当前位置:文档之家› 考研数学矩阵分解

考研数学矩阵分解

考研数学矩阵分解

考研数学复习打好基础很重要,线性代数是数学复习的重难点,考生要多加研究。下面中公考研为大家总结线代部分基础知识点,希望大家稳扎稳打,争取赢得数学高分。

1 / 1

考研数学线性代数知识点梳理

从近几年的真题来看,数学线性代数出题没有过多的变化,2014年的考研[微博]学子们,如何做到在千军万马中胜出,需要我们提前准备,更要做到心中有数,下面跨考教育[微博]数学教研室张老师就考研中线性代数部分的复习重点 在考前再给大家梳理一遍。 一、行列式与矩阵 第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练 掌握。 行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计 算,其中具体行列式的计算又有低阶和高阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。对于抽象行列式的求值,考点不在求行列式,而在于相关性质,矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、运算性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初 等矩阵的性质等。 二、向量与线性方程组 向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。 向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。 解线性方程组可以看作是出发点和目标。线性方程组(一般式) 还具有两种形式:(1)矩阵形式,(2)向量形式。 1)齐次线性方程组与线性相关、无关的联系 齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。 齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成 立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关无关的概念就是为了更好地讨论线 性方程组问题而提出的。

第3章 矩阵及其运算

第3章 矩阵及其运算 3.1 基本要求、重点难点 基本要求: 1.1.掌握矩阵的定义. 2.2.掌握矩阵的运算法则. 3.3.掌握伴随矩阵的概念及利用伴随矩阵求逆矩阵的方法. 4.4.掌握矩阵秩的概念及求矩阵秩的方法. 5.5. 掌握初等变换和初等矩阵的概念,能够利用初等变换计算矩阵的秩,求可逆矩阵的逆矩阵. 6.6.掌握线形方程组有解得判定定理及其初等变换解线形方程组的方法. 重点难点:重点是矩阵定义,矩阵乘法运算,逆矩阵的求法,矩阵的秩,初等 变换及线性方程组的解. 难点是矩阵乘法,求逆矩阵的伴随矩阵方法. 3.2 基本内容 3.2.1 3.2.1 重要定义 定义3.1 由n m ?个数)2,1;,2,1(n j m i a ij ==组成的m 行n 列的数表成为一个m 行n 列矩阵,记为 ????????????mn m m n n a a a a a a a a a 2122221 11211 简记为A n m ij a ?=)(,或A )(ij a =,n m A ?,mn A 注意行列式与矩阵的区别: (1) (1) 行列式是一个数,而矩阵是一个数表. (2) (2) 行列式的行数、列数一定相同,但矩阵的行数、列数不一定相 同. (3) (3) 一个数乘以行列式,等于这个数乘以行列式的某行(或列)的所有元素,而一个数乘以矩阵等于这个数乘以矩阵的所有元素. (4) (4) 两个行列式相等只要它们表示的数值相等即可,而两个矩阵相等则要求两个矩阵对应元素相等. (5) (5) 当0||≠A 时,||1A 有意义,而A 1 无意义.

