当前位置:文档之家› 三角函数解三角形中的最值问题

三角函数解三角形中的最值问题

三角函数解三角形中的最值问题

1.已知ABC ?中,,,a b c 分别是角,,A B C 的对边,且

222

3sin 3sin 2sin sin 3sin ,B C B C A a +-==AB AC ? 的最大值. 2. 在ABC ?中,角,,A B C 所对的边分别为,,a b c ,向量(1,cos ),(cos 21,2)m A n A λλ==--- ,已知//m n

(1)若2λ=,求角A 的大小; (2)若b c +=,求λ的取值范围.

3. 设ABC ?的内角所对的边分别为,,a b c ,且1cos 2

a C c

b += (1)求角A 的大小; (2)若1a =,求ABC ?周长的取值范围.

4. 已知ABC ?是半径为R 的圆的内接?且222(sin sin ))sin R A C b B -=-

(1)求角C ; (2)求ABC ?面积的最大值.

5. 已知向量(2,1),(sin ,cos())2

A m n

B

C =-=+ ,角,,A B C 分别为ABC ?的三边,,a b c 所对的角, (1)当m n ? 取得最大值时,求角A 的大小;

(2)在(1)的条件下,当a =22b c +的取值范围.

6.已知(2cos ,1)a x x =+ ,(,cos )b y x = 且//a b

(1)将y 表示成x 的函数()f x ,并求()f x 的最小正周期;

(2)记()f x 的最大值为,,,M a b c 分别为ABC ?的三个内角A B C 、、对应的边长,若(),2A f M =且2a =,求bc 的最大值.

7. 在锐角ABC ?中,,,a b c 分别为内角,,A B C 的对边,设2B A =,求b a 的取值范围.

三角函数最值问题类型归纳

三角函数最值问题类型归纳 三角函数的最值问题是三角函数基础知识的综合应用,近几年的高考题中经常出现。其出现的形式,或者是在小题中单纯地考察三角函数的值域问题;或者是隐含在解答题中,作为解决解答题所用的知识点之一;或者在解决某一问题时,应用三角函数有界性会使问题更易于解决(比如参数方程)。题目给出的三角关系式往往比较复杂,进行化简后,再进行归纳,主要有以下几种类型。掌握这几种类型后,几乎所有的三角函数最值问题都可以解决。 1.y=asinx+bcosx型的函数 特点是含有正余弦函数,并且是一次式。解决此类问题的指导思想是把正、余弦函数转化为 只有一种三角函数。应用课本中现成的公式即可:y=sin(x+φ),其中tanφ=。 例1.当-≤x≤时,函数f(x)=sinx+cosx的( D ) A、最大值是1,最小值是-1 B、最大值是1,最小值是- C、最大值是2,最小值是-2 D、最大值是2,最小值是-1 分析:解析式可化为f(x)=2sin(x+),再根据x的范围来解即可。 2.y=asin2x+bsinxcosx+cos2x型的函数 特点是含有sinx, cosx的二次式,处理方式是降幂,再化为型1的形式来解。 例2.求y=sin2x+2sinxcosx+3cos2x的最小值,并求出y取最小值时的x的集合。 解:y=sin2x+2sinxcosx+3cos2x =(sin2x+cos2x)+sin2x+2cos2x =1+sin2x+1+cos2x =2+sin(2x+) 当sin(2x+)=-1时,y取最小值2-,此时x的集合{x|x=kπ-π, k∈Z}。 3.y=asin2x+bcosx+c型的函数 特点是含有sinx, cosx,并且其中一个是二次,处理方式是应用sin2x+cos2x=1,使函数式只含有一种三角函数,再应用换元法,转化成二次函数来求解。 例3.求函数y=cos2x-2asinx-a(a为常数)的最大值M。 解:y=1-sin2x-2asinx-a=-(sinx+a)2+a2+1-a,

