当前位置:文档之家› 一元二次函数解法__辅导讲义

一元二次函数解法__辅导讲义

一元二次函数解法__辅导讲义
一元二次函数解法__辅导讲义

二次函数辅导讲义

名思教育辅导讲义

当b =0时,抛物线的对称轴是y 轴(即直线x =0) 2.抛物线有一个顶点P ,坐标为P (-a 2b ,a 4b -4ac 2)。 当x =-a 2b 时,y 最值=a 4b -4ac 2,当a >0时,函数 y 有最小值;当a <0时,函数y 有最大值。 当- a 2b =0时,P 在y 轴上(即交点的横坐标为0);当Δ= b 2-4ac =0时,P 在x 轴上(即函数与x 轴只有一个交点)。 3.二次项系数a 决定抛物线的开口方向和大小(即形状)。 当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。|a |越大,则抛物线的开口越小。 对于两个抛物线,若形状相同,开口方向相同,则a 相等;若形状相同,开口方向相反,则a 互为相反数。 4.二次项系数a 和一次项系数b 共同决定对称轴的位置,四字口诀为“左同右异”,即: 当对称轴在y 轴左边时,a 与b 同号(即ab >0); 当对称轴在y 轴右边时,a 与b 异号(即ab <0)。 5.常数项c 决定抛物线与y 轴交点位置,抛物线与y 轴交于点(0,c )。 6.抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与方程ax 2+bx +c=0的根的判定方法: Δ= b 2-4ac >0时,抛物线与x 轴有2个交点,对应方程有两个不相同的实数根; Δ= b 2-4ac =0时,抛物线与x 轴有1个交点,对应方程有两个相同的实数根。 Δ= b 2-4ac <0时,抛物线与x 轴没有交点,对应方程没有实数根。 五、二次函数与一元二次方程 特别地,二次函数(以下称函数)y =ax 2+bx +c (a ≠0),当y =0时,二次函数为关于x 的一元二次方程,即ax 2+bx +c =0,此时,函数图像与x 轴有无交点即方程有无实数根。 函数与x 轴交点的横坐标即为方程的根。(参考四-6) 二、考点分析 考点一、图象 1、根据二次函数图象提供的信息,判断与a 、b 、c 相关的代数式是否成立 例1、已知二次函数y=ax 2+bx+c (a ≠0)的图象如图1所示,有下列5个结论: ① ;② ;③ ;④ ;⑤ ,( 的实数)其 中正确的结论有( )A. 2个 B. 3个 C. 4个 D. 5个 2、根据二次函数图象提供的信息,比较与a 、b 、c 相关的代数式的大小 例2、二次函数y=ax 2+bx+c (a ≠0)的图象如图2所示,且P=| a -b +c |+| 2a +b |,Q=| a +b +c |+| 2a -b |,则P 、Q 的大小关系为 。 3、根据二次函数图象提供的信息,确定对应一元二次方程的解

二次函数和一元二次方程-辅导讲义

讲义内容 知识概括 知识点一: 一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x 轴)的公共点的个数。抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有: (1)抛物线y=ax2+bx+c与x轴有两个公共点(x 1,0)(x 2 ,0)一元二次方程ax2+bx+c=0有两个 不等实根△=b2-4ac>0。 (2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程 ax2+bx+c=0有两个相等实根, (3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0. (4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。 抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。 方法总结: ⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程; ⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶根据图象的位置判断二次函数2 y ax bx c =++中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合; ⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸与二次函数有关的还有二次三项式,二次三项式2(0) ax bx c a ++≠本身就是所含字母x的二次函数;下面以0 a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系: ?>抛物线与x轴有 两个交点二次三项式的值可正、 可零、可负 一元二次方程有两个不相等实根 ?=抛物线与x轴只 有一个交点 二次三项式的值为非负一元二次方程有两个相等的实数根0 ?<抛物线与x轴无 交点 二次三项式的值恒为正一元二次方程无实数根.