n m =的矩阵叫做阶方阵或m 阶方阵.一阶方阵在书写时不写括号,它在 运算中可看做一个数. 对角线以下(上)元素都是0的矩阵叫上(下)三角矩阵,既是上三角阵, 又是下三角的矩阵,也就是除对角线以外的元素全是0的矩阵叫对角矩阵.在对角矩阵中,对角线上元素全一样的矩阵叫数量矩阵;数量矩阵中,对角线元素全是1的n 阶矩阵叫n 阶单位矩阵,常记为n E (或n I ),简记为E (或I ),元素都是0的矩阵叫零矩阵,记为n m 0?,或简记为0. 行和列分别相等的两个矩阵叫做同型矩阵,两个同型矩阵的且对应位置上的 元素分别相等的矩阵叫做相等矩阵. 设有矩阵A =n m ij a ?)(,则A -n m ij a ?-=)(称为A 的负矩阵. 若A 是方阵,则保持相对元素不变而得到的行列式称为方针A 的行列式,记 为||A 或A Det . 将矩阵A 的行列式互换所得到的矩阵为A 的转置矩阵,记为T A 或A '. 若方阵A 满足A A T =,则称A 为对称矩阵,若方阵A 满足A A T -=,则称A 为反对称矩阵. 若矩阵的元素都是实数,则矩阵称为实矩阵.若矩阵的元素含有复数,则称矩 阵为复矩阵,若A =n m ij a ?)(是复矩阵,则称矩阵n m ij a ?)((其中ij a 为ij a 的共轭矩阵,记为A n m ij a ?=)(. 定义3.2 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得E BA AB ==,则 称方阵A 可逆,B 称为A 的逆矩阵,记做1-=A B . 对于方阵A n m ij a ?=)(,设ij a 的代数余子式为ij A ,则矩阵 *A ????????????=nm n n n n A A A A A A A A A 2122212 12111 称为A 的伴随矩阵,要注意伴随矩阵中元素的位置. 定义3.3 设有矩阵A ,如果: (1) (1) 在A 中有一个r 阶子式D 不为零.

2016考研数学:矩阵二项式分析及其应用

2016考研数学:矩阵二项式分析及其应用 来源:文都教育 线性代数是考研数学的一个科目,而矩阵是线性代数中最基本、最重要的一个工具,其它内容都需要用到矩阵作为分析和解决问题的工具。矩阵的一些运算在形式上与数的运算有些相似之处,如逆矩阵的定义与数的倒数有些相似,线性方程组AX b =的求解,在系数矩 阵A 可逆时,其解为1X A b -=,这与一元一次方程ax b =的解1 x a b -=(0a ≠)相似; 与数的二项公式0 ()n n k n k k n k a b C a b -=+= ∑相应的也有矩阵的二项公式,下面我们就来分析一 下矩阵的二项公式及其应用。 一、矩阵二项式公式 公式:如果矩阵A 和B 可交换,即AB BA =,则 112221 10 ()n n k n k k n n n n n n n n n n k A B C A B A C A B C A B C AB B -----=+==+++++∑ ,n 为正 整数,(1)(1)! k n n n n k C k --+= 为排列组合中的组合数(注:00 A B E ==). 证 : 当 1 n =时, 等式显然成立 ;当 2 n =时, 22 2 2 222()()()2A B A B A B A A B B A B A A B B A + = ++=+ ++=+ += +; 假设对n 时等式成立,则对1n +时, 1112221 1()()()()()n n n n n n n n n n n A B A B A B A B A C A B C A B C AB B +----+=++=++++++= 1121211111()()()n n n n n n n n n n n n n A C A B BA C A B BC A B AB BC AB B +----+=++++++++ , ∵AB BA =,∴223223 ,()()BA BAA ABA AAB A B BA BA A A B A A B =======, 一 般地 k k BA A B =,因此,

矩阵数值算法

计算实习报告 一 实习目的 (1)了解矩阵特征值与相应特征向量求解的意义,理解幂法和反幂法的原理, 能编制此算法的程序,并能求解实际问题。 (2)通过对比非线性方程的迭代法,理解线性方程组迭代解法的原理,学会编 写Jacobi 迭代法程序,并能求解中小型非线性方程组。初始点对收敛性质及收 敛速度的影响。 (3)理解 QR 法计算矩阵特征值与特征向量的原理,能编制此算法的程序,并 用于实际问题的求解。 二 问题定义及题目分析 1. 分别用幂法和幂法加速技术求矩阵 2.5 2.5 3.00.50.0 5.0 2.0 2.00.50.5 4.0 2.52.5 2.5 5.0 3.5-?? ?- ?= ?-- ?--?? A 的主特征值和特征向量. 2. 对于实对称矩阵n n ?∈A R ,用Jacobi 方法编写其程序,并用所编程序求下列矩阵的全部 特征值. 1515 4 1141144114114?-?? ?-- ? ?- ?= ? ?- ?-- ? ?-??A 3. 对于实矩阵n n ?∈A R ,用QR 方法编写其程序,并用所编程序求下列矩阵的全部特征值: 111 21 113,4,5,62311111n n n n n n ? ???? ?????==+? ????? ??+??A 三 概要设计 (1) 幂法用于求按模最大的特征值及其对应的特征向量的一种数值算法,

