当前位置:文档之家› 仿真综合实验指导书

仿真综合实验指导书

仿真综合实验指导书
仿真综合实验指导书

《控制系统仿真》实验

指导书

电子信息与电气工程系

自动化教研室

2011年8月

前言

电子信息与电气工程系为自动化专业本科生开设了控制系统仿真课程,为了使学生深入掌握MATLAB语言基本程序设计方法,运用MATLAB语言进行控制系统仿真和综合设计,同时开设了控制系统仿真综合实验,学时为12学时。为了配合实验教学,我们编写了综合实验指导书,主要参考控制系统仿真课程的教材《控制系统数字仿真与CAD》、《反馈控制系统设计与分析——MATLAB语言应用》及《基于MATLAB/Simulink的系统仿真技术与应用》。

自动化教研室

2011年8月

实验一MATLAB基本操作

实验目的

1.熟悉MATLAB实验环境,练习MATLAB命令、m文件、Simulink的基本操作。

2.利用MATLAB编写程序进行矩阵运算、图形绘制、数据处理等。

3.利用Simulink建立系统的数学模型并仿真求解。

实验原理

MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。MATLAB 有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。

1.命令窗口(The Command Window)

当MA TLAB启动后,出现的最大的窗口就是命令窗口。用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。

在MA TLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。在命令窗口中输入该文件名,这一连串命令就被执行了。因为这样的文件都是以“.m”为后缀,所以称为m-文件。

2.m-文件编辑窗口(The Edit Window)

我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。在MATLAB主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。

3.图形窗口(The Figure Window)

图形窗口用来显示MA TLAB程序产生的图形。图形可以是2维的、3维的数据图形,也可以是照片等。

MA TLAB中矩阵运算、绘图、数据处理等内容参见教材《控制系统数字仿真与CAD(第2版)》P56-92。

Simulink是MATLAB的一个部件,它为MA TLAB用户提供了一种有效的对反馈控制系统进行建模、仿真和分析的方式。

有两种方式启动Simulink:

1.在Command window 中,键入simulink ,回车。 2.单击工具栏上Simulink 图标。

启动Simulink 后,即打开了Simulink 库浏览器(Simulink library browser )。在该浏览器的窗口中单击“Create a new model (创建新模型)”图标,这样就打开一个尚未命名的模型窗口。把Simulink 库浏览器中的单元拖拽进入这个模型窗口,构造自己需要的模型。对各个单元部件的参数进行设定,可以双击该单元部件的图标,在弹出的对话框中设置参数。

实验内容

1 用MATLAB 可以识别的格式输入下面两个矩阵

123323571

35732391894A ??

??????=??

??????

1443

678233554226753421895

43i

i B i +????+??=

??

+?

?

??

再求出它们的乘积矩阵C ,并将C 矩阵的右下角2×3子矩阵赋给D 矩阵。赋值完成后,调

用相应的命令查看MATLAB 工作空间的占用情况。

2 用MATLAB 语言实现下面的分段函数

,()/,,

h x D y f x h Dx x D h x D ?>?

==≤??

-<-?

3 分别用for 和while 循环结构编写程序,求出

63

2362630

2122222i i K ===++++++∑

并考虑一种避免循环的简洁方法来进行求和。

4 选择合适的步距绘制出下面的图形 (1)1sin(/)t ,其中11(,)t ∈-

(2)sin(tan )tan(sin )t t -,其中(,)t ππ∈-

5 对下面给出的各个矩阵求取各种参数,如矩阵的行列式、秩、特征多项式、范数等。

75350083341009103150037193......A ??????=??-????,5765710876810957910B ??

????=?????? 12345678910111213141516C ?????

?=??????,33245518118575131D --????

-??=??-??---??

6 求解下面的线性代数方程,并验证得出的解真正满足原方程。

(a)72124915327221151132130X -????????-?

???=????---????????,(b)1321390721264915321172211521X ????????

-????=????-????----????

(1) 绘制出各种插值算法下的拟合效果。

(2) 假设已知该数据可能满足的原型函数为2()cx y x ax bx e d -=++,试求出满足下面数据

的最小二乘解a,b,c,d 的值。

8 考虑著名的Van der Pol 方程

2100302(),(),()x

x x x with x x μ+-+=== , (1) 选择状态变量,建立系统状态方程模型,利用MA TLAB 编写程序求解。

(2) 利用Simulink 建立系统模型并求解。

9 考虑简单的线性微分方程

(4)

(3)

353345sin(4/3)t t y

y

y y y e e t π???

--++++=++

(1)(2)(3)(0)1,(0)(0)1/2,0.2,y y y y ====方程初值

(1) 试用Simulink 搭建起系统的仿真模型,并绘制出仿真结果曲线。 *(2) 若给定的微分方程变成时变线性微分方程,

(4)

(3)

2

353345sin(4/3)t t y

ty

t y y y e e t π???

--++++=++

试用Simulink 搭建起系统的仿真模型,并绘制出仿真结果曲线。

10* 建立下图所示非线性系统的Simulink模型,并观察在单位阶跃信号输入下系统的输出曲线和误差曲线。

实验二 经典控制系统分析

实验目的

以MA TLAB 及Simulink 为工具,对控制系统进行时域、频域及根轨迹分析。

实验原理

1、 时域分析法是根据系统的微分方程(或传递函数),利用拉普拉斯变换直接解出动态方

程,并依据过程曲线及表达式分析系统的性能。时域响应指标如图1所示。

图1 典型的系统时域响应指标表示

延迟时间t d ,指响应曲线第一次达到其终值一半所需要的时间。 上升时间t r ,指响应曲线从终值10%上升到终值90%所需要的时间;对于有振荡的系统,也可定义为响应从零第一次上升到终值所需要的时间。上升时间是系统响应速度的一种度量。

峰值时间t p ,指响应超过终值达到第一个峰值所需要的时间。

调节时间t s ,指响应达到并保持在终值±5%(或±2%)内所需要的时间。 超调量σ%,指响应的最大偏离量h(t p )与终值h(∞)之差的百分比,即:

%100)

()

()(%?∞∞-=

h h tp h σ

稳态误差,描述系统稳态性能的一种性能指标。

2、 频域分析法通常从频率特性出发对系统进行研究。在工程分析和设计中,通常把频率特

性画成一些曲线,从频率特性曲线出发进行研究。这些曲线包括幅频特性和相频特性曲线,幅相频率特性曲线,对数频率特性曲线以及对数幅相曲线等,其中以幅相频率特性曲线,对数频率特性曲线应用最广。对于最小相位系统,幅频特性和相频特性之间存在着唯一的对于关系,故根据对数幅频特性,可以唯一地确定相应的相频特性和传递函数。根据系统的开环频率特性去判断闭环系统的性能,并能较方便地分析系统参量对系统性能的影响,从而指出改善系统性能的途径。

3、 根轨迹是求解闭环系统特征根的图解方法。由于控制系统的动态性能是由系统闭环零极

点共同决定,控制系统的稳定性由闭环系统极点唯一确定,利用根轨迹确定闭环系统的

零极点在s 平面的位置,分析控制系统的动态性能。

实验内容

1.控制系统数学模型的转换

教材《控制系统数字仿真与CAD 》习题2-2,2-7

2.给定典型输入信号下求解系统的输出响应

教材《控制系统数字仿真与CAD 》P102 例4-1 利用龙格-库塔法进行数字仿真,求解系统的输出响应。

3.已知二阶系统10

210

)(2

++=

s s s G (1) 编写程序求解系统的阶跃响应;计算系统的闭环根、阻尼比、无阻尼振荡频率;修改参数,实现1=ξ和2=ξ的阶跃响应;修改参数,实现n n ωω2

1

1=和n n ωω22=的阶跃响应(10=n ω)

(2) 试做出以下系统的阶跃响应,并比较与原系统响应曲线的差别与特点,作出相应的实验分析结果。

102102)(21+++=s s s s G ;102105.0)(222++++=s s s s s G ;10

25.0)(223+++=s s s

s s G

10

2)(22++=

s s s

s G

要求:分析系统的阻尼比和无阻尼振荡频率对系统阶跃响应的影响; 分析响应曲线的零初值、非零初值与系统模型的关系;

分析响应曲线的稳态值与系统模型的关系; 分析系统零点对阶跃响应的影响; 4.已知某控制系统的开环传递函数1512(),.()()

K

G s K s s s =

=++

试绘制系统的开环频率特性曲线,并求出系统的幅值与相位裕量。

5 已知)

11.0()

1()(2

++=

s s s k s G 令k =1作伯特图,应用频域稳定判据确定系统的稳定性,并确定使系统获得最大相位裕 度的增益k 值。

6.对下面传递函数给出的对象模型

0510********(.)