一元二次函数辅导讲义

一元二次函数解法讲义 【知识梳理】 1.定义:一般地,如果)0,,(2≠++=a c b a c bx ax y 都是常数,,那么的二次函数是x y 2。二次函数c bx ax y ++=2 ()0≠a 配方得:()k h x a y +-=2 的形式,其中 a b a c k a b h 44,22 -=-= 3。抛物线的三要素:开口方向、对称轴、顶点. ①的符号决定抛物线的开口方向: (1)当 时,开口向上;顶点是抛物线的最低点,在对称轴的左侧,y 随x 的增大而增大,当 a b x 2-= ,y 值最小,最小值为 a b ac 442- (2)当 时,开口向下;顶点是抛物线的最高点,在对称轴左侧,y 随x的增大而减小,当 a b x 2-= ,y 值最大,最大值为 a b ac 442- (3)a 相等,抛物线的开口大小、形状相同。 ②平行于y 轴(或重合)的直线记作 .特别地,y轴记作直线 . 4.顶点决定抛物线的位置:几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、 开口大小完全相同,只是顶点的位置不同. 5.求抛物线的顶点、对称轴的方法 (1)公式法:a b a c a b x a c bx ax y 44)2(2 22 -++=++=, ∴顶点是)44,2(2a b ac a b --,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为k h x a y +-=2 )(的形式,得到顶点为),(k h , 对称轴是直线 . (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称点的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 6.抛物线的作用中,c b a c bx ax y ,,2 ++= (1)决定开口方向及开口大小,这与2 ax y =中的完全一样.

一元二次函数解法 辅导讲义

课题一元二次方程的解法 重点、难点熟练掌握一元二次方程的解法 教学内容 一元二次方程的解法: ①因式分解法: 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零. →因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 例题:用因式分解法解方程:3(x-3)=(x-3)2 练习:(2x+3)2=24x (2x-1)(3x+4)=x-4 1.2y-0.04=9y2 (2x-1)2+3(2x-1)=0 ②开平方法:方程的左边是完全平方式,右边是非负数x2=a(a》0) 例题:3x2-27=0; 练习:(x+1)2=4 (2x-3)2=7 x2+2x-3=0 ③配方法:把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法. 用配方法解一元二次方程的步骤: 1.变形:把二次项系数化为1 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解. 例题:x2-6x=-8

练习:(1)3x 2+6x-4=0 (2)2x 2-5x+2=0 ④公式法: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax 2+bx+c=0(a ≠0). 2.b 2-4ac ≥0. 例题:X 2+2x-3=0 练习: -2m 2+4=-3m 23a 2-a-4 1=0 8y 2-2y-15=0 △ 用三种方法解方程:2532=-x x (1)用因式分解法解: 解:移项,得 3x2-5x-2=0 ( 使方程右边为零) 方程左边因式分解,得(x-2)(3x+1)=0 (方程左边因式分解成A`B=0的形式) 即 x-2=0或3x+1=0(A=0或B=0) 31 ,221-==∴x x (2)用配方法解: 解:两边同时除以3,得: 32352=-x x 左右两边同时加上 2 )65( ,得: .3625323625352+=+-x x 即 .3649652=??? ? ?-x 开平方,得:.36496 5±=-x .31,221-==∴x x (3)用公式法解: 解:移项,得02532=--x x ( 这里a=3,b=-5,c=-2) ())2(34542 2-??--=-∴ac b =49 6753249)5(±=?±--=∴x () .04a c b .2a 4a c b b x 22≥--±-=

二次函数专题复习(讲义)(完整资料).doc

【最新整理,下载后即可编辑】 二次函数专题复习 专题一:二次函数的图象与性质 本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现. 考点1.二次函数图象的对称轴和顶点坐标 二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a ,顶点坐标是(-2b a ,2 44ac b a -). 例1 已知,在同一直角坐标系中,反比例函数5y x =与二次函数22y x x c =-++的图像交于点(1)A m -,. (1)求m 、c 的值; (2)求二次函数图像的对称轴和顶点坐标. 考点2.抛物线与a 、b 、c 的关系 抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2b a 的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小. 例2 已知2 y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第 一、三、四象限 考点3、二次函数的平移 当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0 )的图 图1

象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到. 例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习1 1.对于抛物线y=13 -x 2+103 x 163 -,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4 D.抛物线与x 轴交点为(-1,0),(3,0) 3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________. 4.小明从上图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 专题复习二:二次函数表达式的确定 本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主. 考点1.根据实际问题模型确定二次函数表达式 例1、如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的 长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与 图2 A B C D 图1 菜园 墙

