当前位置:文档之家› 钢筋混凝土抗震墙的设计体会

钢筋混凝土抗震墙的设计体会

钢筋混凝土抗震墙的设计体会
钢筋混凝土抗震墙的设计体会

钢筋混凝土抗震墙的设计体会

要:本文针对目前应用广泛的剪力墙结构,分析对比新、旧规范对剪力墙的具体要求,结合规范与工程实际,总结了自己的设计体会和一些在设计中需要注意的问题。

关键词:抗震墙轴压比弯曲变形

抗震墙广泛用于多层和高层钢筋混凝土房屋,规范规定的现浇钢筋混凝土结构房屋中,除框架结构外,其余几种结构体系均与剪力墙有关,所以有必要对剪力墙结构作一个重点研究。

在受力方面,因为剪力墙的刚度大,容易满足小震作用下结构尤其是高层结构的位移限值。在地震作用下,其变形小,破坏程度低,可以设计成延性抗震墙,大震时通过连梁和墙肢底部的塑性铰范围内的塑性变形,耗散地震能量,在与其他结构共同工作的同时,能吸收大部分的能量,降低其他结构的抗震要求,在设防较高的地区(8度及区以上地区)优点更为突出。

抗震墙由墙肢和连梁两部分组成。设计时应遵循强墙弱梁、强剪若弯的原则。即连梁的屈服先于墙肢,连梁和墙肢均应为弯曲屈服。与旧规范相比,新规范在剪力墙抗震设计特别是在抗震构造方面有比较大的变化。主要包括:

(1)底部加强区高度的变化;

(2)墙肢组合截面的弯矩、剪力设计值和连梁组合的设计值;

(3)分布钢筋的最小配筋率;

(4)增加了剪力墙的轴压比的限值;

(5)将边缘构件分为约束边缘构件和构造边缘构件;两种边缘构件的构造不同,加强了应加强的部位,放松了可放松的部位,使抗震墙的设计更具合理性;

(6)新规范取消了旧规范的弱连梁和小墙肢的术语,代之以跨高比和墙肢长度和厚度的比值,应当说在概念上是没有区别,但89规范虽然对弱连梁作了规定,但在设计中难以确定什么是弱连梁。

在进行抗震墙设计时应注意如下的要求:

1、抗震墙的布置要求:作为主要的抗侧力构件,合理的布置是构建良好抗震性能的基础。应遵循八字方针即对称、均匀、周边、连续外,还须注意:

(1)将长墙分成墙段:对于抗震墙结构和部分框支抗震墙结构,若内纵墙很长,且连梁的跨高比小、刚度大,则墙的整体性好,在水平地震作用下,墙的剪切变形较大,墙肢的破坏高度可能超过底部加强部位的高度,新规范规定将长墙分成墙段,使墙的高宽比大于2。墙段由墙肢和连梁组成。旧规范也有相同的规定。二者的区别在于连梁。旧规范为弱连梁,而新规范为跨高比不小于6 的连梁,其目的是:设置刚度和承载力较小的连梁,在地震作用下可能先破坏,使墙段成为抗侧力单元,且墙段以弯曲变形为主。

(2)避免墙肢长度突变:抗震墙和部分框支抗震墙结构的墙肢的截面长度,沿高度不宜有突变,当抗震墙的洞口比较大时,以及一、二级抗震墙的底部加强区,不宜有错洞布置的剪力墙。

2、框支层墙体的布置要求:

(1)对框支层刚度的要求:部分框支的抗震墙结构的框支层,抗震墙减少,侧向刚度降低,在地震作用时有可能将变形集中在框支层,框支层是使结构具有良好抗震性能的关键部位。对于矩形平面的部分框支抗震墙结构,为避免框支层成为薄弱层或软弱层,新规范第规定:框支层的侧向刚度不应小于上一层非框支层侧向刚度的50%(应该说规范的要求并不过分,设计时应尽量避免这种对抗震极为不利的结构形式。与建筑师一起努力,为建造牢固的建筑产品而共同奋斗)。新规范取消了旧规范对框支层落地剪力墙数量的规定,从设计上讲比原规范抽象但却更加合理,所以我建议:在平面布置时可以借用原规范的数量控制作为直观的手段,然后进行量化计算。

(2)框支墙落地的间距不宜过大:框支层的水平地震剪力主要由落地剪力墙承担,作用在紧邻框支层的上一层非落地剪力墙的水平力亦通过框支层楼板传到落地墙,为保证楼板有足够大的平面内刚度(传递水平力),新规范规定:落地墙的最大水平间距不宜大于24米,取消了原四开间的含糊概念。另外,新旧规范均对框支层楼板提出了具体的特殊规定(详见附录),希望能引起设计者的高度重视。

(3)部分落地墙宜设计成筒体,以增加抗扭刚度和抗侧刚度。此条在实践中似较难作到,但须与建筑专业很好协调的话,相信一定会有很明显的效果。

3、框架-抗震墙结构的抗震墙布置要求:框架-抗震墙结构在实际工程中运用最多(对高层而言)。布置要点是:位置和数量,抗震墙的数量

以满足刚度即满足层间位移限值为宜,位置相对灵活,但应符合规范相关的具体规定。

(1)沿房屋高度,抗震墙宜连续布置,宜全长贯通,避免切断,且洞口宜上下对齐,避免墙肢长度的突变。对外墙而言较容易作到,这与上述的八字方针相统一,内墙有时相对较困难。

(2)不宜开大洞口,避免削弱抗震墙的刚度。虽然取消了旧规范对洞口面积的限值的规定,但在实际中对此条规定较难掌握,由此引起的争执亦屡见不鲜。

(3)洞边距柱端(指距柱内侧)不小于300㎜,以保证柱作为边缘构件的作用和约束边缘构件的长度。

(4)双向抗侧力的结构形式。且纵横墙宜相连,使彼此成为有翼缘的剪力墙,不但可以增加刚度,同时还能有效地提高塑性变形的能力。(5)对于较长的房屋,不宜在房屋的端部设剪力墙,以避免温度应力对剪力墙的不利影响。

(6)对于一、二级抗震墙,其连梁的跨高比不宜大于5。且高度不小于400㎜。连梁有较大的刚度,可保证墙体的整体

钢筋混凝土结构中的钢筋有哪几种

钢筋的分类和用途 钢筋种类很多,通常按化学成分、生产工艺、轧制外形、供应形式、直径大小,以及在结构中的用途进行分类: 1.按化学成分分 碳素钢钢筋和普通低合金钢筋。碳素钢钢筋按碳量多少,又分为低碳钢钢筋(含碳量低于0.25%,如I级钢筋),中碳钢钢筋(含碳量0.25%~0.7%,如IV级钢筋),高碳钢钢筋(含碳量0.70%~1.4%,如碳素钢丝),碳素钢中除含有铁和碳元素外,还有少量在冶炼过程中带有的硅、锰、磷、硫等杂质。普通低合金钢钢筋是在低碳钢和中碳钢中加入少量合金元素,获得强度高和综合性能好的钢种,在钢筋中常用的合金元素有硅、锰、钒、钛等,普通低合金钢钢筋主要品种有:20MnSi、40Si2MnV、45SiMnTi等。 各种化学成分含量的多少,对钢筋机械性能和可焊性的影响极大。一般建筑用钢筋在正常情况下不作化学成分的检验,但在选用钢筋时,仍需注意钢筋的化学成分。下面介绍钢筋中主要的五种元素对其性能的影响。 碳(C):碳与铁形成化合物渗碳体(Fe3C),材性硬且脆,钢中含碳量增加渗碳体量就大,钢的硬度和强度也提高,而塑性和韧性则下降,材性变脆,其焊接性也随之变差。 锰(Mn):它是炼钢时作为脱氧剂加入钢中的,可使钢的塑性及韧性下降,因此含量要合适,一般含量在1.5%以下。

