点比代表4mm镜头的线偏上一点。这表明如果使用4mm镜头就不能覆盖50m的视场。而用的镜头则可以完全覆盖视场。 f=vD/V 或 f=hD/H 其中,f代表焦距,v代表CCD靶面垂直高度,V代表被观测物体高度,h代表CCD靶面水平宽度,H代表被观测物体宽度。 举例:假设用1/2”CCD摄像头观测,被测物体宽440毫米,高330毫米,镜头焦点距物体2500毫米。由公式可以算出: 焦距f=440≈36毫米或 焦距f=330≈36毫米

光传输技术[1]

光传输技术(第一、二章) 1.光纤通信的定义? 答:光纤通信是以光纤作为传输介质,以光源作为信息载体的通信方式。 2.影响光纤通信发展的关键问题:光源、传输介质 3.光线有三个低损耗波长称为低损耗窗口,这三个低损耗窗口是850nm,、1310nm、1550nm。 4.光纤通信系统由光发送设备、光接收设备、光传输设备三部分组成。 5.WDM是什么复用? 答:波分复用。 6.光传输设备由光缆和中继器组成。 7.光接口类型:I:局内通信接口S:局间短距离通信接口L:局间长距离通信接口。 8.PDH和SDH的复用方式的中文名称? 答:PDH:准同步数字复接SDH:同步数字复接 9.数字光纤通信由哪几部分组成? 答:收发端机,电输入输出接口,光端机,光缆,中继器。 10..简述光纤通信系统中电收发端机的作用? 答:完成模拟信号或数据信号与数字信号的相互转换。 11. PDH国际两大复接系列? 答:日本/北美的PCM基群24路/1.5M系列,中国/西欧的PCM基群30/32/2M系列。 12.PCM基群复用设备的主要作用是什么? 答:在发射端对语音信号进行取样、量化、编码,然后将30个速率为64kb/s的话路复接成一个2048kb/s数字电信号;在接收端,则将一个2048kb/s的数字电信号分接为30个速率为64kb/s的话路。 13.PDH长途光缆通信系统的组成? 答;PCM基群复用设备,高次群数字复用设备,光端机,光中继机和光缆等部分。 14..集群到3次群进行几次复接? 答:16次 15.PDH的缺陷? (1)PDH只有地区性的电接口规范,没有世界性的统一的光接口规范。 (2)PDH采用异步复用方式。

光接口传输距离计算方法

光接口传输距离计算方法 再生段距离确定及系统富裕度计算: 再生段距离由光接口参数,光传输损耗,光纤色散,接续水平等因素决定。按照光传输衰耗、色散,光系统分为衰耗受限系统和色散受限系统。再生段距离计算采用ITU-T建议G.957 的最坏值法,即所有参数都按最坏值考虑。该法较为保守,计算的中继距离短,实际系统的余度较大,但可以实现设备的横向兼容,还可以在系统寿命终了(所有系统和光缆余量均已用尽)前,并处于允许的最恶劣环境条件下,仍保证系统指标要求。 再生段距离计算公式: 1)衰耗受限的再生段距离计算: L1=(Pt-Pr-Pp-Mc-∑Ac)/(Af+As) 式中:L1—衰减受限再生段长度(km); Pt— S点寿命终了时光发送功率(dBm); Pr— R点寿命终了时光接收灵敏度(dBm); Pp—光通道功率代价(dB); Mc—光缆线路光功率余量(dB); ∑Ac—S,R点间其它连接器衰减之和(dB); Af—光纤衰减常数(dB/km); As—光缆固定接头平均衰减(dB/km)。 2)色散受限的再生段距离计算: L2=Dmax/Dm 式中:Dmax —S、R间通道允许的最大总色散值(ps/nm); Dm —光纤工作波长范围内的最大色散系数(ps/(nm.km)); L2 —色散受限的再生段长度(km)。 根据以上两公式计算结果,取较小值即为再生段中继距离。 155M光接口 (1)S1.1, =[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km (2)L1.1,