它要求矩阵 A 的特征值有如下关系: 12n ...λλλ>≥≥ ,对于相应 的特征向量。其算法如下: Step 0:初始化数据0,, 1.A z k = Step 1:计算1k k y A z +=。 Step 2:令 k k m y ∞=。 Step 3:令 k k k z y m = ;如果1k k m m +≈或1k k z z +≈,则 goto Step 4;否则 , k = k + 1 ,goto Step 1。 Step 4:输出结果 算法说明与要求 输入参数为实数矩阵、初始向量、误差限与最大迭代次数。输出 参数为特征值及相对应的特征向量。注意初始向量不能为“0”向量。 (2) 迭代法的原理 如果能将方程 Ax =b 改写成等价形式:x=Bx+f 。如果B 满足:ρ(B )<1,则对于任意初始向量 x (0) ,由迭代 x ( k + 1) = Bx (k ) + f 产生的序列均收敛到方程组的精确解。迭代法中两种最有名的迭代法就是Jacobi 迭代法,它的迭代矩阵 B 为: 1()J D L U -=-+,1 f D b -= 其中,D 为系数矩阵 A 的对角元所组成对角矩阵,L 为系数矩阵 A 的对角元下方所有元素所组成的下三角矩阵,U 为系数矩阵 A 的对角元上方所有元素所组成的上三角矩阵。 算法如下: Step 0:初始化数据 00,,,,k A b x δ=和ε。 Step 1:计算D,L,U,J 或G, 得到迭代矩阵B. Step 2::1k k =+ 0x B x f * =+ 0x x = 如果0x x δ-<或()f x ε≤,goto Step 3?否则 goto Step 2。 Step 3:输出结果。 程序说明与要求

考研数学二(矩阵)-试卷11.doc

考研数学二(矩阵)-试卷11 (总分:48.00,做题时间:90分钟) 一、选择题(总题数:6,分数:12.00) 1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数: 2.00) __________________________________________________________________________________________ 2.设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r 1,则( )(分数:2.00) A.r>r 1。 B.r<r 1。 C.r=r 1。 D.r与r 1的关系依C而定。 3.设A是m×n矩阵,B是n×m矩阵,则( )(分数:2.00) A.当m>n,必有行列式|AB|≠0。 B.当m>n,必有行列式|AB|=0。 C.当n>m,必有行列式|AB|≠0。 D.当n>m,必有行列式|AB|=0。 4.设A为m×n矩阵,B为n×m矩阵,若AB=E,则( )(分数:2.00) A.r(A)=m,r(B)=m。 B.r(A)=m,r(B)=n。 C.r(A)=n,r(B)=m。 D.r(A)=n,r(n)=n。 5. 2.00) A.a=1时,B的秩必为2。 B.a=1时,B的秩必为1。 C.a≠1时,B的秩必为1。 D.a≠1时,B的秩必为2。 6.已知 2.00) A.3。 B.2。 C.1。 D.1或3。 二、填空题(总题数:10,分数:20.00) 7.设(2E一C 一1 B)A T =C 一1,其中E是四阶单位矩阵, 2.00) 填空项1:__________________ 8.设矩阵 2.00) 填空项1:__________________ 9. 2.00) 填空项1:__________________ 10.已知n阶矩阵 2.00) 填空项1:__________________