硅(Si):它也是作为脱氧剂加入钢中的,可使钢的强度和硬度增加。有时特意加入一些使其含量大于0.4%,但不能超过0.6%,因为它含量大时与碳(C)含量大时的作用一样。硫(S):它是一种导致钢热脆性、使钢在焊接时出现热裂纹的有害杂质。它在钢中的存在使钢的塑性和韧性下降。一般要求其含量不得超过0.045%。 磷(P):它也是一种有害物质。磷使钢容易发生冷脆并恶化钢的焊接性能,尤其在200℃时,它可使钢材或焊缝出现冷裂纹。一般要求其含量低于0.045%,即使有些低合金钢也必须控制在0.050%~0.120%之间。 2.按轧制外形分 (1)光面钢筋:I级钢筋(Q235钢钢筋)均轧制为光面圆形截面,供应形式有盘圆,直径不大于10mm,长度为6m~12m。 (2)变形钢筋/带肋钢筋:有螺旋形、人字形和月牙形三种,一般Ⅱ、Ⅲ级钢筋轧制成人字形,Ⅳ级钢筋轧制成螺旋形及月牙形。 3.按直径大小分 钢丝(直径3~5mm)、细钢筋(直径6~10mm)、粗钢筋(直径大于22mm)。 4.按力学性能分 Ⅰ级钢筋(235/370级);Ⅱ级钢筋(335/510级);Ⅲ级钢筋

钢筋混凝土抗震墙设计的几个问题

钢筋混凝土抗震墙设计的几个问题 发表时间:2009-02-19T15:17:49.687Z 来源:《黑龙江科技信息》2008年9月上供稿作者:王青 [导读] 通过对多层和高层钢筋混凝土房屋的结构设计,概括出对钢筋混凝土抗震墙的设计要求。 摘要:通过对多层和高层钢筋混凝土房屋的结构设计,概括出对钢筋混凝土抗震墙的设计要求。 关键词:抗震墙;墙肢;连梁 抗震墙广泛用于多层和高层钢筋混凝土房屋,规范规定的现浇钢筋混凝土结构房屋中,除框架结构外,其余几种结构,如框架-剪力墙结构、剪力墙结构、筒体结构及板柱-剪力墙结构。均与剪力墙有关、因此有必要对剪力墙作一下研究。 在受力方面,因为剪力墙的刚度大,容易满足小震作用下结构,尤其是高层结构的位移限值。在地震作用下,其变形小,破坏程度低,可以设计成延性抗震墙,大震时通过连梁和墙肢底部的塑性铰范围内的塑性变形,耗散地震能量,在与其他结构共同工作的同时,能吸收大部分能量,降低其他结构的抗震要求,在设防较高的地区(8度地区及以上地区)优点更为突出。 抗震墙由墙肢和连梁两部分组成。设计时应遵循强墙弱梁、强剪弱弯的原则。与旧规范相比,新规范在剪力墙抗震设计特别是在抗震构造方面有比较大的变化。 1抗震墙的布置原则 作为主要的抗侧力构件,合理的布置是构建良好抗震性能的基础。应遵循“对称、均匀、周边、连续”外,还须注意。 1.1将长墙分成墙段 对于抗震墙结构和部分框支抗震墙结构,较长的抗震墙宜开设洞口,将一道抗震墙分成长度较均匀的若干墙段,使墙的高宽比大于2。规范规定洞口连梁跨高比宜大于6。的目的是:设置刚度和承载力较小的连梁,在地震作用下可能先破坏、屈服。使墙段成为抗侧力单元,且墙段以弯曲变形为主。 1.2避免墙肢长度突变 抗震墙和部分框支抗震墙结构的墙肢的截面长度,沿高度不宜有突变,当抗震墙的洞口比较大时,以及一、二级抗震墙的底部加强区,不宜有错洞布置的剪力墙。 2框支层墙体的布置 2.1对框支层刚度的要求 部分框支的抗震墙结构的框支层,抗震墙减少,侧向刚度降低,在地震作用时有可能变形集中在框支层。框支层是使结构具有良好抗震性能的关键部位。对于矩形平面的部分框支的抗震墙结构为避免框支层成为薄弱层或软弱层,规范规定:框支层的楼层侧向刚度不应小于上一层非框支层侧向刚度的50%。 2.2框支墙落地的间距不宜过大 框支层的水平地震剪力主要由落地剪力墙承担。作用在紧邻框支层的上一层非落地剪力墙的水平力亦通过框支层楼板传到落地墙,为保证楼板有足够大的平面内刚度(传递水平力),2001规范规定:落地墙的最大水平间距不宜大于24m。 部分落地墙宜设计成筒体,以增加抗扭刚度和抗侧刚度。 3框架-抗震墙结构的抗震墙的布置 3.1沿房屋高度,抗震墙宜连续布置,宜全长贯通,避免切断,且洞口宜上下对齐,避免墙肢长度的突变。 3.2不宜开大洞口,避免抗震墙承载力削弱和刚度突变。 3.3洞边距柱柱端(指距柱内侧)不小于300mm。以保证柱作为边缘构件的作用和约束边缘构件的长度。结构试验表明矩形截面剪力墙的延性比工字形或槽形截面剪力墙差;计算分析表明增加墙肢截面两端的翼缘能显著提高墙的延性;因此在矩形墙两端设约束边缘构件不但能较显著地提高墙体的延性,还能防止剪力墙发生水平剪切滑,提高抗剪能力。 3.4双向抗侧力的结构形式。纵横墙宜相连,使彼此成为有翼缘的剪力墙,不但可以增加刚度,同时还能有效地提高塑性变形的能力。 3.5对于较长的房屋,不宜在房屋的端部设剪力墙以避免温度应力对剪力墙的不利影响。 3.6对于一、二级抗震墙,其连梁的跨高比不宜大于5,且高度不小于400mm。连梁有较大的刚度,可保证墙体的整体性能良好并能增大耗能能力。 3.7柱中线与梁、墙中线偏心不宜大于柱宽的1/4以减少地震作用对柱的扭转效应。否则应通过加水平腋,加强柱内配箍率等方法加以弥补。 4抗震墙截面尺寸的有关规定 4.1最大剪压比限值 对剪跨比大于2的剪力墙和跨高比大于2.5的连梁,剪压比不应大于0.2剪跨比小于2的剪力墙和跨高比小于2.5的连梁,剪压比不大于0.15。原因是:剪跨比小的墙和跨高比小的连梁其剪切变形较大,甚至以剪切变形为主,故对剪压比的要求应更严格一些。实验表明:剪压比超过一定值时,将过早出现斜向裂缝,增加水平筋和箍筋的方法没有作用,在箍筋水平筋未屈服前混凝土即已在剪即已在剪压的共同作用下破碎。合理的方法是:加大混凝土强度等级,加厚墙、梁或加长墙的长度,但不宜加高梁的高度,在计算墙肢的剪跨比时弯矩和剪力均取地震作用下的效应组合的计算值。 4.2抗震墙的最小厚度 框架—剪力墙结构的底部加强区不小于200,且不小于层高的1/6;框架—剪力墙结构的其他部位不小于160,且不小于层高的1/20;框架-剪力墙结构的墙的周边应设置梁或暗梁、端柱组成边框。其他结构的一、二级不小于160mm,且不小于层高的1/20;其他结构的三、四级不小于140mm,且不小于层高的1/25;其他结构的一、二级底部加强区不小于200mm,且不小于层高的1/16(无端柱或翼墙时不小于层高的1/12)。 5剪力墙的计算 墙的设计计算是考虑水平和竖向作用下进行结构整体分析,求得内力后按偏压或偏拉进行正截面承载力和斜截面受剪承载力验算。当受较大集中荷载作用时,再增加对局部受压承载力验算。在剪力墙承载力计算中,对带翼墙的计算宽度按以下情况取其小值。