=[-5-(-34)-1-1]/(0.36+0.03+0.04)=62.7km (3)L1.2, =[-5-(-34)-1-1]/(0.22+0.03+0.04)=93.1km 622M光接口? (1)S4.1, =[-15-(-28)-1-1]/(0.36+0.03+0.04)=25.5km (2)L4.1, =[-3-(-28)-1-1]/(0.36+0.03+0.04)=53.4km (3)L4.2, =[-3-(-28)-1-1]/(0.22+0.03+0.04)=79.3km ? 2.5G光接口 (1)S16.1 =[-5-(-18)-1-1]/(0.36+0.03+0.04)=25.5km (2)S16.2 =[-5-(-18)-1-1]/(0.22+0.03+0.04)=37.9km (3)L16.2 =[-2-(-28)-2-1]/(0.22+0.03+0.04)=79.3km 光传输中继距离 2009-03-01 00:06 一、概述 为了规范合理地组建光传输网,光传输中继距离是前提。光传输中继传输距离与设备的性能、所采用的光纤性能、两端光设备间线路传输的连接器件等有关。传输距离的长短影响着组建光传输网灵活性、投资规模。为提高我们组建光传输网设计的科学性,有必要对各光中继传输距离进行核算。下面将分别总结影响光传输中继距离的各种因素及计算方法。 二、影响光传输距离因素 在发送机与接收机之间影响信号传输距离的因素有很多,不同的物理媒介会给信号带来不同的影响。 从上面的示意图看我们可以从光设备、光缆设施和光连接器三个方面考虑影响信号传输距离的因素。 1. 光设备对信号传输的影响 光信号的传输距离受限于光设备的光口类型。SDH中的光接口按传输距离和所用的技术可分为三种,即局内连接、短距离局间连接和长距离局间连接。为了便于应用,将不同的光口类型用不同的代码(如S-16.1)来表示:

光传输技术课程设计

光传输技术课程设计 报告 班级:电1105-1班 学号:20112534 姓名:张浩 指导老师:郝绒华老师

目录 一、摘要: (1) 二、设计目的 (1) 三、设计任务及基本要求 (1) 任务一通道保护和复用段保护业务 (1) 任务二、以太网业务配置 (5) 任务三、基本电路配置业务 (10) 任务四、Optisystem软件仿真 (18) 项目1:OptiSystem 的基本操作 (18) 项目2:基本光纤通信系统设计 (23) 项目3:WDM 系统设计 (25) 项目4:长距离光纤传输系统设计 (29) 项目5: EDFA 设计 (32) 四、心得体会 (38)

一、摘要: 当今社会,人们极大的享受着光纤通信为人们带来的便利,但是很少有人了解其基本结构和内部构成。光纤通信系统由光发射机,光纤线路和光接收机构成,每一部分的设备都有其特有的功能,根据其功能的不同其复杂程度也是千差万别。 目前,通信网络正逐步向着全光网络的方向演进,将实现在任意时间、任意的传送任意格式信号的理想目标。在光网络中传送的信号是大容量、高时率的信号,因此网络中任何一个网络元件的失效都会导致大量数据的丢失,光网络的生存性已经成为人们关注的焦点。如何实现高效的网络保护与恢复,如何实现网络的分布式并实现自愈保护以及保护带宽的智能动态分配,以及如何使各保护结构实现互通等等都是今后光网络生存性技术发展的重点。 二、设计目的 1、学习基本理论在实践中综合运用的初步经验,掌握光纤线路基本设计方法、设计步骤,培养综合设计与调试能力。 2、2掌握optisystem软件的使用和上机配置操作,培养实践能力,提高分析和解决实际问题的能力。 3、使学生在理论计算、结构设计、工程绘图、查阅设计资料、标准与规范的运用和计算机应用方面的能力得到训练和提高。 三、设计任务及基本要求 任务一通道保护和复用段保护业务 一.实习目的 1.掌握E300网管的基本组成部分 2.掌握E300网管的启动步骤 3.掌握告警管理的上机配置操作

视距测量计算公式

如图8-5所示,如果我们把竖立在B 点上视距尺的尺间隔MN ,化算成与视线相垂直的尺间隔M ′N ′,就可用式(8-2)计算出倾斜距离L 。然后再根据L 和垂直角α,算出水平距离D 和高差h 。 从图8-5可知,在△EM ′M 和△EN ′N 中,由于φ角很小(约34′),可把∠EM ′M 和∠EN ′N 视为直角。而∠MEM ′=∠NEN ′=α,因此 ααααcos cos )(cos cos MN EN ME EN ME N E E M N M =+=+='+'='' 式中M ′N ′就是假设视距尺与视线相垂直的尺间隔l ′, 图8-5 视线倾斜时的视距测量原理