一元二次函数解法辅导讲义

龙文教育教师辅导讲义 课题一元二次方程的解法 教学目标掌握一元二次方程的四种解法,以及学会根据实际问题列出方程及灵活运用四种方法解出方程 重点、难点熟练掌握一元二次方程的四种解法 教学内容 一元二次方程的解法: ①因式分解法: 1.用因式分解法的条件是:方程左边能够分解,而右边等于零; 2.理论依据是:如果两个因式的积等于零,那么至少有一个因式等于零. →因式分解法解一元二次方程的一般步骤: 一移-----方程的右边=0; 二分-----方程的左边因式分解; 三化-----方程化为两个一元一次方程; 四解-----写出方程两个解; 例题:用因式分解法解方程:3(x-3)=(x-3)2 练习:(2x+3)2=24x (2x-1)(3x+4)=x-41.2y-0.04=9y2(2x-1)2+3(2x-1)=0 ②开平方法:方程的左边是完全平方式,右边是非负数x2=a(a》0) 例题:3x2-27=0; 练习:(x+1)2=4 (2x-3)2=7 x2+2x-3=0 ③配方法:把一元二次方程的左边配成一个完全平方式,右边为一个非负常数,然后用开平方法求解,这种解一元二次方程的方法叫做配方法.

用配方法解一元二次方程的步骤: 1.变形:把二次项系数化为1 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解. 例题:x 2-6x=-8 练习:(1)3x 2+6x-4=0 (2)2x 2-5x+2=0 ④公式法: 用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax 2+bx+c=0(a ≠0). 2.b 2-4ac ≥0. 例题:X 2+2x-3=0 练习: -2m 2+4=-3m 23a 2-a-4 1=0 8y 2-2y-15=0 △ 用三种方法解方程:2532=-x x (1)用因式分解法解: 解:移项,得 3x2-5x-2=0 ( 使方程右边为零) 方程左边因式分解,得(x-2)(3x+1)=0 (方程左边因式分解成A`B=0的形式) 即 x-2=0或3x+1=0(A=0或B=0) 31 ,221-==∴x x (2)用配方法解: 解:两边同时除以3,得: 32352=-x x 左右两边同时加上 2)65( ,得: .3625323625352+=+-x x () .04a c b .2a 4a c b b x 22≥--±-=

二次函数同步辅导讲义

二次函数同步辅导讲义 目录 第一讲二次函数的认识与待定系数法、配方法 (1) 【总结归纳】 (1) 【精选例题】 (2) 【课后作业】 (7) 第二讲二次函数的图象和性质 (10) 【知识归纳】 (10) 【精选例题】 (12) 【课后作业】 (18) 第三讲二次函数与一元二次方程 (20) 【知识归纳】 (20) 【精选例题】 (21) 【课后作业】 (30) 第四讲二次函数的应用 (32) 【知识归纳】 (32) 【精选例题】 (33) 【课后作业】 (42)

第一讲二次函数的认识与待定系数法、配方法 【知识归纳】 要点一、二次函数的概念 1.二次函数的概念 一般地,形如y=ax2+bx+c(a≠0,a, b, c为常数)的函数是二次函数. 若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2. 以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式. 二次函数由特殊到一般,可分为以下几种形式: ①(a≠0);②(a≠0);③(a≠0);④ (a≠0),其中;⑤(a≠0). 要点诠释: 如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小. 要点二、二次函数图象上点的横坐标、纵坐标分别与函数中的x、y对应也就是说: 1、二次函数图象上点的坐标满足二次函数的函数关系式,即代入解析式两边相等; 2、满足二次函数解析式的每一组(,) x y的实数对,也对应着一个点,这些点就组成了二次函数的图象,解析式与图象的一些特征点对应关系如下图所示。 要点三、二次函数的三种表达形式以及它们之间的转化关系 交点式 因式分解一般式 配方法 顶点式图像与轴交点图像与轴交点图像的顶点