钢筋混凝土结构中的钢筋有哪几种

钢筋的分类和用途钢筋种类很多,通常按化学成分、生产工艺、 轧制外形、供应形式、直径大小,以及在结构中的用途进行分类:1.按化学成分分碳素钢钢筋和普通低合金钢筋。碳素钢钢筋按碳量多少,又分为低碳钢钢筋(含碳量低于0.25%,如I 级钢筋),中碳钢钢筋(含碳量0.25%?0.7%,如IV级钢筋),高碳钢钢筋(含碳量0.70%?1.4%,如碳素钢丝),碳素钢中除含有铁和碳元素外,还有少量在冶炼过程中带有的硅、锰、磷、硫等杂质。普通低合金钢钢筋是在低碳钢和中碳钢中加入少量合金元素,获得强度高和综合性能好的钢种,在钢筋中常用的合金元素有硅、锰、钒、钛等,普通低合金钢钢筋主要品种有: 20MnSi、40Si2MnV 、4 5SiMnTi 等。各种化学成分含量的多少,对钢筋机械性能和可焊性的影响极大。一般建筑用钢筋在正常情况下不作化学成分的检验,但在选用钢筋时,仍需注意钢筋的化学成分。下面介绍钢筋中主要的五种元素对其性能的影响。碳(C):碳与铁形成化合物渗碳体(Fe3C),材性硬且脆,钢中含碳量增加渗碳体量就大,钢的硬度和强度也提高,而塑性和韧性则下降,材性变脆,其焊接性也随之变差。 锰(Mn):它是炼钢时作为脱氧剂加入钢中的,可使钢的塑性及 韧性下降,因此含量要合适,一般含量在1.5%以下。 硅(Si):它也是作为脱氧剂加入钢中的,可使钢的强度和硬 度增加。有时特意加入一些使其含量大于0.4%,但不能超 过0.6%,因为它含量大时与碳(C)含量大时的作用一样。硫

(S):它是一种导致钢热脆性、使钢在焊接时出现热裂纹的有害杂质。它在钢中的存在使钢的塑性和韧性下降。一般要求其含量不得超过0.045%。 磷(P):它也是一种有害物质。磷使钢容易发生冷脆并恶化钢的焊接性能,尤其在200 C时,它可使钢材或焊缝出现冷 裂纹。一般要求其含量低于0.045%,即使有些低合金钢也 必须控制在0.050%?0.120%之间。 2.按轧制外形分 (1 )光面钢筋:I 级钢筋(Q235 钢钢筋)均轧制为光面圆形截面,供应形式有盘圆,直径不大于10mm ,长度为6m~12m 。 (2)变形钢筋/带肋钢筋:有螺旋形、人字形和月牙形三种,一般□、川级钢筋轧制成人字形,W级钢筋轧制成螺旋形及月牙形。 3.按直径大小分 钢丝(直径3~5mm )、细钢筋(直径6?10mm )、粗钢筋(直径大于22mm)。 4.按力学性能分 I级钢筋(235/370级);H级钢筋(335/510级);川级钢筋

第三节 钢筋混凝土剪力墙结构

第三节钢筋混凝土剪力墙结构 一、剪力墙结构的受力与震害特点 (一)受力特点 开洞剪力墙由墙肢和连梁两种构件组成,不开洞的剪力墙仅有墙肢。按墙面 开洞情况,剪力墙可分为四类: (1)整截面剪力墙,即不开洞或开洞面积不大于15%的墙(图5—32a); (2)整体小即剪力墙,即开洞面积大于15%,但仍较小的墙(图5—32b); (3)双肢及多肢剪力墙,即开口较大、洞口成列布置的剪力墙(图5-32c); (4)壁式框架,即洞口尺寸大,连梁线刚度大于或接近墙肢线刚度的墙(图 5-32d)。; 图5-32 剪力墙的类型 (o)整截面剪力墙;(^)整体小开口剪力墙;(c)双肢及多肢剪力墙;(d)壁式框架 在水平荷载作用下,整截面剪力墙如同一片整体的悬臂墙,在墙肢的整个高 度上,弯矩图既不突变,也无反弯点,剪力墙的变形以弯曲型为主(图5-32a); 整体小开口剪力墙的弯矩图在连梁处发生突变,但在整个墙肢高度上没有或仅仅 在个别楼层中出现反弯点,剪力墙的变形仍以弯曲型为主(图5-32b);双肢及多 肢剪力墙与整体小开口剪力墙相似(图5—32c);壁式框架柱的弯矩图在楼层处有 突变,且在大多数楼层出现反弯点,剪力墙的变形以剪切型为主(图5-32d)。 在竖向荷载作用下,连梁内将产生弯矩,而墙肢内主要产生轴力。当纵墙和横墙整体联结时,荷载可以相互扩散。因此,在楼板下一定距离以外,可认为竖 向荷载在纵、横墙内均匀分布。 在竖向荷载和水平荷载共同作用下,悬臂墙的墙肢为压、弯、剪构件,而开 洞剪力墙的墙肢可能是压、弯、剪构件,也可能是拉、弯、剪构件。