()(.)(.)(.)

K s G s s s s -+=

+++

绘制根轨迹曲线,并得出在单位反馈下使得闭环系统稳定的K 值范围。对在单位反馈下使闭环系统稳定的K 值允许范围内的K 值绘制阶跃响应,分析不同K 值对系统响应有何影响,并给出必要的解释。

*7.分析下面的非最小相位系统

321224

3264106011060

0510111782130100

()(),()(.)(.)s s s s G s G s s s s s s s s -+-++==++++++ 绘制频域响应曲线,并解释为什么这样的系统被称为“非最小相位”系统,试从其频域响应

加以解释。

8. 系统A : 22()22a G s s s =

++ 系统B :321

()2331

b

G s s s s =+++ (1)用控制系统工具箱中的函数求给定系统的阶跃响应,并求出相应的性能指标:上升时

间、峰值时间、调节时间及超调量。编写MA TLAB 程序并给出结果;如果不使用step()函数,求给定系统的阶跃响应。

(2) 求解给定系统的频率响应,编写MATLAB 程序并给出结果。

(3) 绘制系统的根轨迹,并对系统的性能进行分析,编写MATLAB 程序并给出结果。

9.闭环系统C :()()1()s

c s

G s e G s G s e ττ--=+,21()22G s s s =++

(1) 利用Simulink 工具求解系统的阶跃响应,给出Simulink 仿真框图及阶跃响应曲线;

(2) 怎样消除纯延迟部分对系统的影响,给出Simulink 仿真框图并分析仿真结果。

(提示:Smith 预估方法)

实验三 PID 控制器的设计

实验目的

研究PID 控制器对系统的影响;

实验原理

1.模拟PID 控制器

典型的PID 控制结构如图2所示。

`

图2 典型PID 控制结构 PID 调节器的数学描述为

1

()

()[()()]t

p d

i

de t u t K e t e d T T dt

ττ=+

+?

2 数字PID 控制器

在计算机PID 控制中,连续PID 控制算法不能直接使用,需要采用离散化方法,通常使用数字PID 控制器。以一系列采样时刻点kT (T 为采样周期)代表连续时间t ,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,即:

00011()()()()()(())()()

k k t j j t kT e d T e jT T e j de t e kT e k T e k e k dt

T T ττ==??≈?

?

≈=??

?----≈=?

?∑∑? 离散PID 表达式:

011()()

()[()()]k p d j i e k e k u k K e k e j T T T T

=--=++∑

实验内容

1.已知三阶对象模型3()1/(1)G s s =+,利用MA TLAB 编写程序,研究闭环系统在不同控制情况下的阶跃响应,并分析结果。

(1) 0,i d T T →∞→时,在不同K P 值下,闭环系统的阶跃响应; (2) 10,p d K T =→时,在不同i T 值下,闭环系统的阶跃响应; (3) 1p i K T ==时,在不同d T 值下,闭环系统的阶跃响应;

2.以二阶线性传递函数为被控对象,选择合适的参数进行模拟PID 控制, 输入信号2()sin()r t A ft π=,A=1.0,f =0.2Hz 。 *3. 已知被控对象为一电机模型,传递函数为21

00067010()..G s s s

=

+,输入信号为

0502().sin()r k t π=,采用PID 控制方法设计控制器,其中K p =20,K p T d =0.50,利用

MATLAB 进行仿真,绘制PID 正弦跟踪曲线。

实验四 系统状态空间设计

实验目的

1 学习系统的能控性、能观测性判别计算方法;

2 掌握极点配置控制器的设计方法。

实验原理

如果给出了对象的状态方程模型,我们希望引入某种控制器,使得闭环系统的极点移动到指定位置,从而改善系统的性能,这就是极点配置。

1、状态反馈与极点配置

状态反馈是指从状态变量到控制端的反馈,如图3所示。 设原系统动态方程为:

引入状态反馈后,系统的动态方程为:

图3 状态反馈 2、输出反馈与极点配置

输出反馈指从输出端到状态变量导数x

的反馈,如图4所示。 设原系统动态方程为:

引入输出反馈后,系统的动态方程为:

??

?=+=Cx

y Bu Ax x ??

?=+-=Cx y Bv x BK A x )( ??

?=+=Cx

y Bu Ax x ??

?=+-=Cx

y Bv x HC A x )(

图4 输出反馈

实验内容

1.已知对象模型

[]010********

23

4

00010001101x x u y x

??

??

????-????=+=??????

??-????

如何将闭环系统的极点配置在s 1,2,3,4= -1,-2,-1±j ?

*2.已知对象模型

[]010********

50

8

0070300084x x u y x

???

?????????=+=??

??-??

??-????

利用MATLAB 实现将其中的两个极点配置到12?,s

=--。

3.已知对象模型

[]030100521010015890054123...().()(),...x t x t u t y x

--????

????=+????????---????=

(1) 如果我们想将闭环系统的极点配置到-1,-2,-3,利用MA TLAB 设计控制器,并绘出闭环系统的阶跃响应曲线。(说明:用两种方法配置极点)

*(2) 如果想将闭环系统的所有极点均配置到-1,怎样设计控制器?

实验五 磁悬浮系统仿真

实验目的

1. 以磁悬浮系统为研究对象,掌握PID 控制器的设计方法;

2. 以磁悬浮系统为研究对象,通过状态反馈配置极点,改善系统的动态性能; 3. 比较以上两种控制方法的效果,能够分析原因。

实验原理

1、磁悬浮模型建立

我们以磁悬浮球为例建立电磁悬浮系统数学模型。磁悬浮球控制系统如图5所示。

图5 磁悬浮球控制系统

整个磁路的磁阻近似为:

S

e

R 02μ=

(1)

式中,0μ为空气中的导磁率,e 为气隙厚度,S 为气隙的截面积。

气隙中的磁感应强度为: S

B Φ

=

(2) 式中,Φ为磁通量。

电磁线圈产生的对质量为M 的钢球产生的电磁吸力为:

2μS

B F = (3)

由磁路理论知:

Φ=R NI (4)

式中N 是线圈匝数,I 是线圈中流过的电流。

由(4)式得:R

NI

=

Φ, 将其代入(2)式 RS

NI

B = (5)

将(1)式和(5)式代入(3)式,得: 2

2

204e I SN F μ= (6)

对(6)式线性化

)(010I I K F F F -=-=?)(02e e K -+e I e F

I e I F ????+????=0

0 (7) 其中,e K I K F 21+=,02010e K I K F += 在0e e =处, S

Mg

N

e I 00

02μ=

(8) 在(7)式中, 2

2000012,e N SI e I I F

K μ=??= (9) 3

22000022,e N SI e I e F

K μ-=??= (10) 由牛顿第一定律(ma F =∑),得到钢球的运动方程:

2

221)(dt e d M Mg e K I K -=-+ (11)

对(11)式进行拉普拉斯变换(将Mg 看成为)(1t Mg ?),得: )(1

)()(221s Me s s

Mg s e K s I K ?-=?-+ (12) 整理后得: ??