二次函数辅导讲义

名思教育辅导讲义 学员姓名 张晓楠 辅导科目 数学 年级 初三 授课教师 刘琳琳 课题 二次函数 授课时间 教学目标 重点、难点 考点及考试要求 教学内容 一、知识点梳理 一、定义与定义表达式 一般地,自变量x 和因变量y 之间存在如下关系: y =ax 2+bx +c (a ≠0),则称y 为x 的二次函数。 二、二次函数的三种表达式 一般式:y =ax 2+bx +c (a ≠0) 顶点式:y =a (x -h ) 2+k (a ≠0),此时抛物线的顶点坐标为P (h ,k ) 交点式:y =a (x -x 1)(x -x 2)(a ≠0)仅用于函数图像与x 轴有两个交点时,x 1、x 2为交点的横坐标,所以两交点的坐标分别为A (x 1,0)和 B (x 2,0)),对称轴所在的直线为x= 2 x x 2 1+ 注:在3种形式的互相转化中,有如下关系: h =-a 2b ,k =a 4b -4ac 2 ; x 1, x 2=a 24ac -b b -2± ;x 1+x 2=-a 2b 三、二次函数的图像 从图像可以看出,二次函数的图像是一条抛物线,属于轴对称图形。 四、抛物线的性质

1.抛物线是轴对称图形,对称轴为直线 x = - a 2b ,对称轴与抛物线唯一的交点是抛物线的顶点P 。特别地,当b =0时,抛物线的对称轴是y 轴(即直线x =0) 2.抛物线有一个顶点P ,坐标为P (-a 2b ,a 4b -4ac 2)。 当x =-a 2b 时,y 最值=a 4b -4ac 2,当a >0时,函数 y 有最小值;当a <0时,函数y 有最大值。 当- a 2b =0时,P 在y 轴上(即交点的横坐标为0);当Δ= b 2-4ac =0时,P 在x 轴上(即函数与x 轴只有一个交点)。 3.二次项系数a 决定抛物线的开口方向和大小(即形状)。 当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。|a |越大,则抛物线的开口越小。 对于两个抛物线,若形状相同,开口方向相同,则a 相等;若形状相同,开口方向相反,则a 互为相反数。 4.二次项系数a 和一次项系数b 共同决定对称轴的位置,四字口诀为“左同右异”,即: 当对称轴在y 轴左边时,a 与b 同号(即ab >0); 当对称轴在y 轴右边时,a 与b 异号(即ab <0)。 5.常数项c 决定抛物线与y 轴交点位置,抛物线与y 轴交于点(0,c )。 6.抛物线y =ax 2+bx +c (a ≠0)与x 轴交点个数与方程ax 2+bx +c=0的根的判定方法: Δ= b 2-4ac >0时,抛物线与x 轴有2个交点,对应方程有两个不相同的实数根; Δ= b 2-4ac =0时,抛物线与x 轴有1个交点,对应方程有两个相同的实数根。 Δ= b 2-4ac <0时,抛物线与x 轴没有交点,对应方程没有实数根。 五、二次函数与一元二次方程 特别地,二次函数(以下称函数)y =ax 2+bx +c (a ≠0),当y =0时,二次函数为关于x 的一元二次方程,即ax 2+bx +c =0,此时,函数图像与x 轴有无交点即方程有无实数根。 函数与x 轴交点的横坐标即为方程的根。(参考四-6) 二、考点分析 考点一、图象 1、根据二次函数图象提供的信息,判断与a 、b 、c 相关的代数式是否成立 例1、已知二次函数y=ax 2 +bx+c (a ≠0)的图象如图1所示,有下列5个结论: ① ;② ;③ ;④ ;⑤ ,( 的实数)其 中正确的结论有( )A. 2个 B. 3个 C. 4个 D. 5个