连梁及墙肢的特点都是宽而薄,这类构件对剪切变形敏感,容易出现斜裂 缝,容易出现脆性的剪切破坏。根据剪力墙高度H与剪力墙截面高度/l的比值, 剪力墙可分为高墙(H/A≥3)、中高墙(1.5≤H/A<3)和矮墙(H/A<1.5)。 三种墙典型的裂缝分布如图5—33。在抗震结构中应尽量避免采用矮墙,以保证 结构延性。 图5-33 剪力墙的裂缝分布 (d)高墙;(^)中高墙;(‘)矮墙 开洞剪力墙中,由于洞口应力集中,很容易在连梁端部形成垂直方向的弯曲 裂缝。当连梁跨高比较大时,梁以受弯为主,可能出现弯曲破坏。剪跨比较小的 高梁,除了端部很容易出现垂直的弯曲裂缝外,还很容易出现斜向的剪切裂缝。 当抗剪箍筋不足或剪应力过大时,可能很早就出现剪切破坏,使墙肢间丧失联 系,剪力墙承载能力降低。开口剪力墙的底层墙肢内力最大,容易在墙肢底部出 现裂缝及破坏。在水平力作用下受拉的墙肢往往轴压力较小,有时甚至出现拉 力,墙肢底部很容易出现水平裂缝。 (二)震害特点 钢筋混凝土剪力墙结构的抗震性能远比纯框架结构好,其主要震害是连梁和 墙肢底层的破坏。开洞的剪力墙中,由于洞口应力集中,连系梁端部极为敏感, 在约束弯矩作用下,很容易形成垂直方向的弯曲裂缝,另外,墙肢之间的连梁相 对刚度小,是剪力墙的变形集中处,故连梁很容易产生剪切破坏;开口剪力墙的 底层墙肢内力最大,容易在墙肢底部出现裂缝及破坏,表现为受压区混凝土大片 压碎剥落,钢筋压屈。 二、设计规定与构造措施 (一)混凝土强度等级及墙厚 为保证钢筋混凝土剪力墙的承载能力和变形能力,非抗震设计剪力墙的混凝 土强度等级不宜低于C20,抗震设计剪力墙的混凝土强度等级不应低于C20。 剪力墙的厚度不应太小,以保证墙体出平面的刚度和稳定性,以及浇筑混凝土的质量。非抗震设计和抗震等级为三、四级的钢筋混凝土剪力墙的截面厚度不 应小于楼层净高的l/z5,也不应小于140mm。抗震等级为一、二级的钢筋混凝 土剪力墙的截面厚度不应小于楼层净高的1/20,也不应小于160mm。剪力墙底

剪力墙结构设计注意要点

剪力墙结构设计要点 整体规定 ◆A级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度、9度抗震时,分别为150、140、120、100、60m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为130、120、100、80m,9度抗震时不宜采用 A级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度、8度抗震时,将本地区设防烈度提高一级后,按乙类、丙类建筑采用 9度抗震时,应专门研究 (说明:房屋高度指室外地面至主要屋面高度,不包括局部突出屋面的电梯机房、水箱、构架等高度) ◆B级高度乙类、丙类高层建筑的剪力墙结构最大适用高度: 全部落地剪力墙——非抗震、6度、7度、8度抗震时,分别为180、170、150、130m 部分框支剪力墙——非抗震、6度、7度、8度抗震时,分别为150、140、120、100m B级高度甲类高层建筑的剪力墙结构最大适用高度: 6度、7度抗震时,按本地区设防烈度提高一级后,按乙类、丙类建筑采用 8度抗震时,应专门研究 ◆结构的最大高宽比: A级高度——非抗震、6度、7度、8度、9度抗震时,分别为6、6、6、5、4 B级高度——非抗震、6度、7度、8度抗震时,分别为8、7、7、6 ◆质量与刚度分布明显不对称、不均匀的结构,应计算双向水平地震作用下的扭转影响; 其他情况,应计算单向水平地震作用的扭转影响

◆考虑非承重墙的刚度影响,结构自振周期折减系数取值0.9~1.0 ◆平面规则检查,需满足: 扭转:A级高度—— B级高度、混合结构高层、复杂高层—— 楼板:有效楼板宽≥该层楼板典型宽度的50% 开洞面积≤该层楼面面积的30% 无较大的楼层错层 凹凸:平面凹进的一侧尺寸≤相应投影方向总尺寸的30% ◆竖向规则检查,需满足: 侧向刚度: 除顶层外,局部收进的水平向尺寸≤相邻下一层的25% 楼层承载力:A级高度——抗侧力结构的层间受剪承载力(宜)≥相邻上一层的80% 薄弱层抗侧力结构的受剪承载力(应)≥相邻上一层的65% B级高度——抗侧力结构的层间受剪承载力(应)≥相邻上一层的75% (说明:楼层层间抗侧力结构受剪承载力指在所考虑的水平地震作用方向,该层全部柱及剪力墙的受剪承载力之和) 竖向连续:竖向抗侧力构件(柱、抗震墙、抗震支撑)的内力不得由水平转换构件(梁等)向下传递 ◆水平位移验算: 多遇地震作用下的最大层间位移角≤ 罕遇地震作用下的薄弱层层间弹塑性位移角≤1/120 ◆舒适度要求: 高度超过150m的高层建筑,按10年一遇的风荷载取值计算的顺风向与横风向结构顶点的最

抗震结构归纳总结

一、名词解释 构造地震:由于地壳运动,推挤地壳岩层使其薄弱部位发生断裂错动而引起的地震。 地震基本烈度:指在50年期限内,一般场地条件下可能遭遇超过概率10%的地震烈度值。 底部剪力法:对于高度不超过40米,以剪切变形为主且质量和刚度沿高度变化比较均匀的结构。在计算其地震反应时,先计算出作用于结构的总的水平地震作用,然后将总水平地震作用按一定的 规律再分配给各个质点。 建筑抗震有利地段:振型质量矩阵正交性:某一振型过程中所引起的惯性力不在其他振型上作功。即,体系按某一振型作自由振动时不会激起该体系其他振型的振动。 强柱弱梁:指在强烈地震作用下,结构发生较大侧移进入非弹性阶段时,为使框架保持足够的竖向承载力而免于倒塌,要求塑性铰应首先在梁上形成,尽可能避免在破坏后危害更大的柱上出现塑性 铰。 单质地体系:某些工程结构,如等高单层厂房和公路高架桥等,因其质量大部分都集中在屋盖或桥面处,故在进行结构动力计算时,可将该结构参与振动的所有质量全部折算至屋盖,而将墙.柱视 为一个无重量的弹性杆,这样就形成了一个单质点体系。 地震系数:它表示地面运动的最大加速度与重力加速度之比 动力系数:它是单质点最大绝对加速度与地面最大加速度的比值,表示由于动力效应,质点的最大绝对加速度比地面最大加速度放大了多少倍 地震影响系数:实际上就是作用于单质点弹性体系上的水平地震力与结构重力之比 标准反应谱曲线:由于地震的随机性,即使在同一地点.同一烈度,每次地震的地面加速度 记录也很不一致,因此需要根据大量的强震记录算出对应于每一条强震记录的反应谱曲线, 然后统计求出最有代表性的平均曲线作为设计依据,这种曲线称为标准反应谱曲线。 振型分解法:用体系的振型作为基底,而用另一函数作为坐标,就可以把联立方程组变为几个独立的方程,每个方程中包含一个未知项,这样就可分别独立求解,从而使计算简化。这一方法称为振型 分解法,它是求解多自由度弹性体系地震反应的重要方法。 重力荷载代表值:是永久荷载和有关可变荷载的组合值之和 等效总重力荷载代表值:对单质点为总重力荷载代表值,多质点可取总重力荷载代表值的85% 多道抗震防线指的是:①一个抗震结构体系,应由若干个延性较好的分体系组成,并由延性较好的结构构件连接起来协调工作。②抗震结构体系应有最大可能数量的内部.外部赘余度,有 意识地建立起一系列分布的屈服区,以使结构能够吸收和耗散大量的地震能量,一 旦破坏也易于修复。 非结构部件:一般是指在结构分析中不考虑承受重力荷载以及风.地震等侧力荷载的部件。 强柱弱梁:要求在强烈地震作用下,结构发生较大侧移进入非弹性阶段时,为使框架保持足够的竖向承载力而免于倒塌,要求实现梁铰侧移机构,即塑性铰应首先在梁上形成,尽可能避免在破坏后在 危害更大的柱上出现塑性铰。、 地震序列:在一定时间内(一般是几十天至数月)相继发生在相邻地区的一系列大小地 震称为地震序列。 地震波:地震引起的振动以波的形式从震源向各个方向传播并释放能量,这就是地震波。 震级:是按一次地震本身强弱程度而定的等级。它是用伍德-安德生式标准地震仪所记录到的距震中100KM处最大水平地动位移的常用对数值表示的。 地震烈度:是指地震时某一地区的地面和各类建筑物遭受到一次地震影响的强弱程度。基本烈度:指在50年期限内,一般场地条件下可能遭遇超越概率为10%的地震烈度值。 震源深度:震中到震源的垂直距离,称为震源深度。 震中距:建筑物到震中之间的距离叫震中距。震源距:建筑物到震源之间的距离叫震源距。 极震区:在震中附近,振动最剧烈.破坏最严重的地区叫极震区。 等震线:一次地震中,在其所波及的地区内,用烈度表可以对每一个地点评估出一个烈度,烈度相同点的外包线叫等震线。

