当前位置:文档之家› 考研数学矩阵乘法复习指导

考研数学矩阵乘法复习指导

考研数学矩阵乘法复习指导
考研数学矩阵乘法复习指导

考研数学矩阵乘法复习指导

考研数学矩阵乘法复习指导

1.若A,B都是n阶方阵,则|AB|=|A||B|。

我们知道,|A+B|难解。相比之下,乘积算法复杂得多,而积矩

阵行列式公式却如此简明,自然显示了矩阵乘法之成功。

特别地,如果AB=BA=E,则称B是A的逆阵;或说A与B互逆。

A*是A的代数余子式按行顺序转置排列成的。之所以这样做,就是恰好有(基本恒等式)AA*=A*A=|A|E,顺便有|A|≠0时,

|AA*|=||A|E|,故|A*|=|A|的n-1次方。

2.对矩阵实施三类初等变换,可以通过三类初等阵分别与矩阵相乘来实现。“左乘行变,右乘列变。”给理论讨论及应用计算机带

来很大的方便。

3.分块矩阵乘法,形式多样,内函丰富。

要分块矩阵乘法可行,必须要在“宏观”与“微观”两方面都确保可乘。

AB=A(b1,b2,——,bs)=(Ab1,Ab2,——,Abs)

宏观可乘:把各分块看成一个元素,满足阶数规则

(1×1)(1×s)=(1×s).

微观可乘:相乘的子块都满足阶数规则。(m×n)(n×1)=(m×1),具体如,Ab1是一个列向量

AB=0的基本推理

AB=0,即(Ab1,Ab2,——,Abs)=(0,0,——,0)

→B的每一个列向量都是方程组Ax=0的解。

→B的列向量组可以被方程组Ax=0的基础解系线性表示。

→r(B)≤方程组Ax=0的解集的秩=n-r(A)→r(B)+r(A)≤n.

例:已知(n维)列向量组a1,a2,——,ak线性无关,A是

m×n阶矩阵,且秩r(A)=n,试证明,Aa1,Aa2,——,Aak线性无

分析设有一组数c1,c2,——,ck,使得c1Aa1+c2Aa2+——

+ckAak=0.

即A(c1a1+c2a2+——+ckak)=0.

这说明c1a1+c2a2+——+ckak是方程组Ax=0的解。

但是,方程组Ax=0的解集的秩=n-r(A)=0,方程组Ax=0仅有0解。

故c1a1+c2a2+——+ckak=0由已知线性无关性得常数皆为0.

概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系是线性代数课程的特点,故考生应充分理解概念,

掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法,并及时进行总结,抓联系,使学知识能融会贯通,举一

反三,根据以前大纲的要求,这里再具体指出如下:

行列式的重点是计算,利用性质熟练准确的计算出行列式的值。矩阵中除可逆阵、伴随阵、分块阵、初等阵等重要概念外,主要也

是运算,其运算分两个层次,一是矩阵的符号运算,二是具体矩阵

的数值运算。例如在解矩阵方程中,首先进行矩阵的符号运算,将

矩阵方程化简,然后再代入数值,算出具体的结果,矩阵的求逆(包

括简单的分块阵)(或抽象的,或具体的,或用定义,或是用公式A-

1=1A*,或A用初等行变换),A和A*的关系,矩阵乘积的行列式,

方阵的幂等也是常考的内容之一。

向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的

极大无关组及向量组和矩阵秩的有效方法。在Rn中,基、坐标、基

变换公式,坐标变换公式,过渡矩阵,线性无关向量组的标准正交

化公式,应该概念清楚,计算熟练,当然在计算中列出关系式后,

应先化简,后代入具体的数值进行计算。

行列式、矩阵、向量、方程组是线性代数的基本内容,它们不是孤立隔裂的,而是相互渗透,紧密联系的,例如∣A∣≠0〈===〉A

是可逆阵〈===〉r(A)=n(满秩阵)〈===〉A的`列(行)向量组线性无

关〈===〉AX=0唯一零解〈===〉AX=b对任何b均有(唯一)解〈===〉A=P1P2…PN,其中PI(I=1,2,…,N)是初等阵〈===〉

r(AB)=r(B)<===>A初等行变换I〈===〉A的列(行)向量组是Rn的

一个基〈===〉A可以是某两个基之间的过渡矩阵等等。这种相互之

间的联系综合命题创造了条件,故对考生而言,应该认真总结,开

拓思路,善于分析,富于联想使得对综合的,有较多弯道的试题也

能顺利地到达彼岸。

关于特征值、特征向量。一是要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),

可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用,二是有关相似矩阵和相似对角化的问题,一般矩阵相似对角化