????--=

)()(1)(2

21s e Ms s e K s Mg K s I (13) 电路的电压平衡方程式: dt

t d t rI t u )

()()(Φ+= (14) 其中,)()()(t I t L t ?=Φ

则 dt

de

de dL I dt t dI L t rI t u ?++=00)()()( (15) 而 e S

N L 220μ=

, 2202e

S

N de dL μ-=,所以

dt de

e

S N I dt t dI L t rI t u ?-++=2

2000

2)()()()(μ 即: dt

de

K dt t dI L t rI t u 10)()()(-+= (16) 对(16)式进行拉普拉斯变换,得:

)()()()(10s se K s I s L r s U -+= (17) 将(13)式代入(17)式:

=-??

?

???--+=)()()()()(212201s se K s e Ms s e K s Mg s L r s U K

s

Mg

s L r s e rK s e s K K L s e Mrs s e Ms L ?

++-?+-?-?-=)()()()()()(022120230 (18) 将上式还原微分方程(注:忽略)(0t Mg L δ?项),得:

)()()()()()(1221200t u K r M g t e rK t e K K L t e Mr t e M L -=+++?+? (19)

对(19)式进行代换如下: 设0)()(e t e t y -=

e y = e y

= e

y = 0

102)

()(ML t u K e rK rMg t v --=

则(19)式可变为

v y ML rK y ML K K L y L r

y =++++0

2021200 (20)

对(20)式进行拉普拉斯变换得

v ML rK s sy ML K K L s y s L r s y s =++++0

202120203

)()()( (21)

则系统得被控对象传递函数为:

2

02

1202031

)

()(ML rK s ML K K L s L r s s v s y +

+++= (22)

实验内容

1. 已知磁悬浮系统的模型,设计PID 调节器。 磁悬浮系统模型参数选择如下:

kg M 1= 钢球质量

24cm S = 电磁铁表面积 1000=N 电磁线圈的圈数 Ω=2r 电磁线圈电阻

mm e 50= 钢球于电磁铁之间的控制距离

空气中的磁导率70104-=?πμ,电磁线圈和钢球的磁材料的磁导率可看作非常大

由计算得出:

7.141≈K 8.39382-≈K mH L 500= A I 4.10≈

所以(22)式写成

157552

5.20401

)()(23-++=s s s v s y (23)

(23)式同样可以写成:

()1

()(43.3533)[(41.676743.5568)][(41.676743.5568)]

y s v s s s i s i =-+-++ (24)

2.以磁悬浮系统为研究对象,利用状态反馈配置极点,改善系统的动态性能。

思考题

1. 当磁悬浮系统处于平衡状态,这时给系统分别加入阶跃扰动信号、连续脉冲扰动信号、

固定扰动信号情况下,分析系统响应情况。

2. 二种方法控制结果是否相同,如果不同,请分析原因。

实验六 一阶惯性环节的数字仿真

实验目的:

掌握控制系统仿真的几种实现算法及相关原理,编写程序实现一阶系统的数字仿真。

实验原理:

1. 连续系统离散化算法之一:直接根据s 传函z 变换得出精确的z 传函的表达式,进而得

出差分方程,供计算机算法实现,但其间牵涉到超越函数的求值,所以在数值计算不发达的年代不能达到很精确,也只能近似求解。 2. 连续系统离散化算法之二:“后项差分”,属近似算法。

2

111

1()1sT

sT z e e

sT sT sT

-==

=≈-+--

式中将sT

e

-展开为级数,并近似化,只取0次项和1次项。可近似化的原因在于:对

于高次项()

n

n n sT T s =作用某个信号时,站在时域的观点分析,实际上就是对信号求

导。如:对阶跃信号,其一次导数即为零,高次导数都为零;对斜坡信号,其二次导数为零;更广泛的,决大部分信号都可分解为傅立叶级数,即为多个正弦余弦信号的和。当采样时间T 选为有用信号的最高次谐波周期的几分之一甚至更小。此时,对于信号的各次波,其高阶导数虽然带有n

w 项,由于同时伴有n

T ,所以其幅值也可忽略。 由上式可得:

111

z z s T Tz

---==

可带入连续系统传递函数,然后将z 传函化为差分方程。当然,也可由s 传函直接根据后项差分近似,化为差分方程,可省略其间转为z 传函的形式,所以此种方法的好处是方便,高效,并能保证系统稳定性。

3. 连续系统离散化算法之二:“双线性变换”,属近似算法。

2222

1()12221()1222sT sT sT sT sT sT e z e sT sT sT e

-

+

+++==

=≈-+--

采用这种算法,有效的改善了后项差分不精确(梯形积分算法就属这种算法的应用,改善了柱形积分的欠精确问题),且也不改变系统的稳定性。

实验内容:

1. 使用“后项差分”算法,根据一阶惯性环节的s 传函,编制数字仿真MATLAB 程序。

2. 根据以下问题要求,修改程序,完成实验报告。

(1) 给系统输入阶跃,斜坡,加速度信号,记录输出。

(2) 改变采样时间(仿真步长),观察系统输出有哪些变化,分析原因。 (3) 改变惯性时间常数,观察系统输出有哪些变化,分析原因。 (4) 加入正弦输入sin y t =,观察输出,记录并分析图形。 (5) 加入含有高次谐波的正弦信号

sin sin6y t t =+(或其他高次波亦可)

,观察输出;系统经过过渡过程后输出稳定,观察输出信号的周期及波形,分析系统对输入信号的作用。

(6) 采用双线性变换对一阶连续系统进行离散化仿真。

实验七 二阶环节的数字仿真

实验目的

掌握二阶系统仿真算法,加深对二阶环节的理解;编写程序实现二阶系统的数字仿真。

实验原理

1.使用连续系统离散化算法中的“后项差分”近似算法。二阶系统可由几个一阶环节串连, 或加上反馈连接组成。例如:典型二阶微分环节,可由一个积分环节,一个一阶惯性环 节再加上反馈连接组成。

2.积分环节的“后项差分”差分方程形式为:

()(1)()y k y k KI Ts x k =-+

一阶惯性如上节所述差分方程为:

()(1)()f s

f s

f s

T T y k y k x k T T T T =

-+

++

实验内容

1.使用“后项差分”算法,根据二阶惯性环节的s 传函,编制数字仿真程序。 2.根据问题要求,修改程序,完成实验报告。

参考程序流程

1. 设置仿真起始/结束时间,仿真步长(采样周期) 2. 设置环节时间常数,环节的初值 3. 初始化计时器

4. 根据差分方程,由k-1步的输出和k 步的采样输入算出k 步的输出(注意两个环节的参

数传递和反馈的实现)。

5. 修改计时器看是否结束,若没有则转第4步。

注:在4,5的循环过程中,要保存输出,要有可视化的输出,使结果分析更方便和直观。过程最好用函数实现,体现良好的通用性。

数控仿真软件实验指导书

数控仿真实验指导书 机电一体化机械设计制造自动化专业 2008年实训中心编制

目录 实验一数控车床仿真软件操作学习 (2) 实验二数控车编程及仿真加工实例 (5) 实验三数控铣床仿真软件操作学习 (7) 实验四数控铣床编程及仿真加工实例 (10) 实验五数控机床(加工中心)仿真软件操作学习 (12) 实验六广州数控系统车床操作学习 (15)