矩阵链算法

/************************ Matrix Chain Multiplication ***************************/ /************************ 作者:Hugo ***************************/ /************************ 最后修改日期:2015.09.10 ***************************/ /************************ 最后修改人:Hugo ***************************/ using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Text.RegularExpressions; using System.Collections; namespace Matrix { class Program { public static int nummulti = 0; static ArrayList list1 = new ArrayList();//定义计算式存储列表 static ArrayList listrow = new ArrayList();//定义矩阵行数存储列表 static ArrayList listcolumn = new ArrayList();//定义矩阵列数存储列表 static void Main(string[] args) { /****************************************************************************** *****************/ //从键盘上获取矩阵 int nummatrix = Int32.Parse(Console.ReadLine()); int countmat = 0; for (countmat = 0; countmat < nummatrix; countmat++) { string s = Console.ReadLine(); string[] str = s.Split(' ');//把输入的一行字符按空格拆分 listrow.Add(Int32.Parse(str[1]));//行数存储到矩阵行数存储列表 listcolumn.Add(Int32.Parse(str[2]));//列数存储到矩阵列数存储列表

考研数学三必背知识点:线性代数

线性代数必考知识点 一、行列式 1、逆序数 一个排列n i i i i ,,,321若有类似21i i 时,我们称21i i 组成一个逆序。一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i 2、行列式性质 (1) 行列式行列互换,其值不变,即T A A (2) 行列式两行或两列互换,其值反号。 (3) 行列式某行或某列乘以k 等于行列式乘以k 。 (4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。 (5) 行列式两行或两列对应成比例,则行列式为零。 (6) 行列式某行或某列元素为零,则行列式为零。 (7) 上、下三角行列式其值为主对角线上元素乘积。 (8) 行列式值等于对应矩阵所有特征值的乘积,即n A 21 (9) 齐次线性方程组0 Ax 有非零解n A r A )(0 3、行列式行列展开定理 (1) 余子式ij j i ij A M )1( (2) 代数余子式ij j i ij M A )1( 4、三阶行列式展开公式 33211232231131221332211331231233221133 32 3123222113 1211a a a a a a a a a a a a a a a a a a a a a a a a a a a 二、矩阵 1、矩阵运算 (1) 矩阵加减法即是将对应元素进行加减。 (2) 矩阵乘法是将对应行与对应列元素相乘再相加。 (3) 矩阵除法是乘以逆矩阵。 (4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。 (5) n 阶方阵一般可以有1*,,, A A A A T 四大基本矩阵运算 2、矩阵的行列式 (1) A k kA A A n T , (2) A B B A BA AB 3、矩阵转置 (1) T T T T T T T T T T A B AB kA kA B A B A A A )(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

GE矩阵+计算方法+案例(一班三组)

GE矩阵法及其使用方法介绍 一、GE矩阵法概述 GE矩阵法又称通用电器公司法、麦肯锡矩阵、九盒矩阵法、行业吸引力矩阵是美国通用电气公司(GE)于70年代开发了新的投资组合分析方法。对企业进行业务选择和定位具有重要的价值和意义。GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 二、方格分析计算方法介绍: GE矩阵可以用来根据事业单位在市场上的实力和所在市场的吸引力对这些事业 单位进行评估,也可以表述一个公司的事业单位组合判断其强项和弱点。在需要 对产业吸引力和业务实力作广义而灵活的定义时,可以以GE矩阵为基础进行战 略规划。按市场吸引力和业务自身实力两个维度评估现有业务(或事业单位),

每个维度分三级,分成九个格以表示两个维度上不同级别的组合。两个维度上可以根据不同情况确定评价指标。 绘制GE矩阵,需要找出外部(行业吸引力)和内部(企业竞争力)因素,然后对各因素加权,得出衡量内部因素和市场吸引力外部因素的标准。当然,在开始搜集资料前仔细选择哪些有意义的战略事业单位是十分重要的。 1. 定义各因素。选择要评估业务(或产品)的企业竞争实力和市场吸引力所需的重要 因素。在GE内部,分别称之为内部因素和外部因素。下面列出的是经常考虑的一些因素(可能需要根据各公司情况作出一些增减)。确定这些因素的方法可以采取头脑风暴法或名义群体法等,关键是不能遗漏重要因素,也不能将微不足道的因素纳人分析中。 2. 估测内部因素和外部因素的影响。从外部因素开始,纵览这张表(使用同一组经理), 并根据每一因素的吸引力大小对其评分。若一因素对所有竞争对手的影响相似,则对其影响做总体评估,若一因素对不同竞争者有不同影响,可比较它对自己业务的影响和重要竞争对手的影响。在这里可以采取五级评分标准(1=毫无吸引力,2=没有吸引力,3=中性影响,4=有吸引力,5=极有吸引力)。然后也使用5级标准对内部因素进行类似的评定(1=极度竞争劣势,2=竞争劣势,3=同竞争对手持平,4=竞争优势,5=极度竞争优势),在这一部分,应该选择一个总体上最强的竞争对手做对比的对象。 具体的方法是:- 确定内外部影响的因素,并确定其权重- 根据产业状况和企业状况定出产业吸引力因素和企业竞争力因素的级数(五级)- 最后,用权重乘以级数,得出每个因素的加权数,并汇总,得到整个产业吸引力的加权值 下面分别用折线图和表格两种形式来表示。