的条件。实对称矩阵的相似对角化及正交变换相似于对角阵,反过来,可由A的特征值,特征向量来确不定期A的参数或确定A,如

果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时

还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A。三是相似对角化以后的应用,在线性代数中至

少可用来计算行列式及An。

本章的重点内容是:

一、多元函数(主要是二元、三元)的偏导数和全微分概念;

二、偏导数和全微分的计算,尤其是求复合函数的二阶偏导数及隐函数的偏导数;

三、方向导数和梯度(只对数学一要求);

四、多元函数微分在几何上的应用(只对数学一要求);

五、多元函数的极值和条件极值。

本章的常见题型有:

1.求二元、三元函数的偏导数、全微分。

2.求复全函数的二阶偏导数;隐函数的一阶、二阶偏导数。

3.求二元、三元函数的方向导数和梯度。

4.求空间曲线的切线与法平面方程,求曲面的切平面和法线方程。

5.多元函数的极值在几何、物理与经济上的应用题。

第4类题型,是多元函数的微分学与前一章向量代数与空间解析几何的综合题,应结合起来复习。

极值应用题多要用到其他领域的知识,特别是在经济学上的应用涉及到经济学上的一些概念和规律,读者在复习时要引起注意。一

元函数微分学在微积分中占有极重要的位置,内容多,影响深远,

在后面绝大多数章节要涉及到它。

本章内容归纳起来,有四大部分:

1.概念部分,重点有导数和微分的定义,特别要会利用导数定义讲座分段函数在分界点的可导性,高阶导数,可导与连续的关系;

2.运算部分,重点是基本初等函的导数、微分公式,四则运算的导数、微分公式以及反函数、隐函数和由参数方程确定的函数的求

导公式等;

3.理论部分,重点是罗尔定理,拉格朗日中值定理,柯西中值定理;

4.应用部分,重点是利用导数研究函数的性态(包括函数的单调

性与极值,函数图形的凹凸性与拐点,渐近线),最值应用题,利用

洛必达法则求极限,以及导数在经济领域的应用,如"弹性"、"边际"等等。

常见题型有:

1.求给定函数的导数或微分(包括高阶段导数),包括隐函数和由参数方程确定的函数求导。

2.利用罗尔定理,拉格朗定理,拉格朗日中值定理,柯西中值定理证明有关命题和不等式,如"证明在开区间至少存在一点满足……",或讨论方程在给定区间内的根的个数等。

此类题的证明,经常要构造辅助函数,而辅助函数的构造技巧性较强,要求读者既能从题目所给条件进行分析推导逐步引出所需的辅助函数,也能从所需证明的结论(或其变形)出发"递推"出所要构造的辅函数,此外,在证明中还经常用到函数的单调性判断和连续数的介值定理等。

3.利用洛必达法则求七种未定型的极限。

4.几何、物理、经济等方面的最大值、最小值应用题,解这类问题,主要是确定目标函数和约束条件,判定所论区间。

5.利用导数研究函数性态和描绘函数图像,等等。

考研数学线性代数知识点梳理

从近几年的真题来看,数学线性代数出题没有过多的变化,2014年的考研[微博]学子们,如何做到在千军万马中胜出,需要我们提前准备,更要做到心中有数,下面跨考教育[微博]数学教研室张老师就考研中线性代数部分的复习重点 在考前再给大家梳理一遍。 一、行列式与矩阵 第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练 掌握。 行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计 算,其中具体行列式的计算又有低阶和高阶两种类型;主要方法是应用行列式的性质及按行列展开定理化为上下三角行列式求解。对于抽象行列式的求值,考点不在求行列式,而在于相关性质,矩阵部分出题很灵活,频繁出现的知识点包括矩阵运算的运算规律、运算性质、矩阵可逆的判定及求逆、矩阵的秩的性质、初 等矩阵的性质等。 二、向量与线性方程组 向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节;后两章特征值、特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。 向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。 解线性方程组可以看作是出发点和目标。线性方程组(一般式) 还具有两种形式:(1)矩阵形式,(2)向量形式。 1)齐次线性方程组与线性相关、无关的联系 齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立;印证了向量部分的一条性质“零向量可由任何向量线性表示”。 齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成 立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系:齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关无关的概念就是为了更好地讨论线 性方程组问题而提出的。

矩阵算法经典题目

经典题目 这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1: 右面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵: 矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?因为交换后两个矩阵有可能不能相乘。为什么它又满足结合律呢?假设你有三个矩阵A、B、C,那么(AB)C和 A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。 经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。 经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。 由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n 为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。 经典题目3 POJ3233 (感谢rmq) 题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。 这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有: A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3) 应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