实验一数控车床仿真操作学习 一、实验目的 通过使用数控模拟仿真软件,使学生从计算机上直观的学习包括法那克、西门子、华中数控等系统的数控车床的基本操作方法,同时可输入程序进行仿真加工实验,达到对学生理论课巩固和理解以及提高学生操作技能的目的。 二、实验内容 1、 FANUC Oimate数控系统车床操作界面及仿真加工过程 2、华中数控HNC21T、西门子802d操作界面 三、实验步骤 1、进入仿真系统 (1)在桌面上找到“机电国贸CZK系列软件”的文件夹,双击进入,找到“数控车床系列”,双击进入,然后选择CZK-Fanuc0iMate。 (2)出现重新选择主机提示框,选择确定(主机名是服务端的计算机名,已经设定好了,学生无须改动)。登录窗口出现后,选择训练模式。 (3)整个仿真软件主要由机床操作面板、仿真机床窗口组成。 2、仿真机床操作面板按键说明(以FANUC Oimate为例) 一>MDI键盘 (1)常用功能键 POS 当前机床位置显示 PROGRAM 程序显示 OFSET 偏置量显示 (2)常用的编辑键 RESET 复位键:终止当前一切操作、CNC复位、解除报警。 INPUT 用于参数、偏置量的输入 地址/数字键用于字母、数字等的输入 CAN取消输入键用于删除已输入到缓冲器的文字或符号 ↑↓光标的移动键

《自动控制原理》实验指导书

自动控制原理实验指导书 池州学院 机械与电子工程系

目录 实验一、典型线性环节的模拟 (1) 实验二、二阶系统的阶跃响应 (5) 实验三、根轨迹实验 (7) 实验四、频率特性实验 (10) 实验五、控制系统设计与校正实验 ......................................... 错误!未定义书签。实验六、控制系统设计与校正计算机仿真实验...................... 错误!未定义书签。实验七、采样控制系统实验 ..................................................... 错误!未定义书签。实验八、典型非线性环节模拟 ................................................. 错误!未定义书签。实验九、非线性控制系统分析 ................................................. 错误!未定义书签。实验十、非线性系统的相平面法 ............................................. 错误!未定义书签。

实验一、典型线性环节的模拟 一、实验目的: 1、学习典型线性环节的模拟方法。 2、研究电阻、电容参数对典型线性环节阶跃响应的影响。 二、实验设备: 1、XMN-2型实验箱; 2、LZ2系列函数记录仪; 3、万用表。 三、实验内容: 1、比例环节: r(t) 方块图模拟电路 图中: i f P R R K= 分别求取R i=1M,R f=510K,(K P=0.5); R i=1M,R f=1M,(K P=1); R i=510K,R f=1M,(K P=2); 时的阶跃响应曲线。 2、积分环节: r(t) 方块图模拟电路图中:T i=R i C f 分别求取R i=1M,C f=1μ,(T i=1s); R i=1M,C f=4.7μ,(T i=4.7s););

RFID实验指导书

R F I D实验指导书 Revised final draft November 26, 2020

RFID实验指导书 适用所有对无线射频传感器感兴趣的学生 xxx 编写 概述 一、课程目的 《RFID无线射频实验》是一门实践性很强的实验课程,为了学好这门课,每个学生须完成一定的实验实践作业。通过本实验的实践操作训练,可以更好的了解RFID的基本功能和基本的使用方法,为以后深入的研究学习打下良好的基础。 本课程实验的目的是旨在使学生进一步扩展对无线射频方向理论知识的了解;培养学生的学习新技术的能力以及提高学生对该方向的兴趣与动手能力。 二、实验名称与学时分配 三、实验要求 1. 问题分析 充分地分析和理解问题本身,弄清要求做什么,包括功能要求、性能要求、设计要求和约束。 2. 原理理解 在按照教程执行过程当中,需要弄清楚每一个步骤为什么这样做,原理是什么。 3. 实践测试 按照要求执行每一步命令,仔细观察返回值,了解每项返回值表达什么意思,为什么有的卡片可以破解有的不可以。 三、实验考核 实验报告应包括如下内容: 1、实验原理描述:简述进行实验的原理是什么。 2、实验的操作过程:包括实验器材、实验流程的描述。 3、分析报告:实验过程中遇到的问题以及问题是否有解决方案。如果有,请写明如何解决的;如果没有,请说明已经做过什么尝试,依旧没有结果导致失败。最后简述产生问题的原因。 4、实验的体会以及可以讲该功能可以如何在其他地方发挥更强大的功能。 注:最后实验结果须附命令行回显截图 四、实验时间

总学时:6学时。

实验一高低频卡鉴别 一、实验目的 1、掌握RFID驱动等环境安装设置。 2、掌握如何通过读取电压高低来区分高低频。 二、实验要求 1、认真阅读和掌握本实验的程序。 2、实际操作命令程序。 3、保存回显结果,并结合原理进行分析。 4、按照原理最后得出结果。 三、注意事项: 命令在实行时,如果想停止,不能用平时的Ctrl+C或者ESC等常规结束按键(可能会造成未知损坏),只需要按下Promxmark3上的黑色按钮。 方形的为高频天线(Proxmark3 HF Antenna ); 圆形的为低频天线(Proxmark3 LF Antenna 125KHz/134KHz) 四、实验内容 1.安装驱动 打开我的电脑》右键--属性—设备管理器》人体学输入设备 这个“HID-compliant device”就是我们的proxmark3设备,选择“USB 人体学输入设备”一般是最下面那个,注意:不是“HID-compliant device”,更新驱动程序。 然后选择:Proxmark-Driver-2012-01-15\proxmark_driver\ 下一步继续安装完成。安装完成之后在设备管理器里面可以看到proxmark3的新驱动。 2.软件使用 所需要的软件已经打包好,直接在命令行中运行 D: \pm3-bin-r486\Win32\ 这样就算成功安装好各种环境,并可以在该命令窗口中执行命令了。 3.高低频卡的判别 本部分介绍利用高频天线判别卡片的高低频,可自行利用低频天线测试,原理类似。 命令:hw tune,这个命令大概需要几秒钟等待回显。 当你输入完hw tune之后,窗口所显示的HF antenna后面的数值就是现在非工作状态下的电压,当你把相关的卡放在高频天线上面/下面的时候,电压就会所变化了(依然是非工作状态下)。 从图中我们可以看到,当卡没有放到天线的情况下电压为,而卡放在天线之后电压将为,现在的电压依然是为非工作电压,但是从这个现象当中我们会得到很多非常有意义的数据。 变化出来了!第三张hw tune的结果为,是因为我把一张125kHZ的门禁卡放在了高频天线上面,所以其电压的降幅很低,但是如果我把一张的卡放

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

自控实验指导书

自控理论实验指导书 录目 . 1 ..…硬件资源………………………………………..……… 4 ..…………………………………..……………软件的使用6 ………………………………………………实验系统部分.. . 6 …………典型环节及其阶跃响应实验一 .. 8 二阶系统阶跃响应……………………实验二 . 10 …. 连续系统串联校正…………………实验三 1 自控理论实验指导书

硬件资源第一章 (可打印机AD/DA采集卡、自动控制原理实验箱、EL-AT-III型实验系统主要由计算机、,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数1选)组成如图据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要构造被控模拟对象。 显示器 实验箱电路卡AD/DA 计算机打印机 1 实验系统构成图 2:实验箱面板如图 实验箱面板图2 下面主要介绍实验箱的构成:系统电源一、系统采用高性能开关电源作为系统的工作电源,其主要技术性能指标为:AC 220V 1.输入电压:12V/0.5A,-12V/0.5A,+5V/2A /电流:+2.输出电压22W .3输出功率: 54.工作环境:-℃~+℃。40 2 自控理论实验指导书 二、 AD/DA采集卡 AD/DA采集卡如图3采用CYGNAL的C8051F410/2芯片做为主控芯片,负责数据采集和USB通信,AD采样位数为12位,采样率最大为10MHz。DA转换位数为12位。 AD/DA采集卡有两路输出(DA1、DA2)和两路输入(AD1、AD2),其输入和输出电压均为-5V~+5V。