最新考研数学矩阵8大秩及其证明

考研数学矩阵的8大秩及其证明2009 ()1 证明:根据矩阵秩的定义直接得出。 ()2 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥ 因而:()(){}(), , Max R A R B R A B ≤成立。 又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~ ~ , A B 1110 3 810 1100 1000?? ? ? ? ? ??? 如:就是列阶梯形 用~ ~~ ~ 1 1 , r r a a b b 分别表示非全零列,则有: ()~ ~~ ()1~~ ~ ~~ ()1 , 00, , , 0 0表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ????? ?? ???→? ????? ??????→= ???? ? 由于初等变换后互为等价矩阵,故()~~, , R A B R A B ?? = ??? 而矩阵~~, A B ?? ???只含有r t +个非全零列,所以:()()~~~~, , R A B r t R A B R A R B ???? ≤+?≤+ ? ????? 。 综合上述得:()(){}()()(), , Max R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。 ●如B E =,设()(), , m n m R A B R A E ?=, 则 ()()() , , m n m m m n m m R A E R E m R A E m ??≥≥=?= ()3 证明: ()()()()()()()()()()()() 2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知 ()4 证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解 ()()()() () ()()()()()(){},min , T R B R B T T T T T T T B A C R B R B C R C R B R C R C R AB R A R B n ==?=≥???? ?→≥?=≤≤又, ()2 设()(), m n n s R A r R B t ??== 则A 的标准型为000r m n E ??? ???,B 的标准型为000t n s E ??? ??? 存在可逆矩阵, , , m s n n P Q P Q 使:

考研数学考试大纲

2013考研数学(三)考试大纲 考试科目:微积分.线性代数.概率论与数理统计 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 微积分 约56% 线性代数 约22% 概率论与数理统计22% 四、试卷题型结构 试卷题型结构为: 单项选择题选题 8小题,每题4分,共32分 填空题 6小题,每题4分,共24分 解答题(包括证明题) 9小题,共94分 微积分 一、函数、极限、连续 考试内容 函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限: 0sin lim 1x x x →= 1lim 1x x e x →∞??+= ??? 函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系. 2.了解函数的有界性.单调性.周期性和奇偶性. 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念. 4.掌握基本初等函数的性质及其图形,了解初等函数的概念. 5.了解数列极限和函数极限(包括左极限与右极限)的概念. 6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法. 7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系. 8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型. 9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质. 二、一元函数微分学 考试内容

动态规划矩阵连乘算法

问题描述:给定n个矩阵:A1,A2,...,A n,其中A i与A i+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。 问题解析:由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。 完全加括号的矩阵连乘积可递归地定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC) 例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。 看下面一个例子,计算三个矩阵连乘{A1,A2,A3};维数分别为10*100 , 100*5 , 5*50 按此顺序计算需要的次数

((A1*A2)*A3):10X100X5+10X5X50=7500次,按此顺序计算需要的次数(A1*(A2*A3)):10*5*50+10*100*50=75000次 所以问题是:如何确定运算顺序,可以使计算量达到最小 化。 算法思路: 例:设要计算矩阵连乘乘积A1A2A3A4A5A6,其中各矩阵的维数分别是: A1:30*35; A2:35*15; A3:15*5; A4: 5*10; A5:10*20; A6:20*25 递推关系: 设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]。 当i=j时,A[i:j]=A i,因此,m[i][i]=0,i=1,2,…,n 当i