一元二次函数知识点梳理及练习

1、y=mx m2+3m+2是二次函数,则m 的值为( ) A 、0,-3 B 、0,3 C 、0 D 、-3 2、函数y=2x 2-x+3经过的象限是( ) A 、一、二、三象限 B 、一、二象限 C 、三、四象限 D 、一、二、四象限 3、已知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过( ) A 、一、二、三象限 B 、一、二、四象限 C 、一、三、四象限 D 、一、二、三、四象限 4、y=x 2-1可由下列( )的图象向右平移1个单位,下平移2个单位得到 A 、y=(x-1) 2+1 B 、y=(x+1) 2+1 C 、y=(x-1) 2-3 D 、y=(x+1) 2+3 5、把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是 y=x 2-3x+5,则有( ) A ,3=b ,7=c B ,9-=b ,15-=c C ,3=b ,3=c D ,9-=b ,21=c 6、函数y=-x 2+4x+1图象顶点坐标是( ) A 、(2,3) B 、(-2,3) C 、(2,1) D 、(2,5) 7、形状与抛物线22--=x y 相同,对称轴是2-=x ,且过点(0,3)的抛物线是( ) A 、342++=x x y B 、342+--=x x y C 、342++-=x x y D 、342++=x x y 或342+--=x x y 8、已知二次函数的图像与y 轴的交点坐标为(0,a ),与x 轴的交点坐标为(b ,0)和(b -,0),若a >0,则函数解析式为( ) A 、a x b a y +=22 B 、a x b a y +-=22 C 、a x b a y --=22 D 、a x b a y -=22 9. 已知一元二次方程20(0)ax bx c a ++= >的两个实数根1x 、2x 满足124x x +=和123x x =,那么二次函数 2(0)y ax bx c a =++ >的图象有可能是( )

一元二次函数知识点汇总

姓名二次函数总复习(知识点) 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =)(0≠a 的顶点是原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系: ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a 时)],坐标为(h ,k )。 6.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相等的两个点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. ★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 7.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线a b x 2- =,故: ①0=b 时,对称轴为y 轴;②0>a b 时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

一元二次函数解法教案

教学目标 (1)掌握一元二次不等式的解法; (2)知道一元二次不等式可以转化为一元一次不等式组; (3)了解简单的分式不等式的解法; (4)能利用二次函数与一元二次方程来求解一元二次不等式,理解它们三者之间的内在联系; (5)能够进行较简单的分类讨论,借助于数轴的直观,求解简单的含字母的一元二次不等式; (6)通过利用二次函数的图象来求解一元二次不等式的解集,培养学生的数形结合的数学思想; (7)通过研究函数、方程与不等式之间的内在联系,使学生认识到事物是相互联系、相互转化的,树立辨证的世界观. 教学重点:一元二次不等式的解法; 教学难点:弄清一元二次不等式与一元二次方程、二次函数的关系. 教与学过程设计 第一课时 Ⅰ.设置情境 问题: ①解方程 ②作函数的图像 ③解不等式 【置疑】在解决上述三个问题的基础上分析,一元一次函数、一元一次方程、一元一次不等式之间的关系。能通过观察一次函数的图像求得一元一次不等式的解集吗? 【回答】函数图像与x轴的交点横坐标为方程的根,不等式的解集为函数图像落在x轴上方部分对应的横坐标。能。 通过多媒体或其他载体给出下列表格。扼要讲解怎样通过观察一次函数的图像求得一元一次不等式的解集。注意色彩或彩色粉笔的运用

在这里我们发现一元一次方程,一次不等式与一次函数这三者之间是有着密切的联系。利用这种联系(集中反映在相应一次函数的图像上!)我们可以快速准确地求出一元一次不等式的解集,类似地,我们能不能将这种思想与现在要求解的一元二次不等式与二次函数联系起来讨论,从而找到其求解方法呢?(考虑一下……) Ⅱ.探索与研究 我们现在就结合不等式的求解来试一试。同学们现在快速做出的图像。(为了节省时间,师生共同活动用“特殊点法”而非课本上的“列表描点”的方法作出的图像,然后请一位程度中下的同学写出相应一元二次方程及一元二次不等式的解集。) 【答】方程的解集为 不等式的解集为 【置疑】哪位同学还能写出的解法?(请一程度差的同学回答) 【答】不等式的解集为 我们通过二次函数的图像,不仅求得了开始上课时我们还不知如何求解的那个第(5)小题的解集,还求出了的解集,可见利用二次函数的图像来解一元二次不等式是个十分有效的方法。 下面我们再对一般的一元二次不等式与来进行 讨论。为简便起见,我们只考虑的情形。请同学们思考下列问题:如果相应的一元二次方程分别有两实根、惟一实根,无实根的话,其对应的二次函数的图像与x轴的位置关系如何?(提问程度较