苏教版高中数学高二选修4-2 矩阵乘法的概念

选修4-2矩阵与变换 2.3.1 矩阵乘法的概念 编写人: 编号:008 学习目标 1、 熟练掌握二阶矩阵与二阶矩阵的乘法。 2、 理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换的角度来看,它表 示的是原来两个矩阵对应的连续两次变换。 学习过程: 一、预习: (一)阅读教材,解决下列问题: 问题:如果我们对一个平面向量连续实施两次几何变换,结果会是怎样?举例说明。 归纳1:矩阵乘法法则: 归纳2:矩阵乘法的几何意义: (二)初等变换:在数学中,一一对应的平面几何变换都可看做是伸压、反射、旋转、切变变换的一次或多次复合,而伸压、反射、切变变换通常叫做初等变换,对应的矩阵叫做初等变换矩阵。 练习 、.?? ??????????10110110=( ) A 、???? ??1110 B 、??????1011 C 、? ? ? ???0111 D 、??????0110 、已知矩阵X 、M 、N,若M =?? ? ???--1111, N =??????--3322,则下列X 中不满足:XM=N ,的一个 是( ) A 、X =???? ??--2120 B 、X =??????--1211 C 、X =??????--3031 D 、X =? ? ? ???-3053

二、课堂训练: 例1.(1)已知A= 11 22 11 22 ?? ? ? ? ? ?? ,B= 11 22 11 22 ?? - ? ? ? - ? ?? ,计算AB (2)已知A= 10 02 ?? ? ?? ,B= 14 23 ?? ? - ?? ,计算AB,BA (3)已知A= 10 00 ?? ? ?? ,B= 10 01 ?? ? ?? ,C= 10 02 ?? ? ?? 计算AB,AC 例2、已知梯形ABCD,其中A(0,0),B(3,0),C(2,2),D(1,2),先将梯形作关于x轴的反射变换,再将所得图形绕原点逆时针旋转0 90 (1)求连续两次变换所对应的变换矩阵M (2)求点A,B,C,D在 M T作用下所得到的结果 (3)在平面直角坐标系内画出两次变换对应的几何图形,并验证(2)中的结论。

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表 mn m m n n a a a a a a a a a A 21 22221 11211 称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )( 若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算

1.加法 (1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A 则 ,)(mp ij C C AB 其中 n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂 ①定义:A n ij a )( ,则K k A A A ②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ②;00,0 B A AB 或不能推出 ③k k k B A AB )( 4.矩阵的转置 (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )( , (2)运算规律 ①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA ④T T T A B AB )(。

2016考研数学:矩阵二项式分析及其应用

2016考研数学:矩阵二项式分析及其应用 来源:文都教育 线性代数是考研数学的一个科目,而矩阵是线性代数中最基本、最重要的一个工具,其它内容都需要用到矩阵作为分析和解决问题的工具。矩阵的一些运算在形式上与数的运算有些相似之处,如逆矩阵的定义与数的倒数有些相似,线性方程组AX b =的求解,在系数矩 阵A 可逆时,其解为1X A b -=,这与一元一次方程ax b =的解1 x a b -=(0a ≠)相似; 与数的二项公式0 ()n n k n k k n k a b C a b -=+= ∑相应的也有矩阵的二项公式,下面我们就来分析一 下矩阵的二项公式及其应用。 一、矩阵二项式公式 公式:如果矩阵A 和B 可交换,即AB BA =,则 112221 10 ()n n k n k k n n n n n n n n n n k A B C A B A C A B C A B C AB B -----=+==+++++∑ ,n 为正 整数,(1)(1)! k n n n n k C k --+= 为排列组合中的组合数(注:00 A B E ==). 证 : 当 1 n =时, 等式显然成立 ;当 2 n =时, 22 2 2 222()()()2A B A B A B A A B B A B A A B B A + = ++=+ ++=+ += +; 假设对n 时等式成立,则对1n +时, 1112221 1()()()()()n n n n n n n n n n n A B A B A B A B A C A B C A B C AB B +----+=++=++++++= 1121211111()()()n n n n n n n n n n n n n A C A B BA C A B BC A B AB BC AB B +----+=++++++++ , ∵AB BA =,∴223223 ,()()BA BAA ABA AAB A B BA BA A A B A A B =======, 一 般地 k k BA A B =,因此,