高中数学三角函数、解三角形知识点

三角函数、解三角形 1.弧长公式:r l α= 扇形面积公式:22 121r lr S α== 2.同角三角函数的基本关系式: 平方关系:1cos sin 2 2 =+αα 商数关系:sin tan cos α αα = 3.三角函数的诱导公式: 诱导公式(把角写成απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) 公式一()()()?????=?+=?+=?+απααπααπαtan 2tan cos 2cos sin 2sin k k k 公式二()()()?????=+=+=+ααπααπααπtan tan cos -cos -sin sin 公式三()()()?? ? ??=-=-=-ααααααtan -tan cos cos -sin sin 公式四()()()?????=-=-=-ααπααπααπtan -tan cos -cos sin sin 公式五???????=??? ??-=??? ??-ααπααπsin 2cos cos 2sin 公式六???????=??? ??+=?? ? ??+ααπααπsin -2 cos cos 2sin 4.两角和与差的正弦、余弦、正切公式: βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+= + β αβαβαtan tan 1tan tan )tan(+-=- 5.二倍角公式: a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a a a 2tan 1tan 22tan -= 6.辅助角公式: sin cos a b αα+ )α?+( 其中sin tan b a ???= = = ). 比如: x x y cos 3sin += ) cos ) 3(13sin ) 3(11( )3(12 2 2 2 22x x ++ ++= )cos 23sin 21(2x x += )3 sin cos 3cos (sin 2ππx x +=)3sin(2π+=x 7.正弦定理: 2sin sin sin a b c R C ===A B (R 为△ABC 外接圆的半径) 8.余弦定理:2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B ,2 2 2 2cos c a b ab C =+- 推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=.

高中数学专题练习-三角函数及解三角形

高中数学专题练习-三角函数及解三角形 1.【高考全国Ⅰ卷理数】函数f(x)=在的图像大致为 A.B. C.D. 【答案】D 【解析】由,得是奇函数,其图象关于原点对称,排除A.又,排除B,C,故选D. 【名师点睛】本题考查函数的性质与图象,渗透了逻辑推理、直观想象和数学运算素养,采取性质法或赋值法,利用数形结合思想解题.解答本题时,先判断函数的奇偶性,得是奇函数,排除A,再注意到选项的区别,利用特殊值得正确答案. 2.【高考全国Ⅰ卷理数】关于函数有下述四个结论: ①f(x)是偶函数②f(x)在区间(,)单调递增 ③f(x)在有4个零点④f(x)的最大值为2 其中所有正确结论的编号是 A.①②④B.②④ C.①④D.①③ 【答案】C 【解析】为偶函数,故①正确.当时,,它在区间单调递减,故②错误. 当时,,它有两个零点:;当时,

,它有一个零点:,故在有个零点:,故③错误.当时,;当时, ,又为偶函数,的最大值为,故④正确.综上所述,①④正确,故选C. 【名师点睛】本题也可画出函数的图象(如下图),由图象可得①④正确. 3.【高考全国Ⅱ卷理数】下列函数中,以为周期且在区间(,)单调递增的是A.f(x)=|cos2x| B.f(x)=|sin2x| C.f(x)=cos|x| D.f(x)=sin|x| 【答案】A 【解析】作出因为的图象如下图1,知其不是周期函数,排除D; 因为,周期为,排除C; 作出图象如图2,由图象知,其周期为,在区间(,)单调递增,A正确; 作出的图象如图3,由图象知,其周期为,在区间(,)单调递减,排除B,故选A. 图1

图2 图3 【名师点睛】本题主要考查三角函数的图象与性质,渗透直观想象、逻辑推理等数学素养,画出各函数图象,即可作出选择.本题也可利用二级结论:①函数的周期是函数周期的一半; ②不是周期函数. 4.【高考全国Ⅱ卷理数】已知α∈(0,),2sin2α=cos2α+1,则sinα= A. B. C.D. 【答案】B 【解析】,, ,又,,又,,故选B. 【名师点睛】本题是对三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦的正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负很关键,切记不能凭感觉.解答本题时,先利用二倍角公式得到正余弦关系,再利用角范围及正余弦平方和为1关系得出答案. 5.【高考全国Ⅲ卷理数】设函数=sin()(>0),已知在有且仅有5个零点,下述四个结论: ①在()有且仅有3个极大值点 ②在()有且仅有2个极小值点