MN 是尺间隔l ,所以 αcos l l =' 将上式代入式(8-2),得倾斜距离L αcos Kl l K L ='= 因此,A 、B 两点间的水平距离为: αα2cos cos Kl L D == (8-4) 式(8-4)为视线倾斜时水平距离的计算公式。 由图8-5可以看出,A 、B 两点间的高差h 为: v i h h -+'= 式中 h ′——高差主值(也称初算高差)。 α ααα2sin 2 1 sin cos sin Kl Kl L h = ==' (8-5) 所以 v i Kl h -+=α2sin 2 1 (8-6) 式(8-6)为视线倾斜时高差的计算公式。

二、视距测量的施测与计算 1.视距测量的施测 (1)如图8-5所示,在A 点安置经纬仪,量取仪器高i ,在B 点竖立视距尺。 (2)盘左(或盘右)位置,转动照准部瞄准B 点视距尺,分别读取上、下、中三丝读数,并算出尺间隔l 。 (3)转动竖盘指标水准管微动螺旋,使竖盘指标水准管气泡居中,读取竖盘读数,并计算垂直角α。 (4)根据尺间隔l 、垂直角α、仪器高i 及中丝读数v ,计算水平距离D 和高差h 。 2.视距测量的计算 例8-1 以表8-1中的已知数据和测点1的观测数据为例,计算A 、1两点间的水平距离和1点的高程。 解 ()[]m 14.15784812cos m 574.1100cos 2 2 1 ='''?+??==αKl D A v i Kl h A -+=α2sin 2 1 1

空间几何中的角和距离的计算

空间角和距离的计算(1) 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值. 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角. (1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ; (2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小. 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2. (1)求直线D 1F 和AB 和所成的角; (2)求D 1F 与平面AED 所成的角. F 1D 1B 1 C 1A 1 B A C A B C D P E C D E F D 1 C 1 B 1 A 1 A B

2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB ,AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角的大小. 三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点. (1)证明AB 1∥平面DBC 1; (2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小. 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5. (1)求面SCD 与面SBA 所成的二面角的大小; (2)求SC 与面ABCD 所成的角. 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小. B 1 C 1 A 1 B A C D B 1 C 1 A 1B A C B A D C S B 1 C 1 B C A 1

最大最小距离算法以及实例

最大最小距离算法实例 10个模式样本点{x1(0 0), x2(3 8), x3(2 2), x4(1 1), x5(5 3), x6(4 8), x7(6 3), x8(5 4), x9(6 4), x10(7 5)} 第一步:选任意一个模式样本作为第一个聚类中心,如z1 = x1; 第二步:选距离z1最远的样本作为第二个聚类中心。 经计算,|| x6 - z1 ||最大,所以z2 = x6; 第三步:逐个计算各模式样本{x i, i = 1,2,…,N}与{z1, z2}之间的距离,即 D i1 = || x i - z1 || D i2 = || x i – z2 || 并选出其中的最小距离min(D i1, D i2),i = 1,2,…,N 第四步:在所有模式样本的最小值中选出最大距

离,若该最大值达到||z1 - z2 ||的一定比例以 上,则相应的样本点取为第三个聚类中心 z3,即:若max{min(D i1, D i2), i = 1,2,…,N} > θ||z1 - z2 ||,则z3 = x i 否则,若找不到适合要求的样本作为新的 聚类中心,则找聚类中心的过程结束。 这里,θ可用试探法取一固定分数,如1/2。 在此例中,当i=7时,符合上述条件,故 z3 = x7 第五步:若有z3存在,则计算max{min(D i1, D i2, D i3), i = 1,2,…,N}。若该值超过||z1 - z2 ||的一定 比例,则存在z4,否则找聚类中心的过程 结束。 在此例中,无z4满足条件。 第六步:将模式样本{x i, i = 1,2,…,N}按最近距离分到最近的聚类中心: z1 = x1:{x1, x3, x4}为第一类 z2 = x6:{x2, x6}为第二类 z3 = x7:{x5, x7, x8, x9, x10}为第三类最后,还可在每一类中计算各样本的均值,得到更具代表性的聚类中心。