钢筋混凝土剪力墙结构施工质量控制措施

钢筋混凝土剪力墙结构施工质量控制措施 摘要:文章介绍了建筑的钢筋混凝土剪力墙的分类及优缺点,并以混凝土施工的质量控制流程为主线,结合施工实例,对混凝土施工中的材料选取、施工控制要素进行了分析,供广大施工人员参考。关键词:混凝土剪力墙;施工质量;施工材料;施工建筑 中图分类号:tu974 文献标识码:a 文章编号:1009-2374(2012)22-0092-031 概述 目前,我国的高层及超高层建筑的数量越来越多,而剪力墙结构在高层建筑中得到了较为广泛的应用。建筑的结构墙体分为两类:一是承重墙,它主要承受来自建筑自重的竖向力,一般由砌体或钢筯混凝土现浇制成;二是剪力墙,剪力墙是用来承受风荷载、地震作用力等水平作用力的墙,因此又称其为抗风墙或抗震墙。现代建筑为了保证剪力墙的强度,较为广泛地采用了高强混凝土作为结构材料。高强度混凝土剪力墙具有强度高、用料省的优点,但施工质量不易控制,因此,在施工时应采取一定的措施保证高强混凝土剪力墙的施工质量。 2 剪力墙结构的分类及优点 剪力墙的种类很多,主要有三种不同的分类方法。根据所采用的结构材料,可分为配筋砌块剪力墙、钢筋砼现浇剪力墙等。按剪力墙的洞口的大小以及数量可分为整体式剪力墙、框架剪力墙和开有不规则洞口的剪力墙等。根据墙体的受力性能的不同,可以将其分

为壁式框架、独立墙体、连肢剪力墙、整体小开口剪力墙和整截面剪力墙等。 随着新材料、新技术及新工艺在建筑施工上的应用,人们对现代建筑的空间要求也越来越高,而在板梁结构建筑中,梁体外露是无法避免的,若以吊顶方式遮蔽,则会大大减少层高净空,给人以压抑和不舒适感。剪力墙配合楼板的结构体系则能很好地解决这一弊病,增大层间的净空。除了空间上的优势外,剪力墙结构还具有结构上的优点:剪力墙结构具有很好的承载能力,除了承载竖向荷载之外,还可以承载横向作用力,增加了建筑的整体性,可以提高建筑的建造高度,同时也保证了良好的抗震性能。 剪力墙也有自身的不足之处,如建筑自重大,对上部结构和下部基础的设计要求较为严格。同时,剪力墙作为建筑的结构体,其平面布置需一定的间距和形式,并不能完全按照建筑的功能使用进行平面布置,因此其建筑灵活性稍差一些,不太适用于大开间的公共建筑等。 3 剪力墙施工质量工艺流程 现浇混凝土剪力墙的施工流程与其他混凝土构件的施工流程类似,都由放线、支模、浇灌混凝土、振捣、养护、拆模等几方面组成,但根据现浇砼剪力墙自身的特点,又有不同于一般施工流程的做法,下面对其施工时的质量工艺流程作简要介绍: (1)放线:利用仪器放出模板的连线和控制线。

钢筋混凝土抗震墙的设计体会

钢筋混凝土抗震墙的设计体会 要:本文针对目前应用广泛的剪力墙结构,分析对比新、旧规范对剪力墙的具体要求,结合规范与工程实际,总结了自己的设计体会和一些在设计中需要注意的问题。 关键词:抗震墙轴压比弯曲变形 抗震墙广泛用于多层和高层钢筋混凝土房屋,规范规定的现浇钢筋混凝土结构房屋中,除框架结构外,其余几种结构体系均与剪力墙有关,所以有必要对剪力墙结构作一个重点研究。 在受力方面,因为剪力墙的刚度大,容易满足小震作用下结构尤其是高层结构的位移限值。在地震作用下,其变形小,破坏程度低,可以设计成延性抗震墙,大震时通过连梁和墙肢底部的塑性铰范围内的塑性变形,耗散地震能量,在与其他结构共同工作的同时,能吸收大部分的能量,降低其他结构的抗震要求,在设防较高的地区(8度及区以上地区)优点更为突出。 抗震墙由墙肢和连梁两部分组成。设计时应遵循强墙弱梁、强剪若弯的原则。即连梁的屈服先于墙肢,连梁和墙肢均应为弯曲屈服。与旧规范相比,新规范在剪力墙抗震设计特别是在抗震构造方面有比较大的变化。主要包括: (1)底部加强区高度的变化; (2)墙肢组合截面的弯矩、剪力设计值和连梁组合的设计值; (3)分布钢筋的最小配筋率;

(4)增加了剪力墙的轴压比的限值; (5)将边缘构件分为约束边缘构件和构造边缘构件;两种边缘构件的构造不同,加强了应加强的部位,放松了可放松的部位,使抗震墙的设计更具合理性; (6)新规范取消了旧规范的弱连梁和小墙肢的术语,代之以跨高比和墙肢长度和厚度的比值,应当说在概念上是没有区别,但89规范虽然对弱连梁作了规定,但在设计中难以确定什么是弱连梁。 在进行抗震墙设计时应注意如下的要求: 1、抗震墙的布置要求:作为主要的抗侧力构件,合理的布置是构建良好抗震性能的基础。应遵循八字方针即对称、均匀、周边、连续外,还须注意: (1)将长墙分成墙段:对于抗震墙结构和部分框支抗震墙结构,若内纵墙很长,且连梁的跨高比小、刚度大,则墙的整体性好,在水平地震作用下,墙的剪切变形较大,墙肢的破坏高度可能超过底部加强部位的高度,新规范规定将长墙分成墙段,使墙的高宽比大于2。墙段由墙肢和连梁组成。旧规范也有相同的规定。二者的区别在于连梁。旧规范为弱连梁,而新规范为跨高比不小于6 的连梁,其目的是:设置刚度和承载力较小的连梁,在地震作用下可能先破坏,使墙段成为抗侧力单元,且墙段以弯曲变形为主。 (2)避免墙肢长度突变:抗震墙和部分框支抗震墙结构的墙肢的截面长度,沿高度不宜有突变,当抗震墙的洞口比较大时,以及一、二级抗震墙的底部加强区,不宜有错洞布置的剪力墙。