一元二次函数知识点汇总

姓名 二次函数总复习(知识点) 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =)(0≠a 的顶点是原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系: ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a 时)],坐标为(h ,k )。 6.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相等的两个点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. ★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 7.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线a b x 2- =,故: ①0=b 时,对称轴为y 轴;②0>a b 时,对称轴在y 轴左侧;③0

(完整版)二次函数经典解题技巧

龙文教育学科教师辅导讲义

解:(1)根据题意,得?????+?-?=-+-?--?=. 0405, )1(4)1(02 2c a c a …2分 解得 ? ? ?-==.5, 1c a …………………………3分 ∴二次函数的表达式为542 --=x x y .……4分 (2)令y =0,得二次函数542 --=x x y 的图象与x 轴 的另一个交点坐标C (5, 0).……………5分 由于P 是对称轴2=x 上一点, 连结AB ,由于262 2= +=OB OA AB , 要使△ABP 的周长最小,只要PB PA +最小.…………………………………6分 由于点A 与点C 关于对称轴2=x 对称,连结BC 交对称轴于点P ,则PB PA += BP +PC =BC ,根据两点之间,线段最短,可得PB PA +的最小值为BC . 因而BC 与对称轴2=x 的交点P 就是所求的点.……………………………………8分 设直线BC 的解析式为b kx y +=,根据题意,可得? ? ?+=-=.50,5b k b 解得???-==.5, 1b k 所以直线BC 的解析式为5-=x y .…………………………………………………9分 因此直线BC 与对称轴2=x 的交点坐标是方程组? ? ?-==5,2x y x 的解,解得???-==.3, 2y x 所求的点P 的坐标为(2,-3).……………………………10分 压轴题中求最值 此种题多分类讨论,求出函数关系式,再求各种情况的最值,最后求出最值。 典型例题: 1如图,在梯形ABCD 中,AD ∥BC ,∠B =90°,BC =6,AD =3,∠DCB =30°.点E 、F 同时从B 点出发,沿射线BC 向右匀速移动.已知F 点移动速度是E 点移动速度的2倍,以EF 为一边在CB 的上方作等边△EFG .设E 点移动距离为x (x >0). ⑴△EFG 的边长是____(用含有x 的代数式表示),当x =2时,点G 的位置在_______; ⑵若△EFG 与梯形ABCD 重叠部分面积是y ,求 ①当0<x ≤2时,y 与x 之间的函数关系式; ②当2<x ≤6时,y 与x 之间的函数关系式; ⑶探求⑵中得到的函数y 在x 取含何值时,存在最大值,并求出最大值. A D G

二次函数讲义 详细

第一讲 二次函数的定义 知识点归纳:二次函数的定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的 二次函数. 二次函数具备三个条件,缺一不可:(1)是整式方程;(2)是一个自变量的二次式;(3)二次项系数不为0 考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式 例1、 函数y=(m +2)x 2 2-m +2x -1是二次函数,则m= . 例2、 下列函数中是二次函数的有( ) ①y=x +x 1;②y=3(x -1)2+2;③y=(x +3)2-2x 2 ;④y=21x +x . A .1个 B .2个 C .3个 D .4个 例3、某商场将进价为40元的某种服装按50元售出时,每天可以售出300套.据市场调查发现,这种服装每提高1元售价,销量就减少5套,如果商场将售价定为x ,请你得出每天销售利润y 与售价的函数表达式. 例4 、如图,正方形ABCD 的边长为4,P 是BC 边上一点,QP ⊥AP 交DC 于Q ,如果BP=x ,△ADQ 的面积为y ,用含x 的代数式表示y .

