当前位置:文档之家› 石墨炉原子吸收光谱仪

石墨炉原子吸收光谱仪

石墨炉原子吸收光谱仪
石墨炉原子吸收光谱仪

原子吸收光谱法

Atomic absorption spectrometry

各种元素的原子结构不同,不同元素的原子从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原子吸收光谱的频率ν或波长λ,由产生吸收跃迁的两能级差ΔE决定:

ΔE =hν=hc/λ

原理:利用物质的气态原子对特定波长的光的吸收来进行分析的方法。

原子吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、相当窄的频率或波长围,即谱线实际具有一定的宽度,具有一定的轮廓。

I0为入射光强

I为透射光强

ν0为中心频率

产生谱线宽度的因素

1.自然宽度:与原子发生能级间跃迁时激发态原子的有限寿命有关,其宽度约在10-5nm数量级;

2.多普勒变宽(热变宽)

3.压力变宽通常认为两个主要因素是多普勒变宽和压力变宽。

原子吸收光谱的测量

理论上:积分吸收与原子蒸气中吸收辐射的基态原子数成正比。

吸收系数Kν将随光源的辐射频率ν而改变,这是由于物质的原子对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。 长期以来无法解决的难题!

在频率O 处,吸收系数有一极大值K 0称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度围,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。因为当采用锐线光源进行测量,则Δνe<Δνa ,由图可见,在辐射线宽度围,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度围,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。

2

00πd v e K v N f KN mc +∞-∞

==?

定量基础

由于N0∝N∝αc(N0基态原子数,N原子总数,c 待测元素浓度)

所以:A=KLN0=KLN=Kc

这表明当吸收厚度一定,在一定的工作条件下,峰值吸收测量的吸光度与被测元素的含量成正比。这是原子吸收光谱定量分析法的基础。

=kN0L

石墨炉非火焰原子化器:利用大电流加热高阻值的石墨管,产生高达3000℃的高温,使之与其中的少量试液固体熔融,可获得自由原子。

火焰的组成:

空气—乙炔火焰:最高温度约2300℃左右;

N2O—乙炔火焰:温度可达到3000 ℃左右;

氧屏蔽空气-乙炔火焰:新型的高温火焰,大于2900K。

原子吸收法的选择性高,干扰较少且易于克服。

由于原子的吸收线比发射线的数目少得多,这样谱线重叠的几率小得多。而且空心阴极灯一般并不发射那些邻近波长的辐射线,因此其它辐射线干扰较小。

原子吸收具有较高的灵敏度。

在原子吸收法的实验条件下,原子蒸气中基态原于数比激发态原子数多得多,所以测定的是大部分原子。

原子吸收法比发射法具有更佳的信噪比

这是由于激发态原子数的温度系数显著大于基态原子。

干扰及其抑制

原子吸收光谱法的主要干扰有物理干扰、化学干扰和光谱干扰三种类型。

一、物理干扰(physical interference)

物理干扰又称基体效应,是指试液与标准溶液物理性质有差异而产生的干扰。如粘度、表面力或溶液的密度等的变化,影响样品的雾化和喷入火焰的速度,引起原子吸收强度的变化从而引起的干扰。

消除办法:配制与被测试样组成相近的标准溶液或采用标准加入法。若试样溶液的浓度高,还可采用稀释法。

二、化学干扰(chemical interference)

化学干扰是由于被测元素原子与共存组份发生化学反应生成稳定的化合物,影响被测元素的原子化,而引起的干扰。

消除化学干扰的方法:

(1)选择合适的原子化方法

提高原子化温度,减小化学干扰。使用高温火焰或提高石墨炉原子化温度,可使难离解的化合物分解。

采用还原性强的火焰与石墨炉原子化法,可使难离解的氧化物还原、分解。(2)加入释放剂(releasing agent)

释放剂的作用是释放剂与干扰物质能生成比与被测元素更稳定的化合物,使被测元素释放出来。在测定钙时,加入锶,它能与磷酸根形成更稳定的化合物而使钙释放出来。

(3)加入保护剂(projective agent)

保护剂作用是它可与被测元素生成易分解的或更稳定的配合物,防止被测元素与干扰组份生成难离解的化合物。保护剂一般是有机配合剂。例如,测Ca2+加EDTA消除磷酸根干扰。

(4)加入消电离剂(ionization buffer)

消电离剂是比被测元素电离电位低的元素,相同条件下消电离剂首先电离,产生大量的电子,抑制被测元素的电离。例如:测钙时可加入过量的KCl溶液消除电离干扰。

(5)缓冲剂(buffer agent)

于试样与标准溶液中均加入超过缓冲量(即干扰不再变化的最低限量)的干扰元素。如在用C2H2—N2O火焰测钛时,可在试样和标准溶液中均加入质量分数为2×10-4以上的铝,使铝对钛的干扰趋于稳定。

(6)加入基体改进剂

对于石墨炉原子化法,在试样中加入基体改进剂,使其在干燥或灰化阶段与试样发生化学变化,其结果可以增加基体的挥发性或改变被测元素的挥发性,以消除干扰。

三、光谱干扰

光源在单色器的光谱通带存在与分析线相邻的其它谱线,可能有下述两种情况:

1.1 与分析线相邻的是待测元素的谱线。在Ni的分析线23

2.0nm附近还存在231.6nm的谱线;用308.22nm的谱线测定铝时,如果存在钒,钒对308.21nm 的谱线要产生吸收,减小狭缝宽度可改善或消除这种影响。

1.2 与分析线相邻的是非待测元素的谱线。

这种干扰主要是由于空心阴极灯的阴极材料不纯等,且常见于多元素灯。若选用具有合适惰性气体,纯度又较高的单元素灯即可避免干扰。

1.3 空心阴极灯中有连续背景发射主要来自灯杂质气体或阴极上的氧化物。

邻近线背景校正

用分析线测量原子吸收与背景吸收的总吸光度,因非共振线(邻近线)不产生原子吸收用它来测量背景吸收的吸光度。两者之差值即为原子吸收的吸光度。

氘灯校正法

先用锐线光源测定分析线的原子吸收和背景吸收的总和。再用氘灯在同一波长测定背景吸收(这时原子吸收可忽略不计)计算两次测定吸光度之差,即为原子的吸光度。

2. 与共存元素的光谱线重叠引起的干扰

可选用待测元素的其它光谱线作为分析线,或者分离干扰元素来消除干扰。

3. 与原子化器有关的干扰

3.1 原子化器的发射

来自火焰本身或原子蒸气中待测元素的发射。

仪器采用调制方式进行工作,或可适当增加灯电流,提高光源发射强度来改善倍噪比。

3.2 背景吸收(分子吸收)

来自原于化器(火焰或无火焰)的一种光谱干扰。它是由气态分子对光的吸收以及高浓度盐的固体微粒对光的散射所引起的。它是一种宽频带吸收。(包括火焰本体吸收、金属盐颗粒吸收、

标准曲线法注意事项

1.配制标准溶液时,应尽量选用与试样组成接近的标准样品,并用相同的方法处理。如用纯待测元素溶液作标准溶液时,为提高测定的准确度,可放入定量的基体元素,标准液与试样溶液用相同的试剂处理。

2.所配标准溶液的浓度,应在吸光度与浓度呈直线关系的围

3.每次测定前必须用标准溶液检查,并保持测定条件的稳定。

4.应扣除空白值,为此可选用空白溶液调零。

光散射损失)