Excel中矩阵的运算

nxn方阵对应行列式的值 第二步,选中A4单元格,在“插入”菜单中选中“函数”菜单项: 第三步,在打开的“函数”对话框中,选中“MDETERM”函数如图2,并按“确定”按钮: 第四步,在弹出的对话框中输入矩阵所在的地址,按确定即得到行列式的值。 矩阵求和 已知 第二步,在A5单元格中输入公式:=A1+El,按回车,这时A5中显示数字7; 第三步,选中A5单元格,移动鼠标至其右下角,鼠标形状变为黑色十字时,按下鼠标左键往右拖至C5,B5和C5中分别显示一3.3。同样的方法选中A5:C5,往下拖至A7:C7,便得到A+B的值。 矩阵求逆 第一步,在A1:C3中输入矩阵A; 第二步。选中A5:C7,“插入”→“函数”→“MINVERSE”→“确定”: 第三步,在“array”项中输入A1:C3,按F2,同时按CTRL+SHIFF+ENTER即可如图6。 5矩阵转置 第一步,在Al:C3中输入矩阵A,并选中; 第二步,“编辑”→“复制”; 第三步,选中A5,“编辑”→“选择性粘贴”→“转置”→确定”。 矩阵求秩 6.1矩阵秩的概念 定义设A是mxn矩阵,从A中任取k行k列(k≤min(m,n)),由这些行、列相交处的元素按原来的次序所构成的阶行列式,称为矩阵A的一个k阶子行列式,简称k阶子式。 定义矩阵A的所有不为零的子式的最高阶数r称为矩阵A的秩,记作r(A),即r(A)=r。 6.2矩阵秩的数学求法 6.2.1行列式法:即定义从矩阵的最高阶子式算起,计算出不等于零的子式的最高阶数r,此r即为该矩阵的秩。 6.2.2行初等变换法:用初等行变换化矩阵为阶梯形矩阵,此阶梯形矩阵非零行的行数r就是该矩阵的秩。 6.3利用EXCEL求矩阵秩 方法一,根据矩阵秩的定义,可以求所有不为零子式的最高阶数。 求矩阵A的秩. 显然A是4x4矩阵,4为其所有子式的最高阶数。先求IAI的值,若|A|不为零,则矩

考研数学之方阵幂的计算方法

Born To Win 考研数学之方阵幂的计算方法 考研数学中线性代数部分的分数占了整体的百分之二十二,是整个考研数学不可缺少的部分,其章节内容与高等数学和概率统计没有太多联系,其知识点具有细致性和整体性,前后章节联系比较密切。 线性代数中的矩阵部分是整个线代非常重要的部分,也是要求我们同学要掌握透彻的一个部分,而其中关于方阵幂的问题是跨考教育老师上课时所重点强调的,方阵幂的计算是要求我们要掌握的。在授课过程中,每位教授这门课的老师都会跟同学们来总结有关方阵幂的计算,也都分了情况给大家展示了其各种类型的计算方法。 首先对于矩阵行或者列均成比例的矩阵,这种类型的矩阵可以写成一列乘以一行的形式,列是矩阵各列的最简公约数,行也是此矩阵各行的最简公约数。其n次幂的求法,我们也总结过,也给大家推到过。 其次是特殊的上(下)三角n次幂的运算问题,我们也总结了,把其分解成单位矩阵和特殊上(下)三角来处理的,并且运用了二项式展开的知识。 然后就是利用相似对角化的知识来求n次幂的运算问题,像刚刚过去的2016年考研中数一、数二、数三都出现了一道关于幂运算的题,要我们求矩阵A的99次幂等于多少。这种题目主要是先求出矩阵的特征值再求出其对应的特征向量,利用相似对角化来求这一题。当然这种题目要求我们同学一定要仔细,不要出现计算上到错误。 最后还有关于带有两个零的拉普拉斯问题,这种分块矩阵,有时也会有相关题目出现。 方阵幂的计算问题希望同学们在接下来的学习过程中认真对待,对于这种类型的题目要融会贯通,不同类型的幂的计算问题对应于相应的方法来解决。 整个考研数学中线性代数部分算是相对较简单的一个科目,因此,对于线性代数这一部分的希望同学们尽量不要失分。