剪力墙结构的抗震设计与经济性分析

剪力墙结构的抗震设计与经济性分析 【摘要】在高层建筑结构设计中,剪力墙结构体系因具有整体性好、刚度大、侧向变形小、抗风与抗震性能好等特点,因而在高层建筑特别是住宅建筑中被大量采用。本文笔者根据多年来的工程设计实践,对高层建筑剪力墙结构的抗震设计与经济性进行了分析。【关键词】剪力墙抗震设计经济性 中图分类号:s611文献标识码:a 文章编号: 随着经济的发展,目前我国城市用地紧张,住宅建设项目多向空间纵深发展,建筑控制高度通常接近100m。一个值得注意的现象是,设计者出于结构的安全或设计进度等方面的考虑而对结构设计采取相对保守的结构布置方案,一定程度上忽略了结构的合理性和经济性。因此对剪力墙结构的布置进行适当的优化分析显然十分必要。 一、剪力墙抗震设计目标 剪力墙的抗震设计目标是指剪力墙在遇到不同程度的地震时,对建筑结构、建筑构件的损坏程度及人身安全的综合要求。根据《建筑抗震设计规范》,将抗震设计的目标与3种强度的地震对应,分为三个级别,具体描述如下: 第一种级别:在正常荷载使用或遭遇多遇地震(也称小震)作用下,剪力墙不受损坏或不经修理仍可使用;第二种级别:当遭受中等强度地震作用时,剪力墙遭受一定的损坏,经一般修理或不经修

理仍可使用;第三种级别:在遭受罕遇地震作用下,剪力墙不能够倒塌或发生危及生命的严重损坏。行业内通常将其总结为“小震不坏,中震可修,大震不倒”。 二、剪力墙抗震设计要点 1、剪力墙的概念设计 剪力墙的概念设计是指在难以进行精确力学分析的情况下,不经过确定的数值计算,从整体角度对剪力墙的结构和具体实施进行宏观控制。在方案设计阶段,就应该进行深入的概念设计,建立多道抗震防线。剪力墙结构主要适用于下列形式:内外墙为现浇混凝土结构、内墙为现浇混凝土结构外墙为框架结构、短肢剪力墙较多的剪力墙结构。短肢剪力墙指的是墙肢厚度不大于300mm 时,墙肢的长度为厚度的 4 -8 倍剪力墙结构。实践表明,建筑外边缘和角点墙肢、底部外围墙肢、连梁等是剪力墙结构抗震薄弱环节,对于这些薄弱点,要加强概念设计。墙段与墙肢的高度比应大于 2 ,墙肢超 8 米要设洞口,各墙段之间设连梁,连梁长度不宜超 6.0 米,否则会形成局部长剪力墙。墙段边翼长度大于厚度的 3 倍,尽量双向布置,避免一字墙。《高层建筑混凝土结构技术规程》中规定了剪力墙的最小厚度。 同时《抗规》根据层高和剪力墙的长度对剪力墙的厚度也做出了规定:一、二级时不宜小于层高或无支长度的 1/20 ,三、四级时不宜小于层高或无支长度的 1/25 ;无端柱或翼墙时,一、

有限元分析在钢筋混凝土结构中的应用

论文题目:钢筋混凝土有限元分析技术在结构工程中的应用 学生姓名:刘畅 学号:2014105110 学院:建筑与工程学院 2015年06月30日

有限元分析在钢筋混凝土结构中的应用【摘要】在国内外的土木工程中,钢筋混凝土结构因具有普遍性、可靠性良好、操作简单等优点,而得到了广泛的应用。钢筋混凝土结构是钢筋与混凝土两种性质截然不同的材料组合而成,由于其组合材料的性质较为复杂,同时存在非线性与几何线形的特征,应用传统的解析方法进行材料的分析与描述在受力复杂、外形复杂等情况下较为困难,往往不能得到准确的数据,给工程安全带来隐患。而有限元分析方法则充分利用现代电子计算机技术,借助有限元模型有效解决了各种实际问题。 【关键词】有限元分析;钢筋混凝土结构;应用 随着计算机在工程设计领域中的广泛应用,以及非线性有限元理论研究的不断深入,有限元作为一个具有较强能力的专业数据分析工具,在钢筋混凝土结构中得到了广泛的应用。在现代建筑钢筋混凝土结构的分析中,有限元分析方法展现了较强的可行性、实用性与精确性。例如:在计算机上应用有限元分析法,对形状复杂、柱网复杂的基础筏板,转换厚板,体型复杂高层建筑侧向构件、楼盖,钢-混凝土组合构件等进行应力,应变分析,使设计人员更准确的掌握构件各部分内力与变形,进而进行设计,有效解决传统分析方法的不足,满足当前建筑体型日益复杂,工程材料多样化的实际情况。但是在有限元分析方法的应用中,必须结合钢筋混凝土结构工程的实际情况,选取作为合理的有限元模型,才能保证模拟与分析结果的真实性、精确性与可靠性。 在钢筋混凝土结构工程中,非线性有限元分析的基本理论可以概括为:1)通过分离钢筋混凝土结构中的钢筋、混凝土,使其成为有限单位、二维三角形单元,钢箍离散为一维杆单元,以利于分析模型的构建;2)为了合理模拟钢筋、混凝土之间的粘结滑移关系,以及

ABAQUS中的钢筋混凝土剪力墙建模

ABAQUS中的钢筋混凝土剪力墙建模 曲哲 2006-5-29 一、试验标定 选用ABAQUS中的塑性损伤混凝土本构模型,分离式钢筋建模,建立平面应力模型模拟钢筋混凝土剪力墙的单调受力行为。李宏男(2004)本可以提供比较理想的基准试验。然而计算发现,该文中试验记录的初始刚度普遍偏小,仅为弹性分析结果的1/5~1/8,原因不明,故此处不予采用。左晓宝(2001)研究了小剪跨比开缝墙的低周滞回性能,其中有一片整体墙作为对照试件,本文仅以这片墙为基准标定有限元模型。 图1:剪力墙尺寸与配筋 该试件尺寸及配筋如图1所示。墙全高750mm,宽800mm,厚75mm,墙内布有间距φ6@100的分布钢筋,墙两端设有暗柱。混凝土立方体抗压强度为54.9MPa,钢筋均为一级光圆筋。 (a)墙体分区及网格(b)钢筋网 图2:ABAQUS中的有限元模型 剪力墙采用平面应力八节点全积分单元,墙上下两端各加设100mm高的弹性梁。钢筋采用两节点梁单元,通过Embed方式内嵌于墙体内。模型网格及外观如图2所示。墙下弹性梁底面嵌固。分析中,先在墙顶施加160kN均布轴压力,再在墙上方弹性梁的左端缓缓施加位移荷载。 ABAQUS中损伤模型各参数取值如表1、图3所示。未说明的参数均使用ABAQUS默认值。