测定条件的选择

1.分析线的选择

一般选用共振线作分析线。

2.空心阴极灯电流

保正稳定和适当光强度输出的条件下,尽量选用较低的工作电流。

3.火焰

对于分析线在200nm以下的元素,不宜选用乙炔火焰。

对于易电离的元素,宜选用低温火焰。

对于易生成难离解化合物的元素,则宜选用高温火焰

4.燃烧器高度

对于不同的元素,自由原子的浓度随火焰高度的分布是不同的。所以测定时,应调节其高度使光束从原子浓度最大处通过。

5.狭缝宽度

由于原子吸收光谱法谱线的重叠较少,一般可用较宽的狭缝,以增强光的强度。但当存在谱线干扰和背景发射较大时,则宜选用较小的狭缝宽度。

灵敏度、特征浓度及检出限

1. 灵敏度及特征浓度

灵敏度:当待测元素的浓度c或质量m改变一个单位时,吸光度A的变化量。在AAS中,常用特征浓度或特征质量来表示灵敏度。

S=dA/dc或S=dA/dm

灵敏度的影响因素:

a.待测元素本身的性质:如难熔元素的灵敏度比普通元素灵敏度要低得多。

b.测定仪器的性能:如单色器的分辨率、光源的特性、检测器的灵敏度等有关。

c.实验因素的影响:如雾化器效率等

2.检出限:产生一个能够确证在试样中存在某元素的分析信号所需要的该元素的最小含量。

即待测元素所产生的信号强度等于其噪声强度标准偏差三倍时所相应的质量浓度或质量分数。

检出限比灵敏度具有更明确的意义,它考虑到了噪声的影响,并明确地指出了测定的可靠程度。由此可见,降低噪声,提高测定精密度是改善检测限的有效途径。

2.原子吸收光谱分析的光源应当符合哪些条件?

为什么空心阴极灯能发射半宽度很窄的谱线。

谱线宽度“窄”(锐性),有利于提高灵敏度和工作曲线的直线性。谱线强度大、背景小,有利于提高信噪比,改善检出线稳定,有利于提高监测精密度。

灯的寿命长。空心阴极灯能发射半宽度很窄的谱线,这与灯本身构造和灯的工作参数有关系。从结构上说,他是低压的,故压力变宽小。从工作条件方面,它的灯电流较低,故阴极强度和原子溅射也低,故热变宽和自吸变宽较小。正是由于灯的压力变宽、热变宽和自吸收变宽较小,致使灯发射的谱线半宽度很窄。

3.简述背景吸收的产生及消除背景吸收的方法。

答: 背景吸收是由分子吸收和光散射引起的。分子吸收指在原子化过程中生成的气体分子、氧化物、氢氧化物和盐类等分子对辐射线的吸收。在原子吸收分析中常碰到的分子吸收有:碱金属卤化物在紫外取得强分子吸收;无几酸分子吸收;焰火气体或石墨炉保护气体(N2)的分子吸收。分子吸收与共存元素的浓度、火焰温度和分析线波长(短波和长波)有关。光散射是指在原子化过程中固体微粒或液滴对空心阴极灯发出的光起散射作用,是吸收光度增加。消除背景吸收的办法有:改用火焰(高温火焰);采用长波分析线;分离或转化共存物;扣除方法(用测量背景吸收的非吸收线扣除背景,用其他元素的吸收线扣除背景,用氘灯背景教正法和塞满效应背景教正法)等。

4. 在原子吸收分析中,为什么火焰法(火焰原子化器)的绝对灵敏度比火焰法(石墨炉原子化器)低?

答:火焰法是采用雾化进样。因此:

(1)试样的利用率低,大部分试液流失,只有小部分(越10%)喷雾液进入火焰参与原子化.

(2)稀释倍数高,进入火焰的喷雾液被大量气体稀释,降低原子化浓度.

(3)被测原子在原子化器中(火焰)停留时间短,不利于吸收.

石墨炉原子吸收光谱法的质量控制是一个复杂的过程。由于仪器设备运行状态不佳,分析者的操作不熟练,测量时周围环境的变化,以及纯水、试剂、电源的稳定性等因素的影响,都会使分析结果产生误差。

1.化学试剂和实验用水的选择

选择化学试剂和实验用水是做好原子吸收光谱法的良好开端。分析测定时,试剂空白的大小直接影响测定结果的准确性和复现性。因此,实验时应该把试剂空白降到可以忽略。所以在原子吸收实验中,在条件允许下,选择超纯水,其次无机酸的纯度也是试剂空白的一个重要因素,尽量使用优质酸或纯酸。我们曾在实验中发现消化出的食品样品的铅含量均很高,随即对样品进行复测,但结果仍然很高。因为是所有的样品铅含量均高,我们对分析结果产生怀疑,开始认真查找原因。最后我们发现是我们所用的硝酸的空白值过高所致。通过此次事例,提示我们理化检测在日常工作中应特别注意对化学试剂的验收工作,以确保检测质量。

2. 器皿、容器的选择

洁净的容器是做好原子吸收光谱法的重要条件。其次,容器对分析结果的影响主要为表面吸附。因此,实验应选用合适的容器,特别对痕量分析,有条件的实验室应选用特隆,聚乙烯材料的容器。对选用石英玻璃管要注意壁是否有磨损。通常国实验室为硝酸(1+5)泡一次后,纯水清洗就使用。我们一般先用硝酸(1+5)泡24小时,直接用纯水清洗后晾干,再用硝酸(1+5)泡24小时,直接用纯水清洗后晾干后使用。容器经过这样处理后,实验取得良好的效果。同时注意所用的硝酸溶液要及时更新。

3.标准溶液的配制

样品的测定值应该落在标准曲线的线性上。标准溶液的吸光度值为0.1-0.6之间.标准曲线为4-6个点,重复读数2次以上.标准溶液使用液应现配现用,选择溶剂应与样品溶剂匹配。根据不同的元素应选用不同的曲线校准方法。例如,我们做镉的标准曲线时,吸光度大于0.3A后,标准曲线向X轴方向弯曲,这时,我们不必强用线性校准,而是选用二次曲线或其他方法校准。

4.样品制备

样品的取量要合适,取样量根据样品的含量来定。一般情况我们通过预实验知道样品的大概含量后确定样品的取量和定容体积。在考核中,我们一般控制样品的吸光度值在0.2A左右,这个吸光度值稳定,精密度高,测量容易。样品的酸度一般控制在0.1mol/L(0.6%)以下。酸度过大,会影响检测的灵敏度。

5.仪器条件

5.1石墨管的选用

石墨炉法需要根据待测元素及样品选择适合的石墨管。石墨管一般有三种,普通石墨管、涂层石墨管,平台石墨管。普通石墨管适用于一些原子化温度底的元素测定。涂层石墨管适用于一些原子化温度高的元素。平台石墨管使用于一些基体复杂的样品如生物样品。在测定一些元素,往往要在石墨管外表面添加一层膜,来达到很好的灵敏度和检出限,同时延长了石墨管的使用寿命。在我们日常工作中常用到的石墨管是普通石墨管和涂层石墨管。普通石墨管在测定一般食品和生活饮用水中的铅和镉,都能达到良好的灵敏度和精密度,但对于灰化温度高的元素,如测定生活饮用水中的铝,铜时,灵敏度会差很多和精密度不能达到良好的要求。

5.2升温参数的选择

在石墨炉分析中,石墨炉的升温参数在整个分析中起着极为重要的作用。做好灰化温度和吸光度关系曲线图,原子化温度和吸光度关系图及背景吸收和吸光度关系图尤为重要,从中我们可以找到最佳的升温参数。在处理一些基体复杂的样品时选好升温参数更为重要。

5.3 仪器进样

石墨炉原子吸收光谱仪一般都是自动进样。在实验过程中要控制好进样的质量,包括进样量的大小和进样管的进样深度。进样要保证进样完全和灵敏度,所

以在进样量为20uL时,一般建议进样深度为墨管壁底部剩三分之一左右。具体的进样深度由进样量来决定。有时,因为进样管不够干净,测定粘稠大的样品时常使样品沾在进样管上而使进样不完全,吸光度下降;所以我们要注意清洁进样管的外壁。在直接测定尿中铅时,我们常常遇到这种情况,影响测定结果。