GPU上的矩阵乘法的设计与实现

计 算 机 系 统 应 用 https://www.doczj.com/doc/b417706344.html, 2011 年 第20卷 第 1期 178 经验交流 Experiences Exchange GPU 上的矩阵乘法的设计与实现① 梁娟娟,任开新,郭利财,刘燕君 (中国科学技术大学 计算机科学与技术学院,合肥 230027) 摘 要: 矩阵乘法是科学计算中最基本的操作,高效实现矩阵乘法可以加速许多应用。本文使用NVIDIA 的CUDA 在GPU 上实现了一个高效的矩阵乘法。测试结果表明,在Geforce GTX 260上,本文提出的矩阵乘法的速度是理论峰值的97%,跟CUBLAS 库中的矩阵乘法相当。 关键词: 矩阵乘法;GPU ;CUDA Design and Implementation of Matrix Multiplication on GPU LIANG Juan-Juan, REN Kai-Xin, GUO Li-Cai, LIU Yan-Jun (School of Computer Science and Technology, University of Science and Technology of China, Hefei 230027, China) Abstract: Matrix multiplication is a basic operation in scientific computing. Efficient implementation of matrix multiplication can speed up many applications. In this paper, we implement an efficient matrix multiplication on GPU using NVIDIA’s CUDA. The experiment shows that our implementation is as fast as the implementation in CUBLAS, and the speed of our implementation can reach the peak speed’s 97%, on Geforce GTX260. Keywords: matrix multiplication; GPU; CUDA GPU 是一种高性能的众核处理器,可以用来加速许多应用。CUDA 是NVIDIA 公司为NVIDIA 的GPU 开发的一个并行计算架构和一门基于C 的编程语言。在CUDA 中程序可以直接操作数据而无需借助于图形系统的API 。现在已经有许多应用和典型算法使用CUDA 在GPU 上实现出来。 1 引言 矩阵乘法是科学计算中的最基本的操作,在许多领域中有广泛的应用。对于矩阵乘法的研究有几个方向。一个是研究矩阵乘法的计算复杂度,研究矩阵乘法的时间复杂度的下界,这方面的工作有strassen 算法[1]等。另外一个方向是根据不同的处理器体系结构,将经典的矩阵乘法高效的实现出来,这方面的结果体现在许多高效的BLAS 库。许多高效的BLAS 库都根据体系结构的特点高效的实现了矩阵乘法,比如GotoBLAS [2], ATLAS [3]等。Fatahalian [4]等人使 用着色语言设计了在GPU 上的矩阵乘法。CUBLAS 库是使用CUDA 实现的BLAS 库,里面包含了高性能的矩阵乘法。 本文剩下的部分组织如下,第2节介绍了CUDA 的编程模型,简单描述了CUDA 上编程的特点。第3节讨论了数据已经拷贝到显存上的矩阵乘法,首先根据矩阵分块的公式给出了一个朴素的矩阵乘法实现,分析朴素的矩阵乘法的资源利用情况,然后提出了一种新的高效的矩阵乘法。第4节讨论了大规模的矩阵乘法的设计和实现,着重讨论了数据在显存中的调度。第5节是实验结果。第6节是总结和展望。 2 CUDA 编程模型和矩阵乘法回顾 2.1 CUDA 编程模型 NVIDIA 的GPU 是由N 个多核处理器和一块显存构成的。每个多核处理器由M 个处理器核,1个指令部件,一个非常大的寄存器堆,一小块片上的共享内 ① 基金项目:国家自然科学基金(60833004);国家高技术研究发展计划(863)(2008AA010902) 收稿时间:2010-04-26;收到修改稿时间:2010-05-21

高中数学(矩阵行列式)综合练习含解析

高中数学(矩阵行列式)综合练习含解析 1.定义运算?? ????++=?????????????df ce bf ae f e d c b a ,如??? ???=?????????????1514543021.已知πβα=+, 2 π βα=-,则=? ? ? ???????? ??ββααααsin cos sin cos cos sin ( ). A. 00?? ???? B. 01?????? C. 10?????? D. 11?????? 2.定义运算 a b ad bc c d =-,则符合条件 120 121z i i i +=--的复数z 对应的点在 ( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 3.矩阵E =??? ? ??1001的特征值为( ) A. 1 B. 2 C. 3 D. 任意实数 4. 若行列式21 24 1 013 9x x =-,则=x . 5.若2021310x y -??????= ??? ?-?????? ,则x y += . 6.已知一个关于y x ,的二元一次方程组的增广矩阵为112012-?? ??? ,则 x y -=_______. 7.矩阵1141?? ???? 的特征值为 . 8.已知变换100M b ?? =? ??? ,点(2,1)A -在变换M 下变换为点(,1)A a ',则a b += 9.配制某种注射用药剂,每瓶需要加入葡萄糖的量在10ml 到110ml 之间,用0.618 法寻找最佳加入量时,若第一试点是差点,第二试点是好点,则第三次试验时葡萄糖的加入量可以是 ; 10.已知 , ,则y= . 11.若2211 x x x y y y =--,则______x y +=