训练题: 1、已知函数y=ax 2+bx +c (其中a ,b ,c 是常数),当a 时,是二次函数;当a ,b 时,是一次函数;当a ,b ,c 时,是正比例函数. 2、若函数y=(m 2 +2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 3、已知函数y=(m -1)x 2m +1 +5x -3是二次函数,求m 的值。 4、已知菱形的一条对角线长为a ,另一条对角线为它的3倍,用表达式表示出菱形的面积S 与对角线a 的关系. 5、请你分别给a ,b ,c 一个值,让c bx ax y ++=2 为二次函数,且让一次函数y=ax+b 的图像经过一、二、三象限 6.下列不是二次函数的是( ) A .y=3x 2+4 B .y=-3 1x 2 C .y=52-x D .y=(x +1)(x -2) 7.函数y=(m -n )x 2+mx +n 是二次函数的条件是( ) A .m 、n 为常数,且m ≠0 B .m 、n 为常数,且m ≠n C .m 、n 为常数,且n ≠0 D .m 、n 可以为任何常数 8.如图,校园要建苗圃,其形状如直角梯形,有两边借用夹角为135°的两面墙,另外两边是总长为30米的铁栅栏.(1)求梯形的面积y 与高x 的表达式;(2)求x 的取值范围. 9.如图,在矩形ABCD 中,AB=6cm ,BC=12cm .点P 从点A 开始沿AB 方向向点B 以1cm/s 的速度移动,同时,点Q 从点B 开始沿BC 边向C 以2cm/s 的速度移动.如果P 、Q 两点分别到达B 、C 两点停止移动,设运动开始后第t 秒钟时,五边形APQCD 的面积为Scm 2,写出S 与t 的函数表达式,并指出自变量t 的取值范围.

一元二次函数的图像和性质—讲义

2.5(1) 一元二次函数的图象和性质 一、【课程要求】 1.掌握二次函数的图像和性质,结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系; 2.通过三个“二次”掌握函数、方程、不等式之间的关系 二、【重点难点】 ①二次函数的图象和性质,②一元二次方程根的存在性及根的个数,函数最值问题。 三、【命题规律】 从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。本节在高考中,重点考察数形结合与等价转化数学思想,通过三个“二次”之间的相互转化,考查函数的方程思想,对于二次函数的区间最值,尤其是含有参数的区间最值问题,要求选择合理的标准分类讨论,。 四、【知识回顾】 (一) 二次函数基本知识 1.二次函数的定义:形如2(0,,)y ax bx c a a b c =++≠且为常数的函数叫关于x 的二次函数。 2.二次函数的解析式的三种形式 (1)一般式(三点式):2(0)y ax bx c a =++≠,配方后为 。 其中顶点坐标为 ,对称轴为 。 (2)顶点式(配方式):2 0()()y a x h k a ≠=-+,其中顶点坐标为 ,对称轴为 。 (3)两根式(零点式):120()()()y a x x x x a ≠=--,其中12,x x 是方程2 0ax bx c ++=的两个 根,同时也是二次函数的图像与x 轴交点()()12,00x x ,,的横坐标。 求函数解析式时,一般采用 待定系数法 3.二次函数的图像和性质 (1)二次函数2(0)y ax bx c a =++≠的图像是一条 ,其对称轴为 ,顶点坐标 为 ,开口方向由 决定。 (2)二次函数2(0)y ax bx c a =++≠的单调性以对称轴为分界。 当0a >时,函数图像开口向 ,当x ∈ 时,()f x 单调递增, 当x ∈ 时,()f x 单调递减, 当x = 时,()f x 有最小值。min y = 当0a <时,函数图像开口向 ,当x ∈ 时,()f x 单调递增, 当x ∈ 时,()f x 单调递减,

中学一元二次函数知识点整理

中学一元二次函数知识点整理 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =)(0≠a 的顶点是原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系: ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a 时)],坐标为(h ,k )。 6.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相等的两个点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. ★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 7.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线a b x 2- =,故: ①0=b 时,对称轴为y 轴;②0>a b 时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

二次函数专项复习 个性化辅导讲义

二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。 练习: 1.判断:下列函数是否为二次函数,如果是,指出其中常数a.b.c 的值. (1) y =1— 23x (2)y =x(x -5) (3)y = x 21-23x +1 (4) y =3x(2-x)+ 3x 2 (5)y = 1 2312++x x (6) y =652++x x (7)y = x 4+2x 2-1 (8)y =ax 2+bx +c 2.m 取哪些值时,函数)1()(22+++-=m mx x m m y 是二次函数? 1、二次函数y =ax 2+bx +c 图象如图所示,则点A(ac ,bc)在( ). A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 x y

相关主题
文本预览
相关文档 最新文档