6.平行测定

由于测定过程中无法避免随机误差,而随机误差大又会导致成为大的测定误差。要减少测定中的随机误差,增加同一份样品的测定次数是非常有效的措施。

7.加标回收

加标回收是指向样品中加入一定量的待测物质,然后与样品同时进行前处理和测定,观察加入的待测物能否定量回收。考核样品分析中加标回收尽量接近100%。加标回收的作用是样品前处理是否合格,测定中是否存在干扰。加标回收接近100%也不能代表考核结果完全准确无误。它不能检查标准物质本身所带来的误差,不能检查加和性干扰,如背景吸收。所以,作好加标回收的同时还要采用其他质量控制手段才能更好地做好样品检测。加标量应尽量与样品中被测物的含量相近,加标后的测定值不得超过方法的检测上限。我们在2006年测定考核盲样(白酒)中铅时,用磷酸二氢氨做基体改进剂所得的回收只有60%左右,我们认真查找原因后发现测定中存在干扰。之后,我们改用其他基体改进剂,调好仪器条件,测定样品的回收在95%左右。

8.标准加入法

标准加入法是一种消除干扰的一种方法。本法不足之处是不能消除背景干扰,所以只要消除背景干扰才能得到待测样品的真实含量,否则结果会偏高。当样品中基体含量高而成分不详或变化不定时,很难配制成与样品基体相似的标准,这是必须采用标准加入法。将试液的标准曲线斜率和待测元素的工作曲线斜率比较,可知基体效应是否存在。一是试液的标准曲线斜率大于待测元素的工作曲线斜率,表明基体存在增敏效应;二是试液的标准曲线斜率小于待测元素的工作曲线斜率,表明基体存在抑制效应,三是试液的标准曲线斜率等于待测元素的工作曲线斜率,表明无基体效应。

使用标准加入法要注意几个问题,该方法仅适用于吸光度和浓度成线形的区域,校准曲线应是通过原点的直线。为了得到较好的外推结果,至少采用四个点。

首次加入的浓度最好与待测元素的浓度大致一样。标准加入法只能消除物理干扰和轻微的与化学无关的化学干扰,因为这两种干扰只影响校准曲线的斜率而不会使校准曲线弯曲,与浓度有关的化学干扰,电离干扰、光谱干扰以及背景吸收干扰,利用标准加入法是不能克服的。一般生物材料的检测都用到标准加入法。

9.标准样品的选择

选择基体和浓度相似的标准参考物质同步进行分析,这是最好的质量控制方法。所以我们要通过多种途径去了解标准样品,购买标准样品,选择好标准样品。

原子吸收光谱是分析化学领域中一种极其重要的分析方法,已广泛用于冶金工业.吸收原子吸收光谱法是利用被测元素的基态原子特征辐射线的吸收程度进行定量分析的方法.既可进行某些常量组分测定,又能进行ppm、ppb级微量测定,可进行钢铁中低含量的Cr、Ni、Cu、Mn、Mo、Ca、Mg、Als、Cd、Pb、Ad;原材料、铁合金中的K2O、Na2O、MgO、Pb、Zn、Cu、Ba、Ca等元素分析及一些纯金属(如Al、Cu)中残余元素的检测.干扰及其消除方法有:物理干扰

物理干扰是指试样在转移、蒸发过程中任何物理因素变化而引起的干扰效应.属于这类干扰的因素有:试液的粘度、溶剂的蒸汽压、雾化气体的压力等.物理干扰是非选择性干扰,对试样各元素的影响基本是相似的.

配制与被测试样相似的标准样品,是消除物理干扰的常用的方法.在不知道试样组成或无法匹配试样时,可采用标准加入法或稀释法来减小和消除物理干扰.

化学干扰

化学干扰是指待测元素与其它组分之间的化学作用所引起的干扰效应,它主要影响待测元素的原子化效率,是原子吸收分光光度法中的主要干扰来源.它是由于液相或气相中被测元素的原子与干扰物质组成之间形成热力学更稳定的化合物,从而影响被测元素化合物的解离及其原子化.

消除化学干扰的方法有:化学分离;使用高温火焰;加入释放剂和保护剂;使用基体改进剂等.

电离干扰

在高温下原子电离,使基态原子的浓度减少,引起原子吸收信号降低,此种干扰称为电离干扰.电离效应随温度升高、电离平衡常数增大而增大,随被测元素浓

度增高而减小.加入更易电离的碱金属元素,可以有效地消除电离干扰.

光谱干扰

光谱干扰包括谱线重叠、光谱通带存在非吸收线、原子化池的直流发射、分子吸收、光散射等.当采用锐线光源和交流调制技术时,前3种因素一般可以不予考虑,主要考虑分子吸收和光散射地影响,它们是形成光谱背景的主要因素.

分子吸收干扰

分子吸收干扰是指在原子化过程中生成的气体分子、氧化物及盐类分子对辐射吸收而引起的干扰.光散射是指在原子化过程中产生的固体微粒对光产生散射,使被散射的光偏离光路而不为检测器所检测,导致吸光度值偏高.

噪声和信噪比

在入射光强度不变的情况下,光电流也会引起波动,这种波动会给光谱测量带来噪声。光电倍增管输出信号与噪声的比值,称为信噪比。信噪比决定入射光强度测量的最低极限,即决定待测元素的检出限。只有将噪声减小,才能有效地提高信噪比,降低元素的检出限。

原子吸收法(石墨炉)测定铅的含量

原子吸收法(石墨炉)测定水样中铅的含量 一、实验目的 1了解石墨炉原子吸收分光光度计的基本结构; 2.初步掌握石墨炉原子吸收分光光度计的操作步骤。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000。C以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 三、主要仪器和试剂: 石墨炉原子吸收分光光度计;石墨管;铅标准溶液(1000ppm);0.2%稀HNO3;去离子水 四、实验步骤 1. 设置仪器工作参数; 2.配制浓度为50ug/L的标样储备液(母液),利用仪器的自动配制功能配制浓度为10.00、20.00、30.00、40.00、50.00ug/L的铅标准溶液,分别测定其吸光度,扣除试剂空白后做标准曲线; 3.水样经消解后测定其吸光度。 五、结果与数据处理: 1.数据记录 2.绘制工作曲线 3.求待测水样中铅的含量。 附:原子吸收分光光度计操作流程: 1.打开冷却水系统,水温22度左右; 2.打开氩气气瓶,出口压力调节至140-200kPa; 3.打开通风系统、主机及石墨炉电源; 4.开计算机,进入操作系统; 5.SpectrAA软件,进入仪器页面,单击“工作表格”,新建工作方法; 6.按“添加方法”,选择要分析的元素; 7.按“编辑方法”,进行进样模式、测量模式、光学参数、石墨炉升温方式、进 样器等相关参数的设置; 8.按“选择”,选定要分析的样品标签; 9.按“优化”,进行元素灯的优化及进样器位置的优化; 10.按“开始”,进行标样及样品的分析。 11.实验结束后,关机顺序依次为:氩气、冷却水、退软件、主机及石墨炉电源、 计算机、通风系统。

仪器分析石墨炉原子吸收实验报告

原子吸收法测定水中的铅含量 课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量 原子吸收法测定水中的铅含量 一、实验目的 1。加深理解石墨炉原子吸收光谱法的原理 2。了解石墨炉原子吸收光谱法的操作技术 3. 熟悉石墨炉原子吸收光谱法的应用 二、方法原理 石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。它是一种非火焰原子吸收光谱法。 石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样.但仪器较复杂、背景吸收干扰较大。在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。 三、仪器与试剂 (1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2) 试剂铅标准溶液(0。5mg/mL)、水样 四、实验步骤 1。设置仪器测量条件 (1)分析线波长 217.0 nm (2)灯电流90(%) (3)通带 0.5nm (4)干燥温度和时间 100℃,30 s (5)灰化温度和时间 1000℃,20 s (6)原子化温度和时间2200℃,3s (7)清洗温度和时间 2800℃,3s (8)氮气或氩气流量100 mL/min 2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 ,10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。 3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值. 4.结果处理 (1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线. (2)从标准曲线中,用水样的吸光度查出相应的铅含量。 (3)计算水样中铅的质量浓度(μg/mL)