分块矩阵乘法的例子

分块矩阵乘法的例子 例 1 用分块法计算,AB 其中 00 51 2414 21,5 31001200 2 0-???? ? ?== ? ? ? ?-? ?? ? A B . 解 B A,如上分块, ???? ??=2221 1211 A A A A A , ??? ? ??=2322 21 131211 B B B B B B B , 其中 111221224 21(0,0),(5), ,,0 12????==== ? ?-?? ?? A A A A ()()()0,20,0,01,1342,51232221131211===??? ? ??-=???? ??=???? ??=B B B B B B ; 令==C AB ??? ? ??232221 131211 C C C C C C ,其中 =+=2112111111B A B A C )0()0)(5(51)00(=+??? ? ??, =+=2212121112B A B A C )00(()()()1002051342=+???? ??, =+=2312131113B A B A C )0()0)(5(01)00(=+???? ??-, =+=2122112121B A B A C ??? ? ??-=???? ??+???? ?????? ??-514)0(21511024, =+=2222122122B A B A C ???? ??-=???? ??+???? ?????? ??-332014)20(2113421024, =+=2322132123B A B A C ??? ? ??-=???? ??+???? ??-???? ??-04)0(21011024.

考研数学二(矩阵)-试卷11.doc

考研数学二(矩阵)-试卷11 (总分:48.00,做题时间:90分钟) 一、选择题(总题数:6,分数:12.00) 1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。(分数: 2.00) __________________________________________________________________________________________ 2.设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r 1,则( )(分数:2.00) A.r>r 1。 B.r<r 1。 C.r=r 1。 D.r与r 1的关系依C而定。 3.设A是m×n矩阵,B是n×m矩阵,则( )(分数:2.00) A.当m>n,必有行列式|AB|≠0。 B.当m>n,必有行列式|AB|=0。 C.当n>m,必有行列式|AB|≠0。 D.当n>m,必有行列式|AB|=0。 4.设A为m×n矩阵,B为n×m矩阵,若AB=E,则( )(分数:2.00) A.r(A)=m,r(B)=m。 B.r(A)=m,r(B)=n。 C.r(A)=n,r(B)=m。 D.r(A)=n,r(n)=n。 5. 2.00) A.a=1时,B的秩必为2。 B.a=1时,B的秩必为1。 C.a≠1时,B的秩必为1。 D.a≠1时,B的秩必为2。 6.已知 2.00) A.3。 B.2。 C.1。 D.1或3。 二、填空题(总题数:10,分数:20.00) 7.设(2E一C 一1 B)A T =C 一1,其中E是四阶单位矩阵, 2.00) 填空项1:__________________ 8.设矩阵 2.00) 填空项1:__________________ 9. 2.00) 填空项1:__________________ 10.已知n阶矩阵 2.00) 填空项1:__________________

strassen矩阵相乘算法C++代码

Strassen 矩阵相乘算法代码 #include #include #include #include usingnamespace std; template class Strassen_class { public: void ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize); void MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize);//朴素算法实现void FillMatrix(T** MatrixA, T** MatrixB, int length);//A,B矩阵赋值 void PrintMatrix(T **MatrixA, int MatrixSize);//打印矩阵 void Strassen(int N, T **MatrixA, T **MatrixB, T **MatrixC);//Strassen算法实现 }; template void Strassen_class::ADD(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::SUB(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) { for (int i = 0; i void Strassen_class::MUL(T** MatrixA, T** MatrixB, T** MatrixResult, int MatrixSize) {

《1.3.2 矩阵乘法的运算律》教案2

《1.3.2 矩阵乘法的运算律》教案1 教学目的 一、知识与技能:理解矩阵乘法不满足交换吕和消去律,会验证矩阵乘法满足结合律 二、过程与方法:比较演算法 三、情感态度和价值观:体会类比推理中结论全真的含义 教学重点、难点 熟练运用各种运算 教学过程 一、矩阵的加法 定义2 设 } {ij a A = 和 } {ij b B = 是 n m ? 的矩阵,A 与B 的加法(或称和),记作A + B ,定 义为一个n m ? 的矩阵: 1111 1212112121 22222211 22 {}n n n n ij m m m m mn mn a b a b a b a b a b a b c a b a b a b +++????+++?? ===??? ? +++?? C A +B 。 例2 设 ??????-=2015A , ??????-=4012B ,计算 B A +。 负矩阵 设 {}ij m n a ?=A ,称矩阵 {} ij a -=-A 为矩阵A 的负矩阵。矩阵的减法: 11111212 1121212222221122 ()n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b ---????---?? -=+-=??? ? ---?? A B A B 二、数与矩阵相乘 定义3 (矩阵数乘) 数λ与矩阵 n m ij a A ?=}{的乘积(称之为数乘),记作A λ 或λA ,定义为一个 n m ? 的矩阵 1112 12122212 ()()n n ij m n ij m n m m mn a a a a a a a a a a a λλλλλλλλλλλλλ???????? ====??? ??? A A 。 以上运算称为矩阵的线性运算,它满足下列运算法则:

第二章 矩阵及其运算测试题

第二章 矩阵及其运算测试题 一、选择题 1.下列关于矩阵乘法交换性的结论中错误的是( )。 (A)若A 是可逆阵,则1A -与1A -可交换; (B)可逆矩阵必与初等矩阵可交换; (C)任一n 阶矩阵与n cE 的乘法可交换,这里c 是常数; (D)初等矩阵与初等矩阵的乘法未必可交换。 2.设n (2n ≥)阶矩阵A 与B 等价,则必有( ) (A) 当A a =(0a ≠)时,B a =; (B)当A a =(0a ≠)时,B a =-; (C) 当0A ≠时,0B =; (D)当0A =时,0B =。 3.设A 、B 为方阵,分块对角阵00A C B ??= ??? ,则* C =( )。 (A) **00 A B ?? ??? (B) **||00 ||A A B B ?? ??? (C) **||00||B A A B ?? ??? (D) **||||0 0||||A B A A B B ?? ??? 4.设A 、B 是n (2n ≥)阶方阵,则必有( )。 (A)A B A B +=+ (B)kA k A = (C) A A B B =-g (D) AB A B = 5.设4阶方阵 44(),()||,ij A a f x xE A ?==-其中E 是4阶单位矩阵,则()f x 中3 x 的系数为( )。 (A)11223344()a a a a -+++ (B)112233112244223344113344a a a a a a a a a a a a +++ (C) 11223344a a a a (D)11223344a a a a +++ 6.设A 、B 、A B +、11A B --+均为n 阶可逆矩阵,则1()A B -+为( )。 (A) 11A B --+ (B) A B + (C) 111()A B ---+ (D)11111 ()B A B A -----+

考研数学三必背知识点:线性代数

线性代数必考知识点 一、行列式 1、逆序数 一个排列n i i i i ,,,321若有类似21i i 时,我们称21i i 组成一个逆序。一个排列中逆序总的个数之和称为逆序数,记为)(21n i i i 2、行列式性质 (1) 行列式行列互换,其值不变,即T A A (2) 行列式两行或两列互换,其值反号。 (3) 行列式某行或某列乘以k 等于行列式乘以k 。 (4) 行列式某行货某列乘以k 加到另一行或列上,行列式值不变。 (5) 行列式两行或两列对应成比例,则行列式为零。 (6) 行列式某行或某列元素为零,则行列式为零。 (7) 上、下三角行列式其值为主对角线上元素乘积。 (8) 行列式值等于对应矩阵所有特征值的乘积,即n A 21 (9) 齐次线性方程组0 Ax 有非零解n A r A )(0 3、行列式行列展开定理 (1) 余子式ij j i ij A M )1( (2) 代数余子式ij j i ij M A )1( 4、三阶行列式展开公式 33211232231131221332211331231233221133 32 3123222113 1211a a a a a a a a a a a a a a a a a a a a a a a a a a a 二、矩阵 1、矩阵运算 (1) 矩阵加减法即是将对应元素进行加减。 (2) 矩阵乘法是将对应行与对应列元素相乘再相加。 (3) 矩阵除法是乘以逆矩阵。 (4) 矩阵加减法满足交换律、结合律,乘法满足结合律、分配率。 (5) n 阶方阵一般可以有1*,,, A A A A T 四大基本矩阵运算 2、矩阵的行列式 (1) A k kA A A n T , (2) A B B A BA AB 3、矩阵转置 (1) T T T T T T T T T T A B AB kA kA B A B A A A )(,)(,)(,)( (2) **11)()(,)()(T T T T A A A A