三角函数与解三角形

课程标题三角函数与解三角形 求三角函数得定义域实质就就就是解三角不等式(组)、一般可用三角函数得图象或三角函数线确定三角不等式得解、列三角不等式,既要考虑分式得分母不能为零;偶次方根被开方数大于等于零;对数得真数大于零及底数大于零且不等于1,又要考虑三角函数本身得定义域; 求三角函数得值域得常用方法:1、化为求得值域; ,引入辅助角,化为求解方法同类型。 2、化为关于(或)得二次函数式; ,设,化为二次函数在上得最值求之; 周期问题一般将函数式化为(其中为三角函数,)、 ) ②y=tanx图象得对称中心(,0) (二)主要方法: 1、函数得单调增区间可由 解出,单调减区间可由解出; 周期 2、函数得单调减区间可由 解出,单调增区间呢。(自己导出)周期 3、函数得单调增区间可由 解出。(无增区间,重点掌握) 周期 课堂练习: 1.已知函数得定义域为,值域为,求常数得值 (化为求得值域)、 2、函数得单调递减区间就就是 3、函数得单调增区间为 2、函数,、 (Ⅰ)求函数得最小正周期;(Ⅱ)求函数在区间上得最小值与最大值、(化为求得值域)、 3、函数得一个单调增区间就就是 ???? 4、若函数,则就就是 最小正周期为得奇函数最小正周期为得奇函数 最小正周期为得偶函数最小正周期为得偶函数 5、函数得最大值 6、当函数得最大值为时,求得值、

7、函数得最大值就就是 8、已知函数,、 (1)求得最大值与最小值;(2)f(x)得最小正周期。 (3)若不等式在上恒成立,求实数得取值范围、 解三角形 正弦定理:, 余弦定理: 推论:正余弦定理得边角互换功能 ① ,, ②,, ③== ④ (4)面积公式:S=ab*sinC=bc*sinA=ca*sinB 课堂练习: 1、在中,角得对边分别为,已知,则( ) A、1 ?B.2 C、???D、 2、在△ABC中,AB=3,BC=,AC=4,则边AC上得高为( ) A、B、 C、D、 3、在ΔABC中,已知a=,b=,B=45°,求角A,角C得大小及边c得长度。 4、得内角A、B、C得对边分别为a、b、c,若a、b、c成等比数列,且,则() A、 B、 C、D、 【填空题】 5、在中,分别就就是、、所对得边。若,,,则__________ 6、在锐角△ABC中,边长a=1,b=2,则边长c得取值范围就就是_______、 7、已知锐角得面积为,,则角得大小为( ) ?A、75°?B、60° ?C、45°D、30° 8、在△中,若,则等于、 9、在中,已知,则得大小为 ( ) ??? 【解答题】 10、在中,分别就就是三个内角得对边、若,,求得面积、 11、如图,就就是等边三角形,就就是等腰直角三角形,∠=,交于,、 ?(1)求∠得得值; (2)求、 12、在中,角A、B、C所对得边分别为a,b,c,且满足

求三角函数值域及最值的常用方法+练习题

求三角函数值域及最值的常用方法 (一)一次函数型 或利用:=+ =x b x a y cos sin )sin(22?+?+x b a 化为一个角的同名三角函数形式,利用三角函数的有界性或单调性求解; (2)2sin(3)512 y x π =-- +,x x y cos sin = (3)函数x x y cos 3sin +=在区间[0,]2 π 上的最小值为 1 . (4)函数tan( )2 y x π =- (4 4 x π π - ≤≤ 且0)x ≠的值域是 (,1][1,)-∞-?+∞ (二)二次函数型 利用二倍角公式,化为一个角的同名三角函数形式的一元二次式,利用配方法、 换元及图像法求解。 (2)函数)(2cos 2 1 cos )(R x x x x f ∈- =的最大值等于43. (3).当2 0π <