石墨炉原子吸收光谱仪

原子吸收光谱法 Atomic absorption spectrometry 各种元素的原子结构不同,不同元素的原子从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原子吸收光谱的频率ν或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hν=hc/λ 原理:利用物质的气态原子对特定波长的光的吸收来进行分析的方法。 原子吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、相当窄的频率或波长范围,即谱线实际具有一定的宽度,具有一定的轮廓。 I0为入射光强 I为透射光强 ν0为中心频率 产生谱线宽度的因素 1.自然宽度:与原子发生能级间跃迁时激发态原子的有限寿命有关,其宽度约在10-5nm数量级; 2.多普勒变宽(热变宽) 3.压力变宽通常认为两个主要因素是多普勒变宽和压力变宽。

原子吸收光谱的测量 理论上:积分吸收与原子蒸气中吸收辐射的基态原子数成正比。 吸收系数Kν将随光源的辐射频率ν而改变,这是由于物质的原子对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。长期以来无法解决的难题! 在频率O 处,吸收系数有一极大值K 0称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度范围内,可以认为原子的吸收系数为常数,并等于中心波长处的吸收系数。因为当采用锐线光源进行测量,则Δνe<Δνa ,由图可见,在辐射线宽度范围内,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度范围内,可以认为原子的吸收系数为常数, 并等于中心波长处的吸2 00πd v e K v N f KN mc +∞-∞ ==?

实验四 石墨炉原子吸收法测定铜的含量

实验四石墨炉原子吸收法测定铜的含量 一、实验目的 1. 学习原子吸收光谱法的基本原理; 2. 了解石墨炉原子吸收光谱仪的基本结构及使用方法; 3. 掌握标准曲线法测定铜的定量分析方法。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000 ℃以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14 g,并可直接测定固体试样。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 通常使用偏振塞曼石墨炉原子吸收分光光度计。它具有利用塞曼效应扣除背景的功能。 三、实验仪器和试剂 A3石墨炉原子吸收分光光度计;铜空心阴极灯;石墨管;AS3自动进样器;容量瓶铜标准溶液100.0 μg/mL;铜未知液。 四、实验步骤 1. 按下列参数设置测量条件 1) 分析线波长(324.75 nm) 2) 灯电流(75%) 3) 狭缝宽度(0.5 nm) 4) 气化温度(120 ℃)和时间(25 s) 5) 灰化温度(600 ℃)和时间(20 s) 6) 原子化温度(2000 ℃)和时间(3 s) 7) 净化温度(2100 ℃)和时间(2 s) 8)冷却时间(45 s) 9) 氩气流量(2 L/min) 2.取铜标准溶液稀释到刻度,摇匀,配制0.00,5.00,10.00,15.00,20.00,2,5.00 ng/ml

的铜标准溶液,备用。 3.另配制铜未知液1个样。 4.采取自动进样方式进样,进样量20 μg。 五、结果与数据处理 1. 数据记录; 2. 绘制工作曲线; 3. 根据函数关系,计算待测液浓度。 六、注意事项 1. 实验正式开始之前要做好微调,使得进样管的尖端能顺利进样管尖端不能触及石墨管内壁。 2. 在配制溶液时,要注意操作规范使得样品不受杂质干扰。 3. 实验开始前,要仔细检查气瓶总阀与减压阀的连接处,并仔细检查冷却水装置和排气扇是否已打开。 4. 石墨炉温度很高,实验过程中要注意安全,防止灼伤。 七、思考题 1. 石墨炉法为何灵敏度高? 2. 为什么必须使用背景扣除技术? 3. 如何选择石墨炉原子化的实验条件?

石墨炉原子吸收光谱法测定水样中铜的含量

石墨炉原子吸收光谱法测定水样中铜的含量 一、实验目的 1、加深理解石墨炉原子吸收光谱分析的原理。 2、了解原子吸收分光光度计的主要结构,并学习其操作方法, 3、学习石墨炉原子吸收光谱法的应用。 二、实验原理 原子吸收光谱法是原子光谱法的重要组成部分,是一种适用于微量和痕量元素分析的仪器分析方法。这种分析方法的分析过程为:光源(空心阴极灯、氙弧灯等)产生的特征辐射经过样品原子化区(火焰、石墨炉等),特征辐射会被待测元素基态原子所吸收,由辐射的减弱程度求得试样中待测元素的含量。 石墨炉原子化的方法是将石墨管升至2000℃以上的高温,使管内试样中的待测元素分解成气态基态原子。该方法原子化效率高、用样量少、灵敏度高等优点,但仪器较复杂、背景吸收干扰较大。石墨炉工作步骤分干燥、灰化、原子化和净化4个阶段。 本实验采用石墨炉原子吸收光谱法测定水样中铜的含量。 三、仪器与试剂 1、原子吸收分光光度计;空气压缩机;自动循环冷却水系统;铜空心阴极灯;各种玻璃器皿等。 2、铜标准储备液:称取1.0000g铜(含铜量≥99.95%)置于250ml烧杯中,加入5ml浓硝酸酸,盖上表 面皿,待完全溶解后,将溶液移入1000ml容量瓶中,用水稀释至刻度,摇匀。此溶液1ml含1.0mg 铜。 3、铜标准使用液:移取1.00 ml铜标准储备液于100ml容量瓶中,用1%硝酸稀释至刻度,摇匀。再取该 溶液1.00 ml于100ml容量瓶中,用1%硝酸稀释至刻度,摇匀。此溶液1L含0.1mg铜。 四、实验步骤 1、将盛有高纯水的取样杯放在自动取样器的1号位置,将盛有铜标液(25μg/L)的取样杯放在自动取样 器的2号位置。将未知样品的取样杯放在3号、4号、5号……位置。 2、开机(主机、计算机、氩气、空压机和冷却水循环系统)→进入原子吸收分析系统→建立分析方法并 保存→打开方法→打开自动分析进样系统→开始分析并保存数据(同时监测分析数据)→编辑并处理数据→打印结果→关机(关空压机,氩气,冷却水循环系统,退出系统,关主机、计算机)。 建立分析方法的实验条件: 升温程序100℃(5s,20s);140℃(15s,15s);1000℃(10s,20s);2300℃(0s,5s);2600℃(1s,3s)。 取样体积20μL, 。 铜标准系列浓度5、10、15、20、25μg/L (铜标准储备液浓度25μg/L) 波长(nm):324.8nm 氩气流量:250mL/min 狭缝宽度(nm):0.7L 五、分析数据记录及实验结果 略。 六、问题讨论 1、石墨炉原子吸收法与火焰原子吸收法相比有何优点,在分析不同样品时应如何选择分析方法? 2、如何评价方法的准确度?并为本实验设计相应的实验方法。 注:本实验可自备待测水样,如各品牌矿泉水,白开水,自来水或成分简单的饮料等。

石墨炉原子吸收光谱仪

原子吸收光谱法 AtOmiC absorption SPeCtrOmetry 各种元素的原于结构不同,不同元素的原于从基态激发至第一激发态时,吸收的能量也不同,所以各元素的共振线都不相同,而具有自身的特征性。原于吸收光谱的频率V 或波长λ,由产生吸收跃迁的两能级差ΔE决定: ΔE =hv = hc∕λ 原理:利用物质的气态原于对特定波长的光的吸收来进行分析的方法。 原于吸收光谱线很窄,但并不是一条严格的理想几何线,而是占据着有限的、 相当窄的频率或波长范围,即谱线实际具有一定的宽度,具有一定的轮廓。 VO 产生谱线宽度的因素 1?自然宽度:与原于发生能级间跃迁时激发态原于的有限寿命有关,其宽度约在 10-5n m数量级;2.多普勒变宽(热变宽)3.压力变宽通常认为两个主要因素是多普勒 变宽和压力变宽。