图3 AD/DA采集卡 三、实验箱面板 实验箱面板主要由以下几部分构成: 1.实验模块 本实验系统有八组由放大器、电阻、电容组成的实验模块。每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。 2.二极管,电阻、电容、二极管区 这些区域主要提供实验所需的二极管、电阻和电容。 3.AD/DA卡输入输出模块 该区域是引出AD/DA卡的输入输出端,一共引出两路输出端和两路输入端,分别是DA1、DA2,AD1、AD2。有一个按钮复位,按下一次对AD/DA卡进行一次复位。20针的插座用来和控制对象连接。 4.电源模块 电源模块有一个实验箱电源开关,有四个开关电源提供的DC电源端子,分别是+12V、-12V、+5V、GND,这些端子给外扩模块提供电源。 5.变阻箱、变容箱模块 变阻箱、变容箱是本实验系统的一个突出特点,只要按动数字旁边的“+”、“-”按钮便可调节电阻电容的值,而且电阻电容值可以直接读出。 3 自控理论实验指导书

系统仿真综合实验指导书(2011.6)

系统仿真综合实验指导书 电气与自动化工程学院 自动化系 2011年6月

前言 电气与自动化工程学院为自动化专业本科生开设了控制系统仿真课程,为了使学生深入掌握MATLAB语言基本程序设计方法,运用MATLAB语言进行控制系统仿真和综合设计,同时开设了控制系统仿真综合实验,30学时。为了配合实验教学,我们编写了综合实验指导书,主要参考控制系统仿真课程的教材《自动控制系统计算机仿真》、《控制系统数字仿真与CAD》、《反馈控制系统设计与分析——MATLAB语言应用》及《基于MATLAB/Simulink的系统仿真技术与应用》。

实验一MATLAB基本操作 实验目的 1.熟悉MATLAB实验环境,练习MATLAB命令、m文件、Simulink的基本操作。 2.利用MATLAB编写程序进行矩阵运算、图形绘制、数据处理等。 3.利用Simulink建立系统的数学模型并仿真求解。 实验原理 MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。MATLAB有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。 1.命令窗口(The Command Window) 当MATLAB启动后,出现的最大的窗口就是命令窗口。用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。 在MATLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。在命令窗口中输入该文件名,这一连串命令就被执行了。因为这样的文件都是以“.m”为后缀,所以称为m-文件。 2.m-文件编辑窗口(The Edit Window) 我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。在MATLAB 主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。 3.图形窗口(The Figure Window) 图形窗口用来显示MATLAB程序产生的图形。图形可以是2维的、3维的数据图形,也可以是照片等。 MATLAB中矩阵运算、绘图、数据处理等内容参见教材《自动控制系统计算机仿真》的相关章节。 Simulink是MATLAB的一个部件,它为MATLAB用户提供了一种有效的对反馈控制系统进行建模、仿真和分析的方式。 有两种方式启动Simulink:

高频实验指导书精简版

实验一高频小信号调谐放大器实验 一、实验目的 1、进一步掌握高频小信号调谐放大器的工作原理。 2、学会小信号调谐放大器的设计方法。 二、实验内容 1、调节谐振回路使谐振放大器谐振在10.7MHz。 2、测量谐振放大器的电压增益。 3、测量谐振放大器的通频带。 4、判断谐振放大器选择性的优劣。 三、实验仪器 1、BT-3(G)型频率特性测试仪(选项)一台 2、20MHz模拟示波器一台 3、数字万用表一块 4、调试工具一套 四、实验原理 图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率或相位。晶体管的静态工作点由电阻RB1,RB2及RE决定,其计算方法与低频单管放大器相同。 图1-1 小信号调谐放大器 五、实验步骤 本实验中,用到BT-3频率特性测试仪和频谱仪的地方可选做。 参考所附电路原理图G2。先调静态工作点,然后再调谐振回路。 1、按下开关KA1,则LEDA1亮。

2、调整晶体管QA1的静态工作点: 不加输入信号(u i =0),即将TTA1接地,用万用表直流电压档(20V 档)测量三极管QA1发射极对地的电压u EQ (即测P6与G 两焊点之间的电压),调节WA1使u EQ =3V 左右,根据实验参考电路计算此时的u BQ ,u CEQ ,u EQ 及I EQ 。 3、使放大器的谐振回路谐振在10.7MHz 方法是:BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端INA1及测试端TTA2,通过调节y 轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率o f =10.7MHz 所对应的幅值最大。 如果没有频率特性测试仪,可用示波器来观察调谐过程,方法是:在TTA1处输入由高频信号源提供的频率为10.7MHz ,峰峰值Vp-p-=20~100mV 的信号,用示波器在TTA2处观察输出波形,调节TA1使TTA2处信号幅度最大。 4、电压增益A V0 使用BT-3频率特性测试仪测0v A 的方法如下: 在测量前,先要对测试仪的y 轴放大器进行校正,即零分贝校正,调节“输出衰减”和“y 轴增益”旋钮,使屏幕上显示的方框占有一定的高度,记下此时的高度和此时“输出衰减”的读数N 1dB ,然后接入被测放大器,在保持y 轴增益不变的前提下,改变扫频信号的“输出衰减”旋钮,使谐振曲线清晰可见。记下此时的“输出衰减”的值N 2dB ,则电压增益为 A V0=(N1-N2)dB 若用示波器测量,则为输出信号幅度大小与输入信号幅度大小之比。方法如下: 用示波器测输入信号的峰峰值,记为U i 。测输出信号的峰峰值记为U 0。则小信号放大的电压放大倍数A V0=U 0/U i 。如果A V0较小,可以通过调节静态工作点来改善。 5、测量通频带BW 用BT-3频率特性测试仪测量BW : 先调节“频率偏移”(扫频宽度)旋钮,使相邻两个频标在横轴上占有适当的格数,然后接入被测放大器,调节“输出衰减”和y 轴增益,使谐振特性曲线在纵轴占有一定高度,测出其曲线下降3dB 处两对称点在横轴上占有的宽度(记为BW1),根据内频标就可以近似算出放大器的通频带BW= BW1=B 0.7。 6、放大器的选择性 放大器选择性的优劣可用放大器谐振曲线的矩形系数K r0.1表示 用步骤5中同样的方法测出B 0.1即可得: 7 .01.07.01.01.022f f B B K r ??== 由于处于高频区,存在分布参数的影响,放大器的各项技术指标满足设计要求后的元件参数值与设计计算值有一定的偏差,所以在调试时要反复仔细调整才能使谐振回路处于谐振状态。在测试要保证接地良好。

高频实验指导书2017

实验平台操作及注意事项 一、实验平台基本操作方法 在使用实验平台进行实验时,要按照标准的规范进行实验操作,一般的实验流程包含以下几个步骤: (1)将实验台面整理干净整洁,设备摆放到对应的位置开始进行实验; (2)打开实验箱箱盖,或取下箱盖放置到合适的位置;(不同的实验箱盖要注意不能混淆); (3)简单检查实验箱是否有明显的损坏;如有损坏,需告知老师,以便判断是否可以进行正常实验; (4)根据当前需要进行的实验内容,由老师或自行更换实验模块;更换模块需要专用的钥匙,请妥善保管; (5)为实验箱加电,并开启电源;开启电源过程中,需要注意观察实验箱电源指示灯(每个模块均有电源指示),如果指示灯状态异常,需要关闭电源,检查原因; (6)实验箱开启过程需要大约20s时间,开启后可以开始进行实验; (7)实验内容等选择需用鼠标操作; (8)在实验过程中,可以打开置物槽,选择对应的配件完成实验; (9)实验完成后,关闭电源,整理实验配件并放置到置物槽中; (10)盖上箱盖,将实验箱还原到位。 二、实验平台系统功能介绍 实验平台系统分为八大功能板块,分别为实验入门、实验项目、低频信号源、高频信号源、频率计、扫频仪、高频故障(实验测评)、系统设置。

1.设备入门 设备入门分为四类,分别是平台基本操作、平台标识说明、实验注意事项、平台特点概述。 2.实验项目 实验项目是指实验箱支持的实验课程项目,可以完成的实验内容列表,分为高频原理实验和高频系统实验。 高频原理实验细分为八大实验分类,分别是小信号调谐放大电路实验、非线性丙类功率放大电路实验、振荡器实验、中频放大器实验、混频器实验、幅度解调实验、变容二极管调频实验、鉴频器实验。如下图所示。