表1:有限元模型材料属性 混凝土 钢筋 材料非线性模型 Damaged Plasticity Plasticity 初始弹性模量(GPa ) 38.1 210 泊松比 0.2 0.3 膨胀角(deg ) 50 初始屈服应力(MPa ) 13 235 峰值压应力(MPa ) 44 峰值压应变(με) 2000 峰值拉应力(MPa ) 3.65 注:其中混凝土弹性模量为文献中提供的试验值,其余均为估计值。 (a )压应力-塑性应变曲线 (b )拉应力-非弹性应变曲线 (c )受拉损伤指标-开裂应变曲线 图3:混凝土塑性硬化及损伤参数 ABAQUS 的混凝土塑性损伤模型用两个硬化参数分别控制混凝土的拉压行为,同时可以分别引入受压和受拉损伤指标。本文受压硬化曲线采用Saenz 曲线(式1),可用表1中列出的初始弹性模量、峰值应力和峰值应变唯一确定。受拉软化曲线采用Gopalaratnam 和Shah (1985)曲线(式2),并采取江见鲸建议参数k =63,λ=1.01,如图3(b )所示。本文模型只定义受拉损伤指标,损伤指标随开裂应变的变化如图3(c )所示,当开裂应变小于0.0014时,损伤指标线性增大,开裂应变超过0.0014后,损伤指标保持固定值0.6。 02 0000012c c c c E E εσεεεσεε= ??????+?+???????????? (1) e k t t f λ ωσ?= (2) 图4比较了采用4节点单元和8节点单元得到的剪力墙荷载-位移曲线,并同时画出了 文献中提供的荷载-位移骨架线。可见8节点单元模型的计算结果较4节点单元模型更加平滑顺畅,下降段也比较稳定。二者在达到峰值之前差别不大,但软化行为则相差较多。这可能与基于开裂应变定义的损伤指标引入的网格依赖性有关,本文对此不做深入讨论。 与试验曲线相比,有限元分析得到的荷载-位移曲线初始刚度略大,且墙底开裂(图中1点)时刚度退化不如试验中显著,导致之后的分析结果位移偏小。受拉侧钢筋屈服后计算得到的刚度与试验曲线比较接近,不久主斜裂缝的出现使墙的承载力进入软化段,被主要裂缝穿过的钢筋均进行屈服段。软化过程中墙体形成了新的主斜裂缝并最终沿这条主斜裂缝破坏。图5、6分别展示了剪力墙在受力全过程中关键点处的混凝土主拉应变和钢筋大主应力。 与试验曲线相比,计算结果刚度偏差较大,承载力基本一致。

简析剪力墙结构的抗震设计

简析剪力墙结构的抗震设计 摘要:随着剪力墙体系结构在高层建筑中日益广泛的应用,研究剪力墙结构的抗震设计具有越来越重要的意义。本文首先提出了抗震设防应达到的目标,以此目标为指导详细阐述了剪力墙抗震设计的要点,最后探讨了剪力墙抗震设计的构造措施。 关键词:剪力墙;抗震设计;连梁配筋;概念设计;约束边缘构件 0 引言 随着世界范围内的城市用地紧张,城市建筑的建设倾向于向多空间纵向发展,百米高度以上的高层建筑大多采用剪力墙结构。和框架结构相比,剪力墙结构不显示柱梁的边角,外观上更为美观,视觉放大了建筑面积,还兼具有抗震功能,诸多优点使得剪力墙受到了建筑师们的广泛欢迎。对于剪力墙的抗震设计,应该从整体上把握,细节要点处着手,根据相关规范设计出抗震模型。 1 剪力墙抗震设计目标 剪力墙的抗震设计目标是指剪力墙在遇到不同程度的地震时,对建筑结构、建筑构件的损坏程度及人身安全的综合要求。根据《建筑抗震设计规范》,将抗震设计的目标与3种强度的地震对应,分为三个级别,具体描述如下: 第一种级别:在正常荷载使用或遭遇多遇地震(也称小震)作用下,剪力墙不受损坏或不经修理仍可使用;第二种级别:当遭受中等强度地震作用时,剪力墙遭受一定的损坏,经一般修理或不经修理仍可使用;第三种级别:在遭受罕见的强度地震作用下,剪力墙不能够倒塌或发生危及生命的严重损坏。行业内通常将其总结为“小震不坏,中震可修,大震不倒”。 2 剪力墙抗震设计要点 2.1 确定基本设计信息 要提前对建筑场地的地基、基础选型进行分析,并根据当地地震特性和建筑高度确定抗震设计的级别。研究当地的地震加速度、地震周期和土地松弛程度等特征,以此确定建筑场地的地震特性。建筑越高,风荷载的控制力就愈大,所以建筑高度也应在考虑范围内。通过对场地地质的分析,确定地基承载力的范围,针对具体情况进行不同的地基处理,尤其是在桩基时,地基的承载力会相应的减少,要根据实际情况进行验证。在进行基础选型时,根据地质公司提供的地质勘察报告给出的参考模型进行选择,一般的基础选型有预制管桩基础、桩筏基础等,对于不同的基础选型,基础埋深的要求有所不同,在选型时也要特别注意。 2.2 剪力墙的平面设置和概念设计

钢筋混凝土结构习题及答案教学内容

钢筋混凝土结构习题 及答案

钢筋混凝土结构习题及答案 一、填空题 1、斜裂缝产生的原因是:由于支座附近的弯矩和剪力共同作用,产生的 超过了混凝土的极限抗拉强度而开裂的。 2、随着纵向配筋率的提高,其斜截面承载力。 3、弯起筋应同时满足、、,当设置弯起筋仅用于充当支座负弯矩时,弯起筋应同时满足、,当允许弯起的跨中纵筋不足以承担支座负弯矩时,应增设支座负直筋。 4、适筋梁从加载到破坏可分为3个阶段,试选择填空:A、I;B、 I a;C、II;D、II a;E、III;F、III a。①抗裂度计算以阶段为依据;②使用阶段裂缝宽度和挠度计算以阶段为依据;③承载能力计算以阶段为依据。 5、界限相对受压区高度b 需要根据等假定求出。 6、钢筋混凝土受弯构件挠度计算中采用的最小刚度原则是指在 弯矩范围内,假定其刚度为常数,并按截面处的刚度进行计算。 7、结构构件正常使用极限状态的要求主要是指在各种作用下 和 不超过规定的限值。

8、受弯构件的正截面破坏发生在梁的 ,受弯构件的斜截面破坏发生在梁的 ,受弯构件内配置足够的受力纵筋是为了防止梁发生 破坏,配置足够的腹筋是为了防止梁发生 破坏。 9、当梁上作用的剪力满足:V ≤ 时,可不必计算抗剪腹筋用量,直接按构造配置箍筋满足max min ,S S d d ≤≥;当梁上作用的剪力 满足:V ≤ 时,仍可不必计算抗剪腹筋用量,除满足max min ,S S d d ≤≥以外,还应满足最小配箍率的要求;当梁上作用的剪 力满足:V ≥ 时,则必须计算抗剪腹筋用量。 10、当梁的配箍率过小或箍筋间距过大并且剪跨比较大时,发生的破坏形式为 ;当梁的配箍率过大或剪跨比较小时,发生的破坏形式为 。 11、由于纵向受拉钢筋配筋率百分率的不同,受弯构件正截面受弯破坏形态有 、 和 。 12、斜截面受剪破坏的三种破坏形态包括 、 和 13、钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度的增大而 。用带肋变形钢筋时的平均裂缝间距比用光面钢筋时的平均裂缝间距_______(大、小)些。 14、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成 形状,且箍筋的两个端头应 。 答案: 1、复合主拉应力;