(三)借助直线的斜率的关系,用数形结合求解 型如d x c b x a x f ++= cos sin )(型。此类型最值问题可考虑如下几种解法: ①转化为c x b x a =+cos sin 再利用辅助角公式求其最值; ②利用万能公式求解; ③采用数形结合法(转化为斜率问题)求最值。 例1:求函数sin cos 2 x y x = -的值域。 解法1:数形结合法:求原函数的值域等价于求单位圆上的点P(cosx , sinx )与定点Q(2, 0)所确定的直线的斜率的范围。作出如图得图象,当过Q 点的直线与单位圆相切时得斜率便是函数sin cos 2 x y x = -得最值,由几何知识,易求得过Q 的两切线得斜率分别为3 3 -、 33。结合图形可知,此函数的值域是33 [,]33 - 。 解法2:将函数sin cos 2x y x =-变形为cos sin 2y x x y -=,∴22s i n ()1y x y φ+= +由2 |2||sin()|11y x y φ+= ≤+22(2)1y y ?≤+,解得:3333 y - ≤≤,故值域是33 [,]33- 解法3:利用万能公式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x =-得到2 213t y t =--则有2 320yt t y ++=知:当0t =,则0y =,满足条件;当0t ≠,由2 4120y =-≥△,3333 y ?-≤≤,故所求函数的值域是33[,]33-。 解法4:利用重要不等式求解:由万能公式2 12sin t t x +=,221cos 1t x t -=+,代入sin cos 2x y x = -得到2 213t y t =--当0t =时,则0y =,满足条件;当0t ≠时, 22 113(3) y t t t t = =---+,如果t > 0,则2223113233(3)y t t t t ==-≥-=---+, x Q P y O

专题24解三角形中的最值、范围问题(解析版)

专题24 解三角形中的最值、范围问题 解三角形问题是高考高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理、三角形面积公式等知识解题,解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意2 2 ,,a c ac a c ++三者的关系. 高考中经常将三角变换与解三角形知识综合起来命题,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理实现边角互化;以上特征都不明显时,则要考虑两个定理都有可能用到.而三角变换中主要是“变角、变函数名和变运算形式”,其中的核心是“变角”,即注意角之间的结构差异,弥补这种结构差异的依据就是三角公式. 1、正弦定理: 2sin sin sin a b c R A B C ===,其中为ABC V 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化.其原则为关于边,或是角的正弦值是否具备齐次的特征.如果齐次则可直接进行边化角或是角化边,否则不可行 学/科-+网 例如:(1)2 2 2 2 2 2 sin sin sin sin sin A B A B C a b ab c +-=?+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=?+=(恒等式) (3) 22sin sin sin bc B C a A = 2、余弦定理:2 2 2 2cos a b c bc A =+- 变式:()()2 2 21cos a b c bc A =+-+ 此公式在已知的情况下,配合均值不等式可得到和的最值 4、三角形中的不等关系 (1)任意两边之和大于第三边:在判定是否构成三角形时,只需验证较小的两边之和是否比第三边大即可.由于不存在等号成立的条件,在求最值时使用较少 (2)在三角形中,边角以及角的三角函数值存在等价关系: sin sin cos cos a b A B A B A B >?>?>?<

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x, y )是〉的终 边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o , 位置无关。 2. 三角函数在各象限的符号:(一全二正弦,三切四余弦) + L i + —— L + _ - + ------ ■ —— + - ■ sin : cos : tan : 3. 同角三角函数的基本关系式: 4. 三角函数的诱导公式 k 二.一 诱导公式(把角写成2 …形式,利用口诀:奇变偶不变,符 (2)商数关 系: tan-E 屮一、 cos 。(用于切化弦) (1)平方关 系: 2 2 2 sin 工 cos ■■ -1,1 tan : 1 cos 2: ※平方关系一般为隐含条件,直接运用。注意“ 1”的代换 si …y,cos 」 那么 r 三角函数值只与角的大小有关,而与终边上点

5. 特殊角的三角函数值 度 0s 30c A 45“ A 60“ 90 120c A 135“ 150s 180c 270° 360 弧 31 JI JI 2n 3兀 5兀 JI 3兀 2兀 度 6 4 3 2 3 4 6 2 si n 。 0 1 竝 迈 1 旦 1 0 1 2 2 2 2 2 2 cosa 亦 1 1 念 力 1 2 _1 1 2 2 2 2 2 号看象限) sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanx sin ( -x ) - - sin x cos (-x ) =cosx H )tan (-x ) - - tanx m ) |sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一 sin (— -〉)= cos ..z sin (二:)=cos : V ) -?) = sin :