OTDR测试传输距离计算说明手册

测试传输距离计算说明手册 备纤测试时OTDR的典型测试距离及计算方法: 元器件件插入损耗典型值:光连接器(Adapter)插入损耗=0. 3 dB; 光开关(OSW) 插入损耗=0. 5dB; 光纤传输的平均损耗定义:1550nm波长典型损耗0.2 dB/km;光缆接头损耗0.05dB/km(光缆盘长为2KM) 头端损耗=OSW(0. 5) +4个接头(1. 2)=1. 7 dB; 为确保测试曲线清晰,保证余量3dB,末端波形不精确区和冗余3dB; ?动态范围为39dB的典型离线测试距离(无中继): 【39dB - 3dB (末端波形不精确区和冗余) -3dB (保证余量)– 1. 7dB (头端光损耗)】/ (0. 20+0. 05) = 125.2km; ?动态范围为45dB的典型离线测试距离(无中继): 【45dB - 3dB (末端波形不精确区和冗余) -3dB (保证余量)– 1. 7dB (头端光损耗)】/ (0. 20+0. 05) = 150km; 备纤测试时光源设计: 光源选用1550nm波长的模块,150km×0.2 + -2dB(出光功率) –5dB(接头损耗) = -37dBm

OTDR的动态范围和可测试距离 1. 测试距离公式 光纤测试距离指OTDR可监测光缆的长度。其由OTDR的动态范围、光器件的介入损耗、光缆的传 输损耗、光纤接头(机械接头、熔接接头)的损耗等因素决定的;需要根据工程的具体情况进行计算确定。监测距离计算公式如右: 其中: L:光纤测试系统监测光纤最大长度 P:OTDR模块的动态范围(如安立9081D为38/36dB) Ac:介入损耗,指OTDR、光开关、WDM、滤波器等设备的介入损耗的和 Af:光缆平均衰减系数(dB/km) As:光熔接接头平均衰减系统(dB/km) Mc:光缆线路富余度(dB) Ma:测试精度富余度(dB) 公式中变量的取值: P由系统供货商提供(37/40dB) Af取值由光缆生产厂商提供,如不能提供1625nm时的平均损耗,可用光缆在1550nm 时的平均损耗替代。 As取值按光缆每2公里一个熔接接头,每个熔接接头衰减为0.08dB计算,As为0.04dB。 Ma取值为10dB。 Mc光缆线路富余度取值为3.5dB Ac的计算要将OTDR、光开关、WDM、滤波器、机械接头的介入耗损耗。 对于光缆监测距离的计算,需要先以各项目数据代入公式计算,再根据工程情况加以一定经验修正,弥补理想情况与实际情况的差距。 2. 光纤监测设备对光传输系统的介入损耗 系统对光纤在线测试(只有少数OTDR有此功能),会对传输系统产生一定的介入损耗。 这主要由接入在实用光纤中的无源光器件的介入损耗产生的。其计算方法将接入光纤中的所有光器件的介入损耗累加即可得出对光传输系统的介入损耗。在一个测试区段中,对于在用纤测试,介入损耗主要是OTDR和滤波器的影响。

声学计算公式大全

当声波碰到室内某一界面后(如天花、墙),一部分声能被反射, 一部分被吸收(主要是转化成热能),一部分穿透到另一空间。 透射系数: 反射系数: 吸声系数: 声压和声强有密切的关系,在自由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。 声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为:

听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 1、声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为: 听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 2、声功率级Lw 取Wo为10-12W,基准声功率级 任一声功率W的声功率级Lw为: 3、声强级: 3、声压级的叠加 10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB.

几个声源同时作用时,某点的声能是各个声源贡献的能量的代数和。因此其声压是各声源贡献的声压平方和的开根号。 即: 声压级为: 声压级的叠加 ?两个数值相等的声压级叠加后,总声压级只比原来增加3dB,而不是增加一倍。这个结论对于声强级和声功率级同样适用。 ?此外,两个声压级分别为不同的值时,其总的声压级为

两个声强级获声功率级的叠加公式与上式相同 在建筑声学中,频带划分的方式通常不是在线性标度的频率轴上等距离的划分频带,而是以各频率的频程数n都相等来划分。 声波在室内的反射与几何声学 3.2.1 反射界面的平均吸声系数 (1)吸声系数:用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以α表示,定义式: 材料和结构的吸声特性和声波入射角度有关。