退射光与频车的关系吸收线轮廊与半宽度 原子吸收光谱的测畳 +∞ 2 [K v dv = -NJ = KN. i mc 理论上:积分吸收与原于蒸气中吸收辐射的基态原于数成正比。 吸收系数KV将随光源的辐射频率V而改变,这是由于物质的原于对不同频率的光的吸收具有选择性。这是一种绝对测量方法,现在的分光装置无法实现。长期以来无法解决的难题! 在频率。处,吸收系数有一极大值K。称为中心吸收系数(或峰值吸收系数)。在锐线光源半宽度范围内,可以认为原于的吸收系数为常数,并等于中心波长处的吸收系数。 因为当采用锐线光源进行测量,则?ve

线宽度范围内,峰值吸收与积分吸收非常接近,可用峰值吸收代替积分吸收在锐线光源半宽度范围内,可以认为原于的吸收系数为常数,并等于中心波长处的吸收系数。 定量基础 由于NOoCNOCaC (No基态原于数,N原于总数,C待测元素浓度) 所以:A=KLN(I=KLN=KC 这表明当吸收厚度一定,在一定的工作条件下,峰值吸收测量的吸光度与被 =kN0L 测元素的含量成正比。这是原于吸收光谱定量分析法的基础。 石墨炉非火焰原子化器:利用大电流加热高阻值的石星管,产生髙达3()()0°C的 高温,使之与其中的少量试液固体熔融,可获得自由原于。 火焰的组成: 空气一乙烘火焰:最高温度约230O O C左右; N2O-乙块火焰:温度可达到3000 °C左右; 氧屏蔽空气-乙烘火焰:新型的髙温火焰,大于290OKO 原子吸收法的选择性高,干扰较少且易于克服。 由于原于的吸收线比发射线的数目少得多,这样谱线重叠的几率小得多。而且空 心阴极灯一般并不发射那些邻近波长的辐射线,因此其它辐射线干扰较小。 原子吸收具有较高的灵敏度。 在原于吸收法的实验条件下,原于蒸气中基态原于数比激发态原于数多得多,所以测定的是大部分原于。 原子吸收法比发射法具有更佳的信噪比

石墨炉原子吸收法测定大米中铅镉

不同消化方法-石墨炉原子吸收法测定大米中镉的比较 秦品芝1 摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。 关键词镉;微波消解;湿法消解;干法灰化 镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。所以,本次实验采用石墨炉原子吸收法测定大米中的镉。 前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。 实验原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm 共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。 2.实验材料 2.1仪器 原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。 2.2试剂 硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。 3.实验方法 3.1样品前处理 3.1.1干灰化法 首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。然后用硝酸将灰分小心溶解,若有少量样品灰化不完全,再补加一定量硝酸,在可控温电热板上小心加热,直至消化完全,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.2湿消解法 准确称取已粉碎的大米样品1.00g~2.00g于锥形瓶中,加盖小漏斗,加入体积比为5∶1硝酸高氯酸混合消化液15mL,于电热板上缓慢加热,反应趋于缓和后,慢慢加入1mL过氧化氢,继续加热消化直至溶液澄清,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.3微波消解法

硒 石墨炉原子吸收分光光度法

HZHJSZ0090 水质硒的测定石墨炉原子吸收分光光度法 HZ-HJ-SZ-0090 水质石墨炉原子吸收分光光度法 1 范围 本方法规定了测定水与废水中硒的石墨炉原子吸收分光光度法 方法检测限为0.003mg/L 废水中的共存离子和化合物在常见浓度下不干扰测定Zn Bi Ca Fe Cu Si Al Mg Pb6000mg/L2750mg/L2000 mg/L 750 mg/L350 mg/L150 mg/L75 mg/L 以及磷酸根硫酸根225 mg/L125 mg/L时 2 定义 2.1 溶解硒 2.2 硒总量或试样中溶解和悬浮两部分硒含量的总和 在石墨炉中形成的基态原子对特征电磁辐射产生吸收确定试样中被测元素的浓度 分析时均使用符合国家标准的分析纯试剂 4.1 硝酸(HNO3)优级纯 1.42g/Ml 4.3 载气纯度不低于99.99% 1+1 4.5 硝酸溶液用硝酸(4.1)配制 1+499 4.7 硒粉99.999% 1000mg/L±?òaê±?óèè ó?è¥à?×ó????êí?á1000mL 0.4mg/L 4.10 硝酸镍NO3 16g Ni /L溶于适量水中 5 仪器 常用实验室仪器 配有石墨炉和背景校正器 仪器操作参数参照厂家的说明进行选择 实验用的玻璃或塑料器皿用洗涤剂洗净后在硝酸溶液 (4.4)中浸泡过夜 6 试样制备 6.1 采样 用聚乙烯塑料瓶采集样品采集后立即加硝酸(4.1)酸化至pH1~2??1000mL样品中加入2mL硝酸(4.1)?é±£′?°??ê

分析溶解硒时滤液按(6.1)酸化后储存于聚乙烯瓶中 按(6.2)制备试样(7.1.3)步骤处理 7.1.2 测定硒总量时取适量试样按(8.1.2)步骤测定混匀后取适量试样置于250mL烧杯中(8.1.2)步骤测定 加入5~10mL硝酸(4.1)在电热板上加热蒸发至1mL左右颜色较深连续消解至试液清澈透明并蒸发至近干加入20mL硝酸(4.5)èü?a?éèüD???àà ó??D?ù??????è?50mL容器中 7.2 空白试验溶液的制备 在测定试样的同时取适量去离子水代替试样置于250mL烧杯中 再按(8.1.2)步骤测定 在10mL具塞比色管中加入0.1mL硝酸(4.1)和0.5mL 硝酸镍溶液(4.11)试样被测元素的浓度应在标准系列浓度范围内 mL 0 1.00 2.00 3.00 4.00 50.0 工作标准溶液浓度 表2 元素波长mA 狭缝 s 干燥120 20 灰化400 10  原子化2400 5  清洗2600 3  8.1.2 根据表2 和表3选择波长等条件以及设置石墨炉升温程序向石墨炉管内注入用(7.2)与(7.3)所制备的空白和工作标准溶液 8.1.3 用测得的吸光度与相对应的浓度绘制标准曲线 8.2.2 根据扣除空白吸光度后的试样吸光度 注在测量时 D????′2a?¨??°×oí1¤×÷±ê×?èüòo 9 结果计算

石墨炉原子吸收光谱法分析步骤教学提纲

石墨炉原子吸收光谱法分析步骤

石墨炉原子吸收光谱法分析步骤 内容摘要:压力消解罐消解法称取1.00~2.OOg试样(干样、含脂肪高的样品少于1.OOg,鲜样少于2.0g或按压力消解罐使用说明书称取试样)于聚四氟乙烯内罐,加硝酸2~4mL浸泡过夜,再加过氧化氢(总量不能超过罐容积的1/3)。盖好内盖,旋紧不锈钢外套,放人恒温干燥箱,120~140℃保持3~4h,在箱内自然冷却至室温,用滴管将消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤罐,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 (1)试样预处理在采样和制备过程中,应注意不使样品污染。粮食、豆类去杂质后,磨碎,过20目筛,储于塑料瓶中,保存备用。 (2)样品消解可根据实验室条件选用以下任何一种方法消解。 ①压力消解罐消解法称取1.00~2.OOg试样(干样、含脂肪高的样品少于1.OOg,鲜样少于2.0g或按压力消解罐使用说明书称取试样)于聚四氟乙烯内罐,加硝酸2~4mL浸泡过夜,再加过氧化氢(总量不能超过罐容积的1/3)。盖好内盖,旋紧不锈钢外套,放人恒温干燥箱,120~140℃保持3~4h,在箱内自然冷却至室温,用滴管将消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤罐,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 ②干法灰化称取1.00~5.OOg(根据镉含量而定)样品于瓷坩埚中,先小火在可调式电热板上炭化至无烟,移人马弗炉500℃灰化6~8h,冷却。若个别样品灰化不彻底,则加1mL硝酸一高氯酸(4十1)在可调式电炉上小火加热,反复多次直到消化完全,放冷,用硝酸(O.5mol/L)将灰分溶解,用滴管将样品消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 ③过硫酸铵灰化法称取1.OO~5.OOg样品于瓷坩埚中,加2~4mL硝酸浸泡1h以上,先小火炭化,冷却后加2.OO~3.OOg过硫酸铵盖于上面,继续炭化至不冒烟,转入马弗炉,500℃恒温2h,再升至800~C:,保持20min,冷却,加2~3mL硝酸(1.Omol/L),用滴管将样品消化液洗人或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 ④湿式消解法称取样品1.OO~5.OOg于三角瓶或高脚烧杯中,放数粒玻璃珠,10mL硝酸一高氯酸(4+1)(或再加1~2mL硝酸),加盖浸泡过夜,加一小漏斗电炉上消解,若变棕黑色,再加硝酸一高氯酸(4 +1),直至冒白烟,消化液呈无色透明或略带黄色,放冷用滴管将样品消化液洗入或过滤入(视消化后样品的盐分而定)10~25mL容量瓶中,用水少量多次洗涤三角瓶或高脚烧杯,洗液合并于容量瓶中并定容至刻度,混匀备用;同时做试剂空白试验。 (3)测定 ①仪器条件根据各自仪器性能调至最佳状态。参考条件为波长228.8nm,狭缝0.5~1.Onm,灯电流8~10mA,干燥温度120℃,20s;灰化温度350~C:,15~20s,原子化温度1’700~2300~(:,4~5 s,背景校正为氘灯或塞曼效应。 ②标准曲线绘制吸取上面配制的镉标准使用液0、1.OmL、2.OmL、3.OmL、5.OmL、7.OmL、10.O mL于100mL容量瓶中稀释至刻度,相当于0、1.Ong/。mL、2.Ong/mL、3.0ng/mI.、5.Ong/mL、7.Ong