《车站信号自动控制》实验指导书

前言 计算机联锁系统采用了最新计算机技术、总线技术、网络技术,实现了一套性能可靠、具有故障安全性、功能完善、操作简单、维护方便的车站联锁系统。本课程的目的是通过本课程的教学使学生计算机联锁的基本知识、基本原理和基本技能,熟悉计算机联锁的使用和 维护,使计算机联锁更加安全可靠地运行,充分发挥其效能。 目 录 前言 实验一 (联锁设计实验1)进路选择实验.......................................... 4 实验二 (联锁设计实验1)进路解锁实验.......................................... 7 实验三 (系统认识实验)进路模拟行车实验 (9) 实验四 (接口电路实验)进路故障模拟及处理实验.............................. 11 实验五 车站联锁维修实验............................................................... 13 参考文献 (15)

前言 车站信号自动控制(联锁)系统是保证行车安全的信号基础设备,必须保证工作可靠,并符合“故障-安全”原则。实现车站联锁的基本功能,完成列车进路建立、锁闭、解锁、道岔控制、信号机控制,完成轨道电路和信号设备状态的监督。通过车站联锁实验的教学使学生掌握联锁系统的基本知识、基本原理和基本技能,熟悉车站联锁系统的使用和维修,使联锁系统更加安全可靠地运行,充分发挥其效能。

实验1 进路选择实验 一、实验目的 1.了解车站联锁车务仿真培训系统,熟悉系统的操作。 2.通过办理进路过程过程,验证各种进路的选路处理过程。 二、实验设备及工作原理 1.实验设备: ⑴PC机E8000 1台 ⑵瘦客户机T5740W 20台 ⑶服务器E8100 2台 ⑷交换机ProCurve 1台 ⑸集群软件Pink E8000 1套 ⑹车站联锁车务仿真培训系统1套 2. 车站联锁车务仿真培训系统的体系结构,如下图1-1所示。 教师机调度集中机 学员机1 学员 机2 学员 机m 学员 机n ··········· 扩展功能 以太网图1-1 车站联锁车务仿真培训系统体系结构图 三、工作原理 本系统把联锁上位机操作平台,底层联锁逻辑和模拟现场设备的状态及变化过程集合到一台计算机上构成学员机,在一台计算机上实现了联锁系统的所有功能。同时结合教学及培训的特点,设置了一台教师机来完成学员操作过程的记录、回放并设置设备故障及行车命令以供考核学员的处理作业的能力。 四、车站站场图 实验用车站站场图,如下图所示。

仿真实验指导书

实验一MATLAB的实验环境及基本命令 一实验目的: 1.学习了解MA TLAB的实验环境 2.在MA TLAB系统命令窗口练习有关MA TLAB命令的使用。 二实验步骤 1.学习了解MA TLAB的实验环境: 在Windows桌面上,用mouse双击MA TLAB图标,即可进入MA TLAB系统命令窗口: 图1-1 MA TLAB系统命令窗口 ①在命令提示符”>>”位置键入命令: help

此时显示MA T ALAB 的功能目录, 其中有“Matlab\general ”,“toolbox\control ”等;阅读目录的内容; ② 键入命令: intro 此时显示MA TLAB 语言的基本介绍,如矩阵输入、数值计算、曲线绘图等。要求阅读命令平台上的注释内容,以尽快了解MA TLAB 语言的应用。 ③ 键入命令: help help 显示联机帮助查阅的功能,要求仔细阅读。 ④ 键入命令: into 显示工具箱中各种工具箱组件和开发商的联络信息。 ⑤ 键入命令: demo 显示MA TLAB 的各种功能演示。 2. 练习MA TLAB 系统命令的使用。 ① 表达式 MA TLAB 的表达式由变量、数值、函数及操作符构成。实验前应掌握有关变量、数值、函数及操作符的有关内容及使用方法。 练习1-1: 计算下列表达式: 要求计算完毕后,键入相应的变量名,查看并记录变量的值。 ②.向量运算: ) 6 sin(/250π =d 2 /)101(+=a ) sin(3.2-=e c i b 53+=

n 维向量是由n 个成员组成的行或列数组。在MA TLAB 中,由分号分隔的方括号中的元素产生一个列向量;由逗号或空号分隔的方括号中的元素产生一个列向量;同维的向量可进行加减运算,乘法须遵守特殊的原则。 练习1-2 已知:X=[2 ;-4;8] 求 :Y=R ';P=5*R ;E=X .*Y ;S=X '* Y 练习1-3 ⑴产生每个元素为1的4维的行向量; ⑵产生每个元素为0的4维的列向量; ⑶产生一个从1到8的整数行向量,默认步长为1; ⑷产生一个从π到0,间隔为π/3的行向量; ③矩阵基本运算操作。 要求熟悉矩阵的输入方法及矩阵运算的有关命令。 练习1-4求出下列运算结果,并上机验证。已知矩阵: (1) A (:,1) (2)A (2,:) (3)A (:,2:3) (4)A (2:3,2:3) (5) A (:,1:2:3) (6)A (2:3) (7)A (:) (8)A (:,:) (9) ones(2,2) (10)eye(2) (11)[A,[ones(2,2);eye(2)]] (12)diag(A) (13)diag(A,1) (14)diag(A,-1) (15)diag(A,2) (16)fliplr(A) (17)flipud(A) (18)rot90(A) (19)tril(A) ] 5,9,4 [-=π tg R ????? ???????=4443 4241 343332312423222114131211 A

高频电子技术实验指导书

高频电子技术 实验指导书安阳工学院电子信息与电气工程学院

目录 实验一、小信号调谐放大器 -------------------------------------- 2 实验二、通频带展宽----------------------------------------------5 实验三、LC与晶体振荡器 ---------------------------------------- 8 实验四、幅度调制与解调---------------------------------------- 18 实验五、集成乘法器混频实验 ----------------------------------- 19实验六、变容二极管调频器与相位鉴频器-------------------------22

实验一、小信号调谐放大器 一、实验目的 1)、了解谐振回路的幅频特性分析——通频带与选择性。 2)、了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。 3)、掌握放大器的动态范围及其测试方法。 二、实验预习要求 实验前,预习教材选频网络、高频小信号放大器相应章节。 三、实验原理说明 1、小信号调谐放大器基本原理 高频小信号放大器电路是构成无线电设备的主要电路,它的作用是放大 信道中的高频小信号。为使放大信号不失真,放大器必须工作在线性范围内,例如无线电接收机中的高放电路,都是典型的高频窄带小信号放大电路。窄带放大电路中,被放大信号的频带宽度小于或远小于它的中心频率。如在调幅接收机的中放电路中,带宽为9KHz,中心频率为465KHz,相对带宽Δf/f0约为百分之几。因此,高频小信号放大电路的基本类型是选频放大电路,选频放大电路以选频器作为线性放大器的负载,或作为放大器与负载之间的匹配器。它主要由放大器与选频回路两部分构成。用于放大的有源器件可以是半导体三极管,也可以是场效应管,电子管或者是集成运算放大器。用于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表面波滤波器等。本实验用三极管作为放大器件,LC谐振回路作为选频器。在分析时,主要用如下参数衡量电路的技术指标:中心频率、增益、噪声系数、灵敏度、通频带与选择性。 单调谐放大电路一般采用LC回路作为选频器的放大电路,它只有一个LC 回路,调谐在一个频率上,并通过变压器耦合输出,图1-1为该电路原理图。 中心频率为f0 带宽为Δf=f2-f1 图1-1. 单调谐放大电路 为了改善调谐电路的频率特性,通常采用双调谐放大电路,其电路如图12-2所示。双调谐放大电路是由两个彼此耦合的单调谐放大回路所组成。它们的谐振C Ec 1 f 0.707 02 1 u