关于距离计算的总结

关于距离计算的总结 距离计算在自然语言处理中得到广泛使用,不同距离计算方式应用与不同的环境,其中也产生了很多不同的效果。 1 余弦距离 余弦夹角也可以叫余弦相似度。集合中夹角可以用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。 余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,词余弦值就可以用来表示这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向就更加吻合,即更加相似。当两个向量的方向完全相反时,夹角的余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度于向量的幅值无关,于向量的方向相关。 公式描述: Python代码实现: import numpy as np # np.dot(vec1,vec2) 量向量(数组):两个数组的点积,即元素对应相乘后求和 # np.linalg.norm(vec1):即求vec1向量的二范数(向量的模) vec1 = [1,2,3,4] vec2 = [5,6,7,8] dist1 = np.dot(vec1, vec2)/(np.linalg.norm(vec1)*np.linalg.norm(vec2)) print("余弦距离测试结果为:\t"+str(dist1)) 2 欧氏距离 欧几里得距离即欧几里得空间中两点间的直线距离。 Python实现: import numpy as np vec1 = np.mat([1,2,3,4]) # 生成numpy矩阵 vec2 = np.mat([5,6,7,8]) # 根据公式求解1 dist1 = np.sqrt(np.sum(np.square(vec1 - vec2))) print("欧式距离测试结果是:\t"+ str(dist1)) dist2 = np.sqrt((vec1-vec2)*(vec1-vec2).T) # 根据公式求

距离计算

摘要:颜色恒常性算法通常使用距离测量是基于数学方法进行评价,如角误差。然而,并不知道这些距离与人类视觉距离是否相关。因此,本文的主要目的是分析的几个性能指标和质量之间的相关性,通过心理物理实验,用不同的颜色恒常性算法获得输出图像。随后处理的问题是性能指标的分布,表明在一个大的图像中可以提供更多附加的和替代的信息,而且得到了改进的感性意义,即人类观察者之前存在的差异得到了明显的改善。?2009美国光学学会 颜色恒常性是视觉系统的能力,无论是人或机器,尽管光源颜色发生了巨大变化也可以保持稳定的物体颜色。颜色恒常性是颜色和计算机视觉的一个主题部分。为了解决颜色恒常性的问题,通常的方法是通过估计从视觉场景中的光源,然后恢复这些反射光源。 许多的颜色恒常性的方法已经被提出,例如,[ 1,4 ]–。为基准,颜色恒常性算法的精度是通过计算在相同数据的距离度量集如[ 5,6 ]评价。事实上,这些距离的措施计算到什么程度原光源向量近似估计。两种常用的距离度量是欧氏距离和角度误差,后者可能是更广泛的应用。然而,这些距离的措施本身是基于数学原理和归一化RGB颜色空间计算,它是未知的是否与人类视觉距离措施。此外,其他的距离度量可以基于人眼视觉原理的定义。 因此,在本文中,一种颜色恒常性算法分类法不同距离的措施第一,

从数学基础的距离知觉和颜色恒常性的特定距离。然后,设置距离这些措施的颜色恒常知觉的比较。显示距离的措施和看法之间的相关性,颜色校正后的图像与视觉检测的参考光照下的原始图像相比。在这种方式中,距离度量的心理物理学实验涉及的颜色校正后的图像进行配对比较。此外,以下[ 7 ],一个绩效指标的分布的讨论,表明附加的和替代的信息可以提供进一步的洞察在一个大的组的图像的颜色恒常性算法的性能。 最后,除了性能措施的心理评估,颜色恒常性算法之间的感知差异分析。这种分析是用来提供一个获得的性能改进的感性意义的指示。换句话说,这种分析的结果可以用来表明是否观察者可以看到之间的颜色校正两颜色恒常性算法产生的图像的差异。 本文的组织如下。在2节中,讨论了颜色恒常性和图像变换。进一步,设计了一套颜色恒常性的方法。然后,进行了3不同距离的措施。第一类问题的数学方法,包括角度误差和欧氏距离。第二类型涉及测量距离在不同的色彩空间,例如,设备无关的,感性的,或直观的色彩空间。第三,两域特定距离的措施进行了分析。在4节中,心理物理实验的实验装置进行了讨论,这些实验的结果在第5节。6节各种颜色恒常性算法进行比较,表明距离测量的影响,并在7节中两种算法之间的差异的感性意义的讨论。最后,对得到的结果进行了讨论在8节。 2、颜色恒常性 朗伯表面的图像值f取决于光源的颜色e(λ),表面的反射率S(x,

相关主题
文本预览
相关文档 最新文档