石墨炉原子吸收光谱仪技术文件

石墨炉原子吸收光谱仪技术文件 1.货物名称:石墨炉原子吸收光谱仪 2.用途:用于微量铁、铜的测定,测定范围— 4.技术参数要求 仪器系统 石墨炉原子吸收光谱分析系统,包括石墨炉分析系统和自动进样系统 操作环境 电源:± , 环境温度:—℃ 环境湿度:— 光谱仪主机系统 光学系统 高性能全反射光学系统,所有光学元件均采用石英涂层保护,光学系统严格密封 单色器:波长范围,自动寻峰和扫描 光栅刻线密度:≥条 光栅有效刻线面积≥* 狭缝:,,,可调,自动调节,自动设定波长狭缝宽度和能量 波长设定:全自动检测检索,自动波长扫描 焦距:≥ 噪声:< 基线稳定性:± 仪器光谱分辨能力:可分辨和,且光谱通带为时,两线间峰谷能量≤ 灯座:≥灯位自动转换灯架,全自动切换,可用空心阴极灯和高强度超灯(可直接通用国产灯和各种同口径灯),独立于供电电路,可同时点亮两个灯,有下一灯预热和自动关灯功能。灯电流设备:— 检测器:宽范围的光电倍增管 同时具有两种背景校正技术,均可校正达的背景 背景校正:氘空心阴极灯和塞曼两种扣背景方式,交流塞曼效应,最新一代—磁场塞曼技术可直接扩展石墨炉分析的线性范围,磁场强度连续可调允许选择各个元素的最佳分析条件,调节范围:—,校正模式:—磁场和—磁场两种模式任选或自动动态选择。 石墨炉分析系统 石墨炉加热方式:横向加热方式,最高加热温度:℃ 石墨炉加热速度:最高≥℃秒。连续可调

加热控温方式:和控温技术(非传感器温控和无辐射干扰双光控温度重校技术),有过热保护和报警功能,石墨管自动格式化功能,石墨管加热电源内置主机中。 升温方式:阶梯升温、斜坡升温,升温程序可设置≥步 石墨管:热解涂层石墨管,平台管多种可选 测定方式:峰高,峰面积任意选择和互换 代表元素检测指标:检出限≤,≤ 气体控制:计算机自动控制,内外气体分别单独控制 操作软件可自动优化最佳灰化和原子化温度,智能化自动稀释,自动判断最佳稀释比 可升级配置直接固体进样附件,样品无需前处理,可直接进行固体样品检测 石墨炉自动进样器 样品位数:≥个,可加入三种以上基体改进剂,可自动配置校正曲线 进样精度:优于±,进样重复性≤ 除残功能:有智能化自动除残功能,交叉污染≤ 稀释功能:全自动智能化稀释 多次重复进样富集和热注射,智能化调节取样深度和进样注入速度 石墨炉辅助设备 石墨炉循环恒温冷却水系统,最高温度:℃ 5.计算机控制和数据处理系统 与主机相匹配的计算机 激光打印机 软件 全自动仪器及附件控制,数据采集和分析,多重任务,鼠标操作,自动设定菜单数据和校正方法,自动优化操作参数(石墨炉最佳灰化和原子化温度),智能化自动稀释,自动判断最佳稀释比:积分峰高峰面积测量,(质量控制)软件,自检和自诊断功能 6.零配件及易耗品 空心阴极灯:铁元素只,铜元素只 样品杯:聚酯样品杯个 石墨管:根 石墨炉自动进样器进样毛细管:根 石墨炉自动进样器进样针导管:根 7.售后服务 设备至少保修一年;在质保期内,非人为因素造成的质量问题保修、保退、保换,必要时提供备机 免费安装调试至仪器可正常运行,仪器到达用户现场后,在接到用户通知后一周内进行安装调试,直至通过验收;现场安装调试后,负责对用户进行免费培训,直至用户能熟练操作仪器。

石墨炉原子吸收光谱法测定食品中的铅(修改版)

石墨炉原子吸收光谱法测定食品中的铅 姓名:徐晨希班级:13资源1班学号:2013334116 食品中铅的测定有石墨炉原子吸收法、氢化物原子荧光法、火焰原子吸收法、二硫腙比色法。目前,应用较多的是石墨炉原子吸收法,但其重现性稍差,为提高其重现性,本文对铅的石墨炉原子吸收法的测定条件及影响因素进行探讨,加入基体改进剂,减少了干法灰化和湿法消化处理样品对铅测定的影响,使仪器的测定达到准确、快速的目的。 一,材料与方法 1.试剂铅标准溶液(1.0mg/mL),铅标准使用液(10.0ng/mL),硝酸(优 级纯)、高氯酸(优级纯)、磷酸铵溶液(20g/L)、混合酸:硝酸+高氯酸(4+1)、过氧化氢(30%)。 2.仪器原子吸收分光光度计 (WYX一9003原子吸收仪),热电谱通石墨管, 铅空心阴极灯,马弗炉,可调式电热板,可调式电炉,瓷坩埚。 二,测定步骤 (1)仪器工作条件:波长283.3nm,狭缝 0.5nm,灯电流 7mA,干燥温度 120℃、30s,灰化温度 450℃、20s,原子化温度 2200℃、5s,原子化阶段停气,除残2400℃、3s,进样体积 10μl,基体改进剂磷酸二氯铵(20g/L)lOμl。 (2)样品的预处理①干法灰化:取 1.0o~5.OOg 样品于瓷坩埚中,加 5ml硝酸,放置 2h,至电热板上炭化后,移人马弗炉 500℃灰化 4~6h,冷却,加入lml 混合酸和少量过氧化氢,在电炉上加热直至消化完全。冷却后,用 0.5mol/L 硝酸将灰分溶解,并移入25ml容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中,定容,混匀备用,同时作试剂空白。②湿法消化:取 1.0o一5.00g 样品于三角瓶中,加 10ml混合酸,加盖浸泡过夜。加一小漏斗于电炉上消化,补加适量混合酸,直至冒白烟,溶液呈无色透明,冷却后加少量蒸馏水,加热至冒白烟,赶酸。冷却移人 25ml容量瓶中,用少量水洗涤三角瓶,洗液合并于容量瓶,定容,混匀备用。同时作试剂空白。 (3)标准曲线绘制取铅标准使用液,用 0.5mol/ L硝酸配制成铅浓度为 0.00、5.00、10.00、20.00、 40.00、60.00、80.00μg/L的标准系列。(4)测定按仪器工作条件依次测定,标准系列和样品的吸光值,并绘制标准曲线。由标准曲线求得样品中铅的含量。 三、结果 1.灰化温度的选择其他条件不变,只改变灰化温度,当加入 10μL基体改 进剂后,灰化温度在 45℃,校准后的信号接近最大值,背景信号最低,故 450℃ 为最佳灰化温度。 2.原子化温度的选择当原子化温度达到 2200℃时,校准后的信号接近最大值,背景信号较低,故 2200℃为原子化温度的最佳温度。 3.基体改进剂加入量的选择在相同条件下测定吸光值,5μL、10μL、15μ L磷酸二氨胺的加入,与试样进样量相同的 10μL时,吸光度最大,故选 10μL为基体改进剂的加入量。