计算方法_矩阵LU分解法

clear all; %A=LU矩阵三角分解法 n=input('输入方矩阵的维数: '); for i=1:n for j=1:n A(i,j)=input('依次输入矩阵元素:'); end end %输入一个n阶方形矩阵 for j=1:n L(j,j)=1; %Doolittle分解,L对角元素全为1 end for j=1:n U(1,j)=A(1,j); end %U的第一行 for i=2:n L(i,1)=A(i,1)/U(1,1); end %L的第一列 for k=2:n for j=k:n sum1=0; for m=1:k-1 sum1=sum1+L(k,m)*U(m,j); end %求和 U(k,j)=A(k,j)-sum1; end for i=k+1:n sum2=0; for m=1:k-1 sum2=sum2+L(i,m)*U(m,k); end %求和 L(i,k)=(A(i,k)-sum2)/U(k,k); end end L %输出下三角矩阵L U %输出上三角矩阵U

运行结果:(示例) 输入方矩阵的维数: 4 依次输入矩阵元素: 1 依次输入矩阵元素: 1 依次输入矩阵元素: 2 依次输入矩阵元素: 3 依次输入矩阵元素:0 依次输入矩阵元素: 2 依次输入矩阵元素: 1 依次输入矩阵元素: 2 依次输入矩阵元素: 1 依次输入矩阵元素:-1 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 2 依次输入矩阵元素: 5 依次输入矩阵元素:9 A=LU分解后则可以求解Ax=b线性方程组,相关计算参考计算方法,这里不再详细介绍。

一类矩阵的若干性质及其在考研数学中的应用(原创)

矩阵T αβ的若干性质及其在考研数学中的应用 设向量βα,均为n 维非零列向量,记T αβA =。通过对历年考研试题的研究发现,线性代数部分比较重视对矩阵A 性质的考查,而课本和相关考研辅导书对这些性质没有做系统的研究,从而导致考研学生在遇到相关题目时不知所措。本文将研究矩阵A 的性质,并借助考研数学真题来说明这些性质的应用,进而强调掌握好这些性质的重要性。 1 矩阵),(00≠≠=βααβA T 的性质 性质1 矩阵),(00≠≠=βααβA T 的秩为1。 证明:令()0αT ≠=n a a a ,,,21 ,()0βT ≠=n b b b ,,,21 ,不妨设0≠i a ,则 ????????? ???????→????????????????→????????????????=00000021212112111212112111 n n n n n n n n n n n n i i i n b b b b a b a b a b b b b a b a b a b a b a b a b a b a b a b a b a b a A ????????????? ???→00 000000021 n b b b ,于是A 的秩为1。 性质2 A αβA n 1T )(-=n 。注意,αβT 就是A 的迹。 该性质利用矩阵乘法的结合律即可证明。由于秩为1的矩阵总可以表示为矩阵A 的形式[1] ,因此上述性质也可推广到以下结论: 推论1 秩为1的矩阵的n 次方等于该矩阵迹的n —1次方乘以这个矩阵本身。 性质3 当0≠=βα即T ααA =时,A 的全部特征值分别为0002,,,, α,其中唯一非零特征值对应的线性无关的特征向量为α。 证明:因为矩阵A 是实对称矩阵,所以它一定相似于一个对角阵 ????????????=n 21λλλ Λ 其中n λλ,,1 为A 的n 个特征值。由性质1,1)(=A r ,又因为相似矩阵有相同的秩,故