矩阵乘法题目

十个利用矩阵乘法解决的经典题目 By Matrix67 好像目前还没有这方面题目的总结。这几天连续看到四个问这类题目的人,今天在这里简单写一下。这里我们不介绍其它有关矩阵的知识,只介绍矩阵乘法和相关性质。 不要以为数学中的矩阵也是黑色屏幕上不断变化的绿色字符。在数学中,一个矩阵说穿了就是一个二维数组。一个n行m列的矩阵可以乘以一个m行p列的矩阵,得到的结果是一个n行p列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的m个数与后一个矩阵第j列上的m个数对应相乘后所有m个乘积的和。比如,下面的算式表示一个2行2列的矩阵乘以2行3列的矩阵,其结果是一个2行3列的矩阵。其中,结果的那个4等于2*2+0*1:下面的算式则是一个1 x 3的矩阵乘以3 x 2的矩阵,得到一个1 x 2的矩阵:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律;二,矩阵乘法满足结合律。为什么矩阵乘法不满足交换律呢?废话,交换过来后两个矩阵有可能根本不能相乘。为什么它又满足结合律呢?仔细想想你会发现这也是废话。假设你有三个矩阵A、B、C,那么(AB)C和A(BC)的结果的第i行第j列上的数都等于所有A(ik)*B(kl)*C(lj)的和(枚举所有的k和l)。 经典题目1 给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时 O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。 经典题目2 给定矩阵A,请快速计算出A^n(n个A相乘)的结果,输出的每个数都mod p。 由于矩阵乘法具有结合律,因此A^4 = A * A * A * A = (A*A) * (A*A) = A^2 * A^2。我们可以得到这样的结论:当n为偶数时,A^n = A^(n/2) * A^(n/2);当n为奇数时,A^n = A^(n/2) * A^(n/2) * A (其中n/2取整)。这就告诉我们,计算A^n也可以使用二分快速求幂的方法。例如,为了算出A^25的值,我们只需要递归地计算出A^12、A^6、A^3的值即可。根据这里的一些结果,我们可以在计算过程中不断取模,避免高精度运算。 经典题目3 POJ3233 (感谢rmq) 题目大意:给定矩阵A,求A + A^2 + A^3 + ... + A^k的结果(两个矩阵相加就是对应位置分别相加)。输出的数据mod m。k<=10^9。 这道题两次二分,相当经典。首先我们知道,A^i可以二分求出。然后我们需要对整个题目的数据规模k进行二分。比如,当k=6时,有: A + A^2 + A^3 + A^4 + A^5 + A^6 =(A + A^2 + A^3) + A^3*(A + A^2 + A^3) 应用这个式子后,规模k减小了一半。我们二分求出A^3后再递归地计算A + A^2 + A^3,即可得到原问题的答案。

上海高二数学矩阵及其运算

矩阵及其运算 矩阵的概念 1、形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ?? ? - ? ?-?? 这样的矩形数表叫做矩阵。 2、在矩阵中,水平方向排列的数组成的向量()12,,n a a a ???称为行向量;垂直方向排列 的数组成的向量12n b b b ?? ? ? ???? ??? 称为列向量;由m 个行向量与n 个列向量组成的矩阵称为m n ?阶矩阵,m n ?阶矩阵可记做m n A ?,如矩阵13 ?? ??? 为21?阶矩阵,可记做21A ?;矩阵 512128363836232128?? ? ? ??? 为33?阶矩阵,可记做33A ?。有时矩阵也可用A 、B 等字母表示。 3、矩阵中的每一个数叫做矩阵的元素,在一个m n ?阶矩阵m n A ?中的第i (i m ≤)行第 j (j n ≤)列数可用字母ij a 表示,如矩阵512128363836232128?? ? ? ??? 第3行第2个数为3221a =。 4、当一个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。如000000?? ??? 为一个 23?阶零矩阵。 5、当一个矩阵的行数与列数相等时,这个矩阵称为方矩阵,简称方阵,一个方阵有 n 行(列),可称此方阵为n 阶方阵,如矩阵512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-?? 均为三阶方阵。在一个n 阶方阵中,从左上角到右下角所有元素组成对角线,如果其对角线

的元素均为1,其余元素均为零的方阵,叫做单位矩阵。如矩阵1001?? ??? 为2阶单位矩阵,矩阵100010001?? ? ? ??? 为3阶单位矩阵。 6、如果矩阵A 与矩阵B 的行数和列数分别相等,那么A 与B 叫做同阶矩阵;如果矩阵A 与矩阵B 是同阶矩阵,当且仅当它们对应位置的元素都相等时,那么矩阵A 与矩阵B 叫做相等的矩阵,记为A B =。 7、对于方程组231 324244x y mz x y z x y nz ++=?? -+=??+-=? 中未知数z y x ,,的系数按原来的次序排列所得的矩阵 2332441m n ?? ?- ? ?-??,我们叫做方程组的系数矩阵;而矩阵2313242414m n ?? ?- ? ?-?? 叫做方程组的增广矩阵。 应用举例: 例1、已知矩阵222,22x x y b a A B x a b y x y ---???? == ? ?++????且A B =,求a 、b 的值及矩阵A 。 例2、写出下列线性方程组的增广矩阵: (1)23146x y x y +=??-=?;(2)2320 3250230 x y z x y z x y z +-+=?? -++-=??-++=? 例3、已知线性方程组的增广矩阵,写出其对应的方程组: (1)235124-?? ?-??(2)210203213023-?? ? - ? ? -?? 例4、已知矩阵sin cos 0sin cos 1αα ββ+?? ?+??为单位矩阵,且,,2παβπ?? ∈???? ,求()sin αβ-的值。 矩阵的基本变换:

高二数学变换的复合与矩阵的乘法

§2.3变换的复合与矩阵的乘法 教学目标: 一、知识与技能: 通过变换的实例,了解矩阵与矩阵的乘法的意义;掌握二阶矩阵的乘法法则 ,并能运用几何图形变换,说明矩阵乘法不满足交换律 二、方法与过程 借助实例的探究,引入复合变换,寻求二阶矩阵的乘法法则,发现矩阵乘法不满足交换律;通过具体情境的观察、类比、探索、交流和反思等数学活动,培养学生的创新意识,使学生掌握研究问题的方法,从而学会学习体会从具体到抽象再到具体的思想方法。 三、情感、态度与价值观 新旧知识的联结,潷学生的求知欲及进一点探索的乐趣。 教学重点:二阶矩阵乘法法则及运用 教学难点:说明矩阵乘法不满足交换律 教学过程 一、复习引入: 1、基本概念 (1)二阶矩阵:由四个数a ,b ,c ,d 排成的正方形数表??? ? ??d c b a 称为 二阶矩阵。特别地,称二阶矩阵??? ? ??0000为零矩阵,简记为0。称二阶矩阵??? ? ??1001为二阶单位矩阵,记为2E 。 (2)向量:向量(y x ,)是一对有序数对,y x ,叫做它的两个分量,且称??? ? ??y x 为列向量,(y x ,)为行向量。同时,向量、点以及有序实数对三者不加区别。 2、几类特殊线性变换及其二阶矩阵

在平面直角坐标系中,把形如???+=+=dy cx y by ax x ``(其中a ,b ,c ,d 为常 数)的几何变换叫做线性变换。 (2)旋转变换 坐标公式为???+=-=α αααcos sin sin cos ``y x y y x x ,变换对应的矩阵为??? ? ??-αα αα cos sin sin cos (3)反射变换 ①关于x 的反射变换坐标公式为???-==y y x x ``对应的二阶矩阵为 ??? ? ??-1001; ②关于y 的反射变换坐标公式为???=-=y y x x ``对应的二阶矩阵为 ??? ? ??-1001; ③关于x y =的反射变换坐标公式为???==x y y x ``对应的二阶矩阵为 ??? ? ??0110; (4)伸缩变换 坐标公式为???==y k y x k x 2`1`对应的二阶矩阵为??? ? ??21 0k k ; (5)投影变换 ①投影在x 上的变换坐标公式为???==0``y x x 对应的二阶矩阵为???? ??0001; ②投影在y 上的变换坐标公式为???==y y x ``0对应的二阶矩阵为???? ??1000

最新考研数学矩阵8大秩及其证明

考研数学矩阵的8大秩及其证明2009 ()1 证明:根据矩阵秩的定义直接得出。 ()2 证明:对矩阵A 任意添加列后变成矩阵(), A B ,则秩显然不小于()R A ,即: ()(), R A B R A ≥ 同理: ()(), R A B R B ≥ 因而:()(){}(), , Max R A R B R A B ≤成立。 又设 ()(), R A r R B t ==,把, A B 分别做列变换化成列阶梯形~ ~ , A B 1110 3 810 1100 1000?? ? ? ? ? ??? 如:就是列阶梯形 用~ ~~ ~ 1 1 , r r a a b b 分别表示非全零列,则有: ()~ ~~ ()1~~ ~ ~~ ()1 , 00, , , 0 0表示列变换表示列变换c r c c r A A a a A B A B B B b b ????????→= ????? ?? ???→? ????? ??????→= ???? ? 由于初等变换后互为等价矩阵,故()~~, , R A B R A B ?? = ??? 而矩阵~~, A B ?? ???只含有r t +个非全零列,所以:()()~~~~, , R A B r t R A B R A R B ???? ≤+?≤+ ? ????? 。 综合上述得:()(){}()()(), , Max R A R B R A B R A R B ≤≤+

●特别地:如B b =为列向量,则()1R b ≡()()() , 1R A R A B R A ?≤≤+。 ●如B E =,设()(), , m n m R A B R A E ?=, 则 ()()() , , m n m m m n m m R A E R E m R A E m ??≥≥=?= ()3 证明: ()()()()()()()()()()()() 2 , , , , , , A B B A B R A B B R A B R A R B R A B R A B B R A B R A B R A R B +→?+=????→+≥=+≥+?+≤+由公式知 ()4 证明:()1 设()()() ,AB C B AX C R A R A C R C =?=?=≥是的解 ()()()() () ()()()()()(){},min , T R B R B T T T T T T T B A C R B R B C R C R B R C R C R AB R A R B n ==?=≥???? ?→≥?=≤≤又, ()2 设()(), m n n s R A r R B t ??== 则A 的标准型为000r m n E ??? ???,B 的标准型为000t n s E ??? ??? 存在可逆矩阵, , , m s n n P Q P Q 使:

相关主题
文本预览
相关文档 最新文档