石墨炉原子吸收分光光度方法通则

MV_RR_CNJ_0023 石墨炉原子吸收分光光度方法通则 1.石墨炉原子吸收分光光度方法通则的说明 编号JY/T 023—1996 名称(中文) 石墨炉原子吸收分光光度方法通则 (英文) General rules for graphite furnace atomic absorption spectrophotometry 归口单位国家教育委员会 起草单位国家教育委员会 主要起草人邓 勃 批准日期 1997年1月22日 实施日期 1997年4月1日 替代规程号无 适用范围本标准规定了石墨炉原子吸收分光光度法,适于用新购置的和在 用的各种类型的石墨炉原子吸收分光光度计。 方法原理 主要技术要求 1. 2. 试剂和材料 3. 仪器 4. 样品分析步骤 5. 分析结果的表述 是否分级无 检定周期(年) 附录数目无 出版单位科学技术文献出版社 检定用标准物质 相关技术文件 备注 2.石墨炉原子吸收分光光度方法通则的摘要 本标准规定了石墨炉原子吸收分光光度法,适于用新购置的和在用的各种类型的石墨炉原子吸收分光光度计。 3 方法原理 原子吸收分光光度法是基于蒸气相中被测元素的基态原子对来自光源的特性辐射的共 振吸收。石墨炉原子吸收分光光度法是以电热石墨炉为原子化器进行原子吸收测定的方法。原子吸收的大小以吸光度表示,吸光度与试样中被测组分浓度之间的关系,遵循光吸收定律:

A = lg - I I - =KcL (1) 式中 A ——吸光度(其单位为A) I 0——入射辐射(光)强度 I ——透射辐射(光)强度 K ——摩尔吸光系数 c ——试样中被测组分的浓度 L ——光通过石墨炉原子化器的光程 4 试剂和材料 实验中所用的制剂和溶液按GB/T602化学试剂杂质测定用标准溶液的制备和GB/T603化学试剂试验方法中所用制剂和样品的制备中所规定的方法配制。去离子水应符合GB/T6682中实验用水二级水规格。 5 仪器 石墨炉原子吸收分光光度计应有锐线光源,石墨炉电热原子化系统、光学系统、检测器、背景校正系统与数据处理系统等主要部件。 5.1 锐线光源 锐线光源是发射被测元素特征的锐线辐射。常用的锐线光源是空心阴极灯与无极放电灯。 5.2 石墨炉原子化系统 石墨炉原子化系统应有石墨炉原子化器、冷却水箱、内外保护气气路与供电电路。石墨炉原子化器是提供能量,使被测元素化合物解离与实现原子化。石墨炉电热原子化器有管式原子化器和杯式原子化器及组合式原子化器。石墨炉电热原子化系统应设有慢速斜坡升温与快速升温两种方式。在实际工作中,采用何种升温方式取决于试样的性质。 5.3 光学系统 光学系统应有入射狭缝,准光镜,色散元件,成像物镜与出射狭缝,分光系统的核心部件是光栅。光栅应具有中等分辨能力,190nm ~900nm 光谱范围。 5.4 检测器 广泛使用的检测器是光电倍增管,光电倍增管的增益应达到106倍,暗电流小到10- 10A 。 5.5 背景校正系统 背景校正系统应有连续光源、或塞曼效应、或自吸效应校正背景装置。 5.5.1 连续光源校正背景是先用锐线光源测得分析线与背景吸收的总吸光度,再用连续光源(在紫外区用氘灯,在可见区用碘钨灯)在同一波长测量背景吸收的吸收值,两次测得的吸光度值相减,得到校正背景后的分析线的吸光度值。它测得的背景是光谱带宽范围内的平均背景,只能校正低背景吸收,不能校正精细结构与光谱干扰引起的背景。 5.5.3 塞曼效应校正背景是基于光的偏振特性。目前在商品仪器中采用吸收线调制法,调制方式有恒定磁场与可变磁场调制两种方式。 5.5.4 自吸效应校正背景是基于高电流脉冲供电时空心阴极灯发射线的自吸效应。 5.5.5 5.6 数据处理系统 由检测器阳极输出的信号经前置放大器放大,阻抗转换,锁相放大器滤波,对数变换等,

石墨炉原子吸收T基本操作规程

1.完全打开火焰燃烧器防护门,拆掉火焰原子化器分析台板。 2.拆掉火焰原子化器:拔下废液桶的液封传感器插头,按住火焰原子化器右下侧的白色按钮,并拉开燃烧器两侧的卡扣,向后按压卡扣,此时火焰原子化器将被弹出。把火焰原子化器拉出底座,将其与废液桶整体移开,并将火焰原子化器放在专用支架上。 3.拆掉石墨炉保护罩。 4.安装自动进样器,将自动进样器移至石墨炉前方,旋紧固定螺丝,不可将螺丝拧的太紧,以进样器在外力作用下不移动为准。 5.添加清洗液:取下自动进样器下方悬挂的洗液瓶,加入一定量的纯水或0.2%的硝酸(0.2%的硝酸效果最好)。 6.检查元素灯是否已安装(安装方法参阅火焰部分第6条) 7.仪器开启步骤:依次打开电脑;打开空压机,调整输出压调节旋钮,使空气过滤器中压力达到300-400KPa;打开氩气阀,将减压阀输出气压调整为350-400KPa(更换新氩气瓶时,请在打开氩气阀门前先将减压阀输出气压调至最小,然后打开氩气阀并调整减压阀输出气压);查看循环水系统,若系统内液体使用时间超过三个月,则应完全更换系统内的1:9丙三醇溶液。打开循环水系统,查看系统水位,如果水位低,则关闭系统开关,补充1:9的丙三醇溶液,注意:液面达到Max下方第二个刻度即可,不可过满。补充完液体后再打开循环水系统,并检查水温设置是否为30℃;打开仪器主机,等待仪器自检完毕后再打开操作软件“WinLab32 for AA”。并依次点击“文件”、“改换技术”、“石墨炉”,再点击工县栏中的“灯设置”设定好波长,在“开/关”列打开要使用的元素灯,在设置列点击当前要使用的元素灯灯号,并查看光能量是否正常,再关闭“灯设置”窗口。 8.打开工作区:依次点击“文件”、“打开”、“工作区域”,并打开要用的工作区文件。 9.如需更换石墨管请进行如下操作:点击“维护”中的“打开/关闭”,使该按钮右侧方块显示为绿色。移开石墨炉下方的石墨锥托架,按下石墨锥手柄,用专用石墨管夹取出已损坏的石墨管,并放入新石墨管,注意:石墨管带“耳朵”的一侧向左。托起石墨锥手柄,移回石墨锥托架。点击“维护”中的“打开/关闭”按钮使右侧方块显示为灰色。点击“新石墨管优化”。 10.调整进样针 10.1切针:如果进样针出现弯曲或切口变形等问题,点击“调节取样针位置…”按钮选