矩阵的简单运算公式

矩阵的运算 (一) 矩阵的线性运算 特殊乘法:222()A B A AB BA B +=+++ 2 22 ()()() A B A B A B A B =≠ (二) 关于逆矩阵的运算规律 111 1 1 11 1 1(1)()(2)() /(3)( )( )(4)()( ) T T n n A B B A k A A k A A A A ---------==== (三) 关于矩阵转置的运算规律 (1)()(2)()T T T T T T A B B A A B B A =+=+ (四) 关于伴随矩阵的运算规律 **1 *2 ***1* **1*11**1(1)(2)(2)(3)()(4)(), ()(5)()1,()1 0,()2(6)()()()n n n AA A A A E A A n A A A kA k A n r A n r A r A n r A n A A A A A A A A A -------===≥===?? ==-??≤-?= ==若若若若可逆,则,, (五) 关于分块矩阵的运算法则 1 1 1 110000(2)000 0T T T T T A B A C C D B D B B B C C C C B -----?? ?? =????????????????==????????????????(1);, (六) 求变换矩阵 ()121 1 2 11121311111121222321121121313233313131100(a )(2)i n n i i i ij i i i i A T TAT T P P P AP P A a a a p p p a a a p p P p a a a p p p AP P P i λλλλλλλ--?? ? ?= ? ? ? ?===???????? ??? ? ? =→= ??? ? ? ??? ? ?????????=+≥已知矩阵,及其特征值求使得,设,则其中若有重根则时再1 T T -由求 (七) 特征值与矩阵

矩阵连乘算法

福州大学数学与计算机科学学院 《计算机算法设计与分析》上机实验报告(2)

i<=k

考研数学(数学三)公认教材及参考书:

考研数学(数学三)公认教材及参考书 高等数学:同济五版 线性代数:同济六版 概率论与数理统计:浙大三版 推荐资料: 1、李永乐考研数学3--数学复习全书+习题全解(经济类) 2、李永乐《经典400题》 3、《李永乐考研数学历年试题解析(数学三)真题》 考研数学规划: 课本+复习指导书+习题集+模拟题+真题=KO 复习资料来说:李永乐的不错,注重基础;陈文灯的要难一些。 经济类一般都用李永乐的(经济类数学重基础不重难度),基础好的话可以考虑下陈文灯的书。李永乐的线性代数很不错陈文灯的高等数学很不错 2009年全国硕士研究生入学统一考试数学(三)考试大纲 考试科目:微积分、线性代数、概率论与数理统计 考试形式和试卷结构: (一)试卷满分为150分考试时间为180分钟. (二)内容结构:高等教学约56%线性代数约22% 概率论与数理统计约22% (三)题型结构: 单项选择:8小题,每小题4分,共32分 填空题:6小题,每小题4分,共24 解答题(包括证明题):9小题,共94分 全国硕士研究生入学统一考试英语考试大纲 完形填空:10分(20道选择题每题0.5分)[可以抛弃的题型] 阅读:60分 其中阅读A部分(阅读理解):40分(20道选择题每题2分)(这个是重中之重) 阅读B部分(新题型):10分(5道题每题2分一共有四种题型) 阅读C部分(翻译):10分(5道题每题2分) 作文:30分(除了阅读A之外最重要的部分) 小作文(书信作文):10分 大作文(图画作文):20分

微积分 一函数极限连续 考试内容 函数的概念及表示方法函数的有届性单调性周期性和奇偶性复合函数反函数分段函数和隐函数基本初等函数的性质及其图形初等函数函数的关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质和无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限 函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质 二一元函数微分学 考试内容 导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达法则函数的单调性判别函数的极值函数的图形的凹凸性拐点及渐近线函数图形的描绘函数的最大值和最小值 三一元函数积分学 考试内容 原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱不尼茨公式不定积分和定积分的换元积分法和分部积分法反常积分定积分的应用 四多元函数微积分学 考试内容 多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法语隐函数求导法二阶偏导数全微分多元函数的机制和条件极值最大值最小值二重积分的概念基本性质和计算无界区域上的简单的反常二重积分 五无穷级数 考试内容 常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理冥级数及其收敛半径收敛区间(指开区间)和收敛域冥级数的和函数冥级数在其收敛区间的基本性质简单冥级数的和函数的求法初等函数的冥级数展开式 六常微分方程和差分方程 考试内容 常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用

相关主题
文本预览
相关文档 最新文档