自动控制理论实验指导书

《自动控制理论》实验指导书

目录 《自动控制原理》实验须知 (3) 一、仪器简介 (3) 二、预习及预习报告 (6) 三、实验及实验报告 (6) 实验一典型环节及其阶跃响应 (7) 实验二控制系统的瞬态响应 (12) 实验三控制系统的稳定性分析 (14) 实验四系统的频率特性测量 (16) 实验五连续系统的串联校正 (19)

《自动控制原理》实验须知 一、仪器简介 本课程实验的仪器主要为爱迪克labACT自控/计控原理教学实验系统。 (一) 构成 labACT自控/计控原理实验机由以下七个模块组成: 1.自动控制原理实验模块 2.计算机控制原理实验模块 3.信号源模块 4.控制对象模块 5.虚拟示波器模块 6.控制对象输入显示模块 7.CPU控制模块 各模块相互交联关系框图见图1-1-1所示: 图1-1-1 各模块相互交联关系框图 自动控制原理实验模块由模拟运算单元及模拟运算扩充库组成,这些模拟运算单元的输入回路和反馈回路上配有多个各种参数的电阻、电容,因此可以完成各种自动控制模拟运算。例如构成比例环节、惯性环节、积分环节、比例微分环节,PID环节和典型的二阶、三阶系统等。利用本实验机所提供的多种信号源输入到模拟运算单元中去,再使用本实验机提供的虚拟示波器界面可观察和分析各种自动控制实验的响应曲线。 主实验板外形尺寸为35厘米×47厘米,主实验板的布置简图见图1-1-2所示。

根据功能本实验机划分了各种实验区均在主实验板上。实验区组成见表1-1-1。

表1-1-1 实验区组成 (二 1)虚拟示波器的显示方式 为了满足自动控制不同实验的要求我们提供了示波器的四种显示方式。 (1)示波器的时域显示方式 (2)示波器的相平面显示(X-Y)方式 (3)示波器的频率特性显示方式有对数幅频特性显示、对数相频特性显示(伯德图),幅相特性显示方式(奈奎斯特图),时域分析(弧度)显示方式。 (4) 示波器的计算机控制显示方式 2)虚拟示波器的设置 用户可以根据不同的要求选择不同的示波器,具体设置方法如下: (1)示波器的一般用法:运行LABACT程序,选择‘工具’栏中的‘单迹示波器’项或‘双迹示波器’

机电控制技术系统仿真综合实验指导书

机电控制技术 系统仿真综合实验指导书 南京工业职业技术学院 机械工程系 2008年2月

实验一MATLAB基本操作 实验目的 1.熟悉MATLAB实验环境,练习MATLAB命令、m文件、Simulink的基本操作。 2.利用MATLAB编写程序进行矩阵运算、图形绘制、数据处理等。 3.利用Simulink建立系统的数学模型并仿真求解。 实验原理 MATLAB环境是一种为数值计算、数据分析和图形显示服务的交互式的环境。MATLAB 有3种窗口,即:命令窗口(The Command Window)、m-文件编辑窗口(The Edit Window)和图形窗口(The Figure Window),而Simulink另外又有Simulink模型编辑窗口。 1.命令窗口(The Command Window) 当MA TLAB启动后,出现的最大的窗口就是命令窗口。用户可以在提示符“>>”后面输入交互的命令,这些命令就立即被执行。 在MA TLAB中,一连串命令可以放置在一个文件中,不必把它们直接在命令窗口内输入。在命令窗口中输入该文件名,这一连串命令就被执行了。因为这样的文件都是以“.m”为后缀,所以称为m-文件。 2.m-文件编辑窗口(The Edit Window) 我们可以用m-文件编辑窗口来产生新的m-文件,或者编辑已经存在的m-文件。在MATLAB主界面上选择菜单“File/New/M-file”就打开了一个新的m-文件编辑窗口;选择菜单“File/Open”就可以打开一个已经存在的m-文件,并且可以在这个窗口中编辑这个m-文件。 3.图形窗口(The Figure Window) 图形窗口用来显示MA TLAB程序产生的图形。图形可以是2维的、3维的数据图形,也可以是照片等。 MA TLAB中矩阵运算、绘图、数据处理等内容参见教材《机电控制技术》P18-26。 Simulink是MATLAB的一个部件,它为MA TLAB用户提供了一种有效的对反馈控制系统进行建模、仿真和分析的方式。 有两种方式启动Simulink:

控制理论仿真实验指导书

“自动控制理论”仿真软件简介 “自动控制理论”仿真软件是在MATLAB6.5的平台上进行开发的,其内容与构成该课程核心的一些基本概念、基本理论和基本方法相关联。 将光盘中的MATLAB程序(不能是文件夹)拷贝到当前工作路径中(默认路径一般为MATLAB6p5/Work目录)。双击桌面MATLAB6.5图标打开主界面,在命令窗口中输入“kzllfz”并按回车键,启动仿真软件后,将MATLAB主界面最小化至任务栏,出现第一个界面如图0-1所示。 图0-1“自动控制理论仿真”进入界面 用鼠标点击“简介”按钮,打开一个文本窗口,如图0-2所示,它对本仿真内容作一简介。图0-2窗口下部有一个“返回”按钮,点击后将回到图0-1界面。 图0-2“自动控制理论仿真”简介界面 点击图0-1“退出”按钮,将关闭窗口,退出本仿真。点击图0-1“进入”按钮,进入目录界面,如图0-3所示。仿真内容各部分之间是相互独立的。点击仿真名称左侧的相应按钮,即可进入每个仿真环境。

图0-3“自动控制理论仿真”目录界面

仿真一 线性连续控制系统的仿真 一、仿真目的 1.掌握用数字仿真的方法,求取控制系统输出响应曲线; 2.观察分析在阶跃、斜坡等信号输入下给定系统的响应曲线; 3.掌握由阶跃响应曲线求取系统相关性能指标的方法; 4.了解仿真参数(特别是仿真步长)的设置对仿真结果的影响。 二、仿真原理 已知单位负反馈控制系统的方框图如图1-1所示。 图1-1 单位负反馈控制系统方框图 由图6-1求得该系统的闭环传递函数为 ) (1) ()()(s G s G s R s C += 当系统输入为单位阶跃信号时,即s s R 1 )(=,则系统的输出为 s s G s G s C 1 )(1)()(?+= 对上式取拉氏反变换,即可求得系统的单位阶跃响应表达式。 同理,可求得系统在单位斜坡输入[21)(s s R =]、单位抛物波输入[3 1 )(s s R =]下的响应表达 式。 三、仿真内容 (1)某单位负反馈系统的开环传递函数为 1 10 )(+=s s G 求其在单位阶跃输入下的响应曲线及其性能指标; (2)某单位负反馈系统的开环传递函数为 ) 828.2(4 )(+=s s s G 求其在单位阶跃输入下的响应曲线及其性能指标; (3)某单位负反馈系统的开环传递函数为 ) 15)(4(10 )(++=s s s s G 求其在单位斜坡、单位抛物线函数输入下的响应曲线。 四、仿真步骤 点击图0-3目录界面中的“仿真一”按钮,进入图1-2。

自控实验指导书分解

实验一 典型环节的时域响应 一、实验目的 1、掌握典型环节模拟电路的构成方法、传函及输出时域函数的表达式。 2、掌握各典型环节的特征参数的测量方法。 3、熟悉各种典型环节的阶跃响应曲线。 二、实验设备 Pc 机一台,TD-ACC+教学实验系统一套 三、实验原理及内容 1、比例环节 1)结构框图 图1-1 比例环节的结构框图 2)传递函数 K S R S C =) ()( 3)阶跃响应 K t C =)( )0(≥t 其中 01/R R K = 4)模拟电路 图1-2 比例环节的模拟电路图 注:图中运算放大器的正相输入端已经对地接了100k 电阻。不需再接。