95石墨炉原子吸收光谱法检测重金属之技

九十五年度 石墨爐原子吸收光譜法檢測重金屬之技術與探討

撰寫單位:第六區管理處檢驗室 撰寫人員:鄭堡文 撰寫日期:九十五年一月至九十五年五月 目錄 一、緣起及目的......................2 二、文獻回顧.......................2 三、研究方法.......................4 四、結果與討論......................6 五、結論.........................9 六、參考文獻.......................10 表1 PERKIN ELMER AA-800砷分析條件............12 表2灰化溫度與原子化溫度之變化對測定50ug/L砷元素吸收值之影響..........................12 表3 PERKIN ELMER AA-800硒分析條件............13 表4灰化溫度與原子化溫度之變化對測定100ug/L硒元素吸收值之影響.......................... 13

表5 PERKIN ELMER AA-800鉛分析條件............14 表6灰化溫度與原子化溫度之變化對測定50ug/L鉛元素吸收值之影響..........................14 表7 PERKIN ELMER AA-800鎘分析條件............15 表8灰化溫度與原子化溫度之變化對測定2 ug/L鎘元素吸收值之影響..........................15 表9 PERKIN ELMER AA-800銻分析條件............16 表10灰化溫度與原子化溫度之變化對測定100ug/L銻元素吸收值之影響........................16 圖1灰化溫度與原子化溫度之變化對測定50ug/L砷元素吸收值之影響..........................12 圖2灰化溫度與原子化溫度之變化對測定100ug/L硒元素吸收值之影響.......................... 13 圖3灰化溫度與原子化溫度之變化對測定50ug/L鉛元素吸收值之影響..........................14 圖4灰化溫度與原子化溫度之變化對測定2 ug/L鎘元素吸收值之影響..........................15 圖5灰化溫度與原子化溫度之變化對測定100ug/L銻元素吸收值之影響..........................16

石墨炉原子吸收光谱仪技术参数

石墨炉原子吸收光谱仪技术参数 1.货物名称:石墨炉原子吸收光谱仪 2.用途:用于样品中无机成分的定量测定 3.配置 石墨炉原子吸收光谱仪主机一套 石墨炉自动进样器一套 冷却水循环装置一台 消耗品一套 电脑,打印机一套 氩气钢瓶(带气)及气阀等一瓶4.技术参数要求 4.1仪器系统 石墨炉原子吸收光谱分析系统,包括石墨炉分析系统和自动进样系统4.2操作环境 电源:交流电220V±10%,50/60Hz 环境温度:10-35°C 环境湿度:20%-80% 4.3光谱仪主机系统 4.3.1光学系统 4.3.1.1高性能全反射光学系统,所有光学元件均采用石英涂层保护,光学 系统严格密封 4.3.1.2单色器:优化的Czerny-Turner型设计波长范围:185-900nm,自 动寻峰和扫描 *4.3.1.3光栅刻线密度:≥1800条/mm 4.3.1.4 光栅有效刻线面积: ≥50 x 50 mm2 4.3.1.5狭缝:0.2,0.5,0.8, 1.2nm可调,自动调节,自动设定波长狭 缝宽度和能量 4.3.1.6波长设定:全自动检索,自动波长扫描 4.3.1.7焦距:≥350mm 4.3.1.8噪声:<0.003A

4.3.1.9基线稳定性:±0.003A 4.3.1.10仪器光谱分辨能力:可分辨279.5nm和279.8nm锰双线,且光谱 通带为0.2nm/mm时,两线间峰谷能量≤30% 4.3.1.11灯座:≥8灯位自动转换灯架,全自动切换,可用空心阴极灯和高 强度超灯(可直接通用国产灯和各种同口径灯),独立供电电路, 可同时点亮两个灯,有下一灯预热和自动关灯功能 4.3.1.12灯电流设置:0-30mA,计算机自动设定 *4.3.1.13检测器:宽范围的光电倍增管 4.3.2同时具有两种背景校正技术,均可校正达3A的背景 *4.3.2.1背景校正:氘空心阴极灯和塞曼两种扣背景方式,交流塞曼效应,最新一代3-磁场塞曼技术可直接扩展石墨炉分析的线性范围,磁场 强度连续可调允许选择各个元素的最佳分析条件,调节范围:0.1 —1.0T,校正模式:2-磁场和3-磁场两种模式任选或自动动态选择 (提供软件证明截图) 4.4石墨炉分析系统 *4.4.1石墨炉加热方式:横向加热方式,最高加热温度:3000°C(提供软件证明截图) *4.4.2石墨炉加热速度:最高≥3000°C/秒,连续可调(提供软件证明截图) 4.4.3加热控温方式:全自动,STC和ETR温控技术(非传感器温控和无辐 射干扰双光控温度重校技术),有过热保护和报警功能,石墨管自 动格式化功能,石墨炉加热电源内置主机中 4.4.4升温方式:阶梯升温、斜坡升温,升温程序可设置≥20步(提供软件 证明截图) 4.4.5石墨管:热解涂层石墨管,平台管多种可选 4.4.6测定方式:峰高,峰面积任意选择和互换 4.4.7代表元素检测指标:Cd检出限≤0.01μg/L,RSD≤2% 4.4.8气体控制:计算机自动控制,内外气流分别单独控制 4.4.9操作软件可自动优化最佳灰化和原子化温度,智能化自动稀释,自动 判断最佳稀释比 *4.4.10可升级配置直接固体进样附件,样品无需前处理,可直接进行固体样品检测(提供相关应用文章)

石墨炉原子吸收法的测定镉

石墨炉原子吸收法测定镉、铜和铅 1.方法原理 将样品注入石墨管,用电加热方式使石墨炉升温,样品蒸发离解形成原子蒸气,对来自光源的特征电磁辐射产生吸收。将测得的样品吸光度和标准吸光度进行比较,确定样品中被测金属的含量。 2.干扰及消除 石墨炉原子吸收分光光度法的基体效应比较显著和复杂。在原子化过程中,样品基体蒸发,在短波长范围出现分子吸收或光散射,产生背景吸收。可以用连续光源背景校正法,或塞曼偏振光校正法、自吸收法进行校正,也可采用邻近的非特征吸收线校正法,或通过样品稀释降低样品中的基体浓度。另一类基体效应是样品中基体参加原子化过程中的气相反应,使被测元素的原子对特征辐射的吸收增强或减弱,产生正干扰或负干扰。如氯化钠对镉、铜、铅的测定,硫酸钠对铅的测定均产生负干扰。在一定的条件下,采用标准加入法可部分补偿这类干扰。此外,也可使用基体改良剂。测铜时,20μl水样加入40%硝酸铵溶液10μl;测铅时,20μl水样加入15% 钼酸铵溶液10μl;测镉时,20μl水样加入5%磷酸钠溶液10μl。以上基体改良剂对于抑制基体干扰均有一定作用,1%磷酸溶液也可作为镉、铅测定的基体改良剂。而硝酸钯是用于镉、铜、铅最好的基体改进剂,同时使用La、W、Mo、Zn等金属碳化物涂层石墨管测定,既可提高灵敏度,也能克服基体干扰。 3.方法的适用范围 本法适用于地下水和清洁地表水。分析样品前要检查是否存在基体干扰并采 取相应的校正措施。测定浓度范围与仪器的特性有关,表3-4-23列出一般仪器的测定浓度范围。 4.仪器

原子吸收分光光度计,石墨炉装置、背景校正装置及其他有关附件。 表3-4-23 分析线波长和适用浓度范 镉 228.8 0.1~2 铜 324.7 1~50 铅 283.3 1~5 5.试剂 ①硝酸,优级纯。 ②硝酸(1+1),0.2%。 ③去离子水:金属含量应尽可能低,最好用石英蒸馏器制备的蒸馏水。 ④硝酸钯溶液:称取硝酸钯0.108g溶于10ml(1+1)硝酸,用水定容至500ml,则含Pd10μg/ml。 ⑤金属标准贮备溶液:见本节方法(一)。 ⑥混合标准溶液:由标准贮备溶液稀释配制,用0.2%硝酸进行稀释。制成的溶液每毫升含镉、铜、铅0,0.1, 0.2,0.4,1.0,2.0μg,含基体改进剂钯1μg的标准系列。 6.步骤 (1)试样的预处理

相关主题
文本预览
相关文档 最新文档