三角函数最值问题解法归纳

三角函数最值问题—解题9法 三角函数是重要的数学运算工具,三角函数最值问题是三角函数中的基本内容,也是高中数学中经常 涉及的问题。这部分内容是一个难点,它对三角函数的恒等变形能力及综合应用要求较高。解决这一类问 题的基本途径,同求解其他函数最值一样,一方面应充分利用三角函数自身的特殊性(如有界性等),另 一方面还要注意将求解三角函数最值问题转化为求一些我们所熟知的函数(二次函数等)最值问题。下面 就介绍几种常见的求三角函数最值的方法: 一配方法 若函数表达式中只含有正弦函数或余弦函数,切它们次数是2时,一般就需要通过配方或换元将给定 的函数化归为二次函数的最值问题来处理。 例1函数的最小值为(). A. 2 B . 0 C . D . 6 [分析]本题可通过公式将函数表达式化为,因含有cosx 的二次式,可换元,令cosx=t,则配方,得, 当t=1时,即cosx=1时,,选B. 例2 求函数y=5sinx+cos2x的最值 [分析]:观察三角函数名和角,其中一个为正弦,一个为余弦,角分别是单角和倍角,所以先化简,使三角函数的名和角达到统一。 二引入辅助角法 例3已知函数当函数y取得最大值时,求自变量x的集合。 [分析] 此类问题为的三角函数求最值问题,它可通过降次化简整理为型求解。 解:

三利用三角函数的有界性 在三角函数中,正弦函数与余弦函数具有一个最基本也是最重要的特征——有界性,利用正弦函数与余弦函数的有界性是求解三角函数最值的最基本方法。 例4求函数的值域 [分析] 此为型的三角函数求最值问题,分子、分母的三角函数同名、同角,这类三角函数一般先化为部分分式,再利用三角函数的有界性去解。或者也可先用反解法,再用三角函数的有界性去解。 解法一:原函数变形为,可直接得到:或 解法一:原函数变形为或 例5已知函数,求函数f(x)的最小正周期和最大值。 [分析] 在本题的函数表达式中,既含有正弦函数,又有余弦函数,并且含有它们的二次式,故需设法通过降次化二次为一次式,再化为只含有正弦函数或余弦函数的表达式。 解: f(x)的最小正周期为,最大值为。 四引入参数法(换元法) 对于表达式中同时含有sinx+cosx,与sinxcosx的函数,运用关系式 一般都可采用换元法转化为t的二次函数去求最值,但必须要注意换元后新变量的取值范围。 例6 求函数y=sinx+cosx+sinxcosx的最大值。 [分析]解:令sinx+cosx=t,则 ,其中

2020年高中数学三角函数的最值问题必修4

三角形中的最值问题 山东莘县观城中学 郭银生 解三角形问题,可以较好地考察三角函数的诱导公式,恒等变换,边角转化等知识点,是三角,函数,解析几何和不等式的知识的交汇点,在高考中容易出综合题,其中,三角形中的最值问题又是一个重点。其实,这一部分的最值问题解决的方法只有两种,建立目标函数后,可以利用重要不等式解决,也可以利用三角函数的有界性。下面举例说明: 例1.要是斜边一定的直角三角形周长最大,它的一个锐角应是( ) A .∏ /4 B. ∏/3 C. ∏/6 D.正弦值是1/3的锐角 解:解法1.(三角函数的有界性)设斜边为c ,其一个锐角是α,周长是L,则两个直角边是csinα 和ccosα, 故 L =c+csinα +ccosα =c+1.414csin(α+∏ /4 ) ∵0<α<∏/2 ∴当α+∏ /4 =∏/2时,Lmax=c+1.414c 故选A 解法2.设两条直角边为a,b,周长为L ,则斜边c=22b a +是定值。 L=a+b+2 2b a +≤) +(222b a +22b a +=(2+1) 22b a +(当且仅当a=b 时取等号) 即三角形是等腰直角三角形,周长取得最大值时,其一个锐角是∏ /4 从而选A. 例2.已知直角三角形周长是1,其面积的最大值为 . 方法Ⅰ.(三角函数的有界性) 设该直角三角形的斜边是c ,一个锐角是A ,面积是S ,则两条直角边是csinA 和ccosA ,根据题意 csinA+ccosA+c=1,即c=A A sin sin 11++ ① S=21csinA*ccosA=41sin2A ≤4 1 (当