2、积分环节 1)结构框图 图1-3 积分环节的结构框图 2)传递函数 TS S R S C 1 )()(= 3)阶跃响应 t T t C 1 )(= )0(≥t 其中 C R T 0= 4)模拟电路 图1-4 积分的模拟电路图 3、比例积分环节 1)结构框图 图1-5 比例积分环节的结构框图

2)传递函数 TS K S R S C 1)()(+= 3)阶跃响应 t T K t C 1)(+= )0(≥t 其中 01/R R K = ;C R T 0= 4)模拟电路 图1-6 比例积分环节的模拟电路图 4、惯性环节 1)结构框图 图1-7 惯性环节的结构框图 2)传递函数 C(S)R(S)=1TS +1 3)阶跃响应 )1()(/T t e K t C --= 其中 01/R R K = ;C R T 1= 4)模拟电路 图1-8 惯性环节的模拟电路图

四、实验步骤 1、按图1-2比例环节的模拟电路图将线接好。检查无误后开启设备电源。 2、将信号源单元的“ST ”端插针与“S ”端插针用“短路块”。将信号形式开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值小于5V ,周期为10s 左右。 3、将方波信号加至比例环节的输入端R (t ),用示波器的“CH1”和“CH2” 表笔分别监测模拟电路的输入R (t )端和输出C(t)端。记录实验波形及结果。 4、用同样的方法分别得出积分环节、比例积分环节、惯性环节对阶跃信号的实际响应曲线。 5、再将各环节实验参数改为如下: 比例环节: k R 2000=,k R 2001=。 积分环节: k R 2000=,u C 2= ; 比例积分: k R 1000=,k R 2001=,u C 2= ; 惯性环节: k R R 20010==;u C 2= 。 6、 重复步骤3。 五、实验报告要求 1、将各环节的阶跃响应曲线画在实验报告上,标明输入信号的幅值、输出 响应曲线的时间和幅值。分析参数变化对响应曲线的影响。 2、理论计算比例放大倍数K 、积分时间常数T 、惯性时间常数T 的值与实 际测量值进行验证。 六、思考题 1、由运算放大器组成的各种环节的传递函数是在什么条件下推导出的? 2、实验电路中串联的后一个运放的作用?若没有则其传递函数有什么差 别? 3、惯性环节在什么条件下可以近似为比例环节?而在什么条件下可以近似为积分环节?

《企业管理综合仿真实训》实训指导书

企业管理综合仿真实训 实 训 指 导 书 编写:鲍桑 2017年 6 月

编写说明 1.实训总体目标 “企业管理综合仿真实训”是讲授企业经营管理的实训课程。它采用一种全新的授课方法,课程的开展就是针对一个模拟企业,把企业能赢所处的内外部环境定义为一系列的规则,由受训者组成三个供应商,六个制造商相互竞争的模拟企业,通过模拟企业一年的经营,使受训者在分析市场、制定战略、营销策划、组织生产、财务管理等一系列活动中,参悟科学的管理规律,全面提升管理能力。 2.适用专业 工商管理、人力资源管理 3.先修课程 《供应链管理》、《财务管理》、《基础会计》、《生产管理》 4.实训课时分配 实训项目实训内容课时 创建模拟公司1.组建供应商公司 2.组建生产商公司 3.组建管委会 4.组建其他职能机构 4 报价获取订单1.各组人员分工 2.投放产品报价及广告费用 3.开展商品订货会PPT制作 4 预生产1月份订单1.锁定订单排名并发放订单 2.各组计算产能、人员招聘 3.生产商、制造商采购、运输合同签订;管委会机构(税务、 银行、运输、外贸、客户)系统确认 4.生产前准备 4 生产2-6月订单1.k/3系统凭证分录录入 2.生产排程检测,确定生产进度 3.根据“看板式”管理确认原材料、仓库、运输车辆、各组 人员、资金情况,合理调度。 4.各机构K/3系统输入和手工操作 4 制作财务报表及手 工凭证1. 订单商品出库、运输、交货、银行汇兑 2. 组内信息汇总完成手工填写内容 3. 清仓、对账 4 合计20

5.实训环境 企业管理综合仿真实训在专业的实训室完成,该实训室共有12组实训场景,共计电脑30台。 6.实训总体要求 企业管理综合仿真实训是集知识性、趣味性、对抗性于一体的企业管理技能训练课程。受训学生被分成若干个团队,每个团队由若干个学生组成,每个学生将担任总经理、营销总监、生产总监、财务总监、供应总监等。每个团队经营一个拥有销售良好、资金充裕的虚拟公司,连续从事1个会计年度的经营活动。通过仿真模拟企业实际运行状况,内容涉及企业整体战略、产品研发、生产、市场、销售、财务管理、团队协作等多方面,让学员在游戏般的训练中体验完整的企业经营过程,感受企业发展的典型历程,感悟正确的经营思路和管理理念。在短短一周的训练中,学员将遇到企业经营中常出现的各种典型问题,他们必须一同发现机遇,分析问题,制定决策,保证公司成功及不断成长。

河南理工大学高频实验指导书

目录 实验一调谐放大器 (1) 实验二丙类高频功率放大器 (5) 实验三 LC电容反馈式三点式振荡器 (7) 实验四石英晶体振荡器 (10)

实验一 调谐放大器 一、 实验目的 1、熟悉电子元器件和高频电路试验箱。 2、熟悉谐振回路的幅频特性分析--通频带与选择性。 3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。 4、熟悉和了解放大器的动态范围及其测试方法。 二、 实验仪器 1、双踪示波器 2、扫描仪 3、高频信号发生器 4、毫伏表 5、万用表 6、实验箱 三、 预习要求 1、复习谐振回路的 工作原理。 2、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。 3、试验电路中,若 电感量L=1uh ,回路总 电容C=220pf (分布电容包括在内),计算回路中心频率f0。 四、 实验内容及步骤 (一) 单调谐回路谐振放大器。 1. 试验电路见图1-1 (1)、按图1-1所示连接电路(注意接线前先测量+12V 电源电压,无误后,关断电源再接线)。 (2)、接线后仔细检查,确认无误后连接电源。 图1-1 单调谐回路谐振放大器原理图 IN

2.静态测量 试验电路中选R e=1K,R=10K。 测量各静态工作点,计算并填表1.1 *V B,V E是三极管的基极和发射极对地电压。 3. 动态研究 (1)测放大器的动态范围Vi~V0(在谐振点) 选R=10K,Re=1K。把高频信号发生器接到电路输入端,电路输出端接毫伏表, 选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节C T使回路 谐振,使输入电压幅度最大。此时调节Vi由0.05伏变到0.8伏,逐点记录 V o电压,并填入表1.2。Vi的各点测量值可根据(各自)实测情况来确定。 表1.2 (2)当Re分别为500Ω、2K时,重复上述过程,将结果填入表1.2。在同一坐 标纸上画出Ic不同时的动态范围曲线。 (3)用扫描仪调回路谐振曲线。 仍选R=10K,Re=500。将扫描仪射频输出送入电路输入端,电路输出接至扫频 仪检波器输入端。观察回路谐振曲线(扫频仪输出衰减档位应根据实际情况来 选择适当位置),调回路电容点C T,使f0=10.7MHz。 (4)测量放大器的频率特性 当回路电阻R=10K时,选择正常放大区的输入电压Vi,将高频信号发生器输 出200mV接至电路输入端,调节频率f使其为10.7MHz,调节C T使回路谐振, 使输出电压幅度为最大,此时的回路谐振频率f0=10.7MHz为中心频率,然后 保持输入电压Vi不变,改变频率发由中心频率向两边逐点偏离,测得在不同 频率f时对应的输出电压V0,将测得的数据填入表1.3。频率偏离范围可根据 (各自)实测情况来确定。

相关主题
文本预览
相关文档 最新文档