钢筋混凝土剪力墙结构主体施工方案

钢筋混凝土剪力墙结构主体施工技术交底 (一)工程概况 某设计院高层职工住宅楼建筑面积37564.1M2,地面以上32层,无地下室,高102.3M,标准层层高3.1M。基础采用现浇钢筋混凝土桩基,桩径为900MM、1100MM、1400MM三种。结构形式采用现浇钢筋混凝土剪力墙体系,按8度抗震设防,首层至8层外墙厚280MM,内墙厚250MM,混凝土为C40,9层至21层外墙厚220MM,内墙厚200MM,混凝土为C35,22层以上外墙厚200MM,内墙厚160MM,混凝土为C30。为了施工方便,楼板混凝土与剪力墙混凝土强度等级相同。装修按一般民用住宅要求,外墙贴面砖,内墙面与顶板刮腻子喷浆,由用户自己进行精装修。 (二)施工准备 1、材料 (1)水泥:用32.5-42.5强度等级普通硅酸盐水泥。 (2)砂:中砂,含泥量不大于3%。 (3)石子:碎石,料径0.5-3.2CM,含泥量小于1%。 (4)钢筋:根据设计图纸要求的规格尺寸,预先加工成型钢筋。 (5)铁丝:可采用20-22号铁丝(火烧丝)或镀锌铁丝。 (6)控制混凝土保护层用的砂浆垫块、塑料卡。 (7)配套大模板:平模、角模,包括地脚螺栓及垫板,穿墙螺栓及套管,护身栏,爬梯及作业平台板等。 (8)脱模剂:BT—20长效脱剂。 2、主要机具 (1)塔吊:QTZ80G塔吊一台,吊斗二个。 (2)施工电梯:SCD200/200T电梯二台。 (3)混凝土搅拌机:JG250-400L三台。 (4)小型机具:锤子、斧子、打眼电钻、活动扳子、手锯、水平尺、线坠、撬棍、钢筋钩子、钢筋扳子、绑扎架、钢丝刷子、手推车、粉笔、尺子、吊斗、磅秤、插入式振捣 棒(高频)、铁锹、铁盘、木抹子、小平锹、水勺、水桶、胶皮水管等。 (5)大模板:由公司机厂加工制作,墙体模板配置一层结构层,楼板模板配置二层结构层,大模板施工图见图16-1。 3、技术准备 熟悉建筑与结构施工图,掌握施工组织设计和施工方案技术要点,克服过去质量通病。 (三)墙体钢筋 1、作业准备 (1)检查钢筋的出厂合格证,由公司试验室按规定做力学性能复试,当加工过程中发生脆断等特殊情况,还需作化学成分检验。 (2)钢筋在现场加工,按现场施工平面图中指定位置堆放。 (3)钢筋外表面如有铁锈时,应在绑扎前清除干净,锈蚀严重侵蚀断面的钢筋不得使用。 (4)绑扎钢筋处应及时清理干净。 (5)弹好墙身、洞口位置线,并将预留钢筋处的松散混凝土剔凿干净。 2、施工工艺操作 (1)将墙身处预留钢筋调直理顺,并将表面砂将等杂物清理干净。先立2-4根竖筋,并划好横筋分档标志,然后于下部及齐胸处绑两根横筋固定好位置,并在横筋上划好分档标志,然后绑其余竖筋,最后绑其余横筋。

底部框架—抗震墙结构特点和设计注意问题

底部框架—抗震墙结构特点和设计注意问题 部为四五层的砌体结构,这些建筑的底层因商业用房使用功能要求有较大的空间,采用框架抗震墙结构,上部为办公、住宅小开间隔墙较多,采用较经济的砖砌体结构,这就形成了底层框架抗震墙承重,上部砖墙承重的结构体系,简称为底框砖混结构。这类结构形式能较好地满足使用功能的要求,又具有一定的工程造价较低的优势,因此在城市和乡镇的临街建筑被广泛采用。 该结构形式的主要特点: 一、从材料上来看,此种结构底层为混凝土框架抗震墙结构,上部为砖砌体结构,属上下两种不同材料不同性质的混合式结构。从质量分布上来看属上重下轻的结构,从刚度来看,属上刚下柔结构。 二、底层由于商业店铺开间尺寸不大,横墙相对较多,普遍存在横墙抗侧刚度大,纵墙抗侧刚度相对较小的现象,同时由于商铺临街面几乎无纵墙,内纵墙也较少,只有背街处纵墙较完整地存在,造成纵向刚度中心与质量中心的较大偏移,结构扭转效应增大。 三、上部砖墙抗侧刚度较大,但其抗剪能力过低,延性差,为脆性破坏。二层(或三层)作为两种材料和两种结构体系的过渡层,受力复杂,为相对薄弱层。 针对上述特点,设计底框结构时,应注意如下几点: 一、上下层刚度比的控制

为避免薄弱层的出现,应控制底框砖混结构的上下刚度比,调整过大的刚度比,使竖向刚度尽量均匀,上下刚度比、抗剪抗压承载能力比值,决定了震害是发生在底层的钢筋砼部分还是发生在上部的砖墙部分。相对均匀的刚度、强度比值可使震害分散,破坏程度降低。所以《抗震规范》7.1.8-3、4款规定:底部一层框架抗震墙房屋的纵横两个方向,第二层与底层侧向刚度的比值,60、70时应2.5,80时应2.0,且均应1.0,底部两层框架抗震墙房屋的纵横两个方向,底层与底部二层侧向刚度应接近,第三层与底部第二层侧向刚度的比值,60、70时应2.0,80时应1.5,且均应1.0。建议过渡层与底部转换层的侧移刚度比值均应控制在 1.5左右合理。 二、底层剪力墙的合理布置 底部框架抗震墙结构布置时应力求在两个主轴方向的动力特性接近,刚度中心与质量中心应减少偏心。在商铺临街面宜尽量布置钢筋砼抗震墙。剪力墙布置应避免形成高宽比小于2的低矮墙,应注意抗震横墙间距大于规范要求。设计时常遇到抗震墙承载力验算不满足,增加抗震墙的数量或厚度,满足了承载力验算的要求,但侧移刚度限值又不满足的问题,解决方法可采取设置结构洞口,即在剪力墙上设置洞口并采用轻质砌块材料填实,将抗震墙刚度降低,在满足承载力验算的要求的同时符合侧移刚度比限值的要求。 三、过渡层的设计 应提高过渡层的抗震承载力和延性,建议内外纵墙的相交处,较长纵横墙中部和小墙垛均设置钢筋砼构造柱,严格控制其抗剪承载能力,如地

相关主题
文本预览
相关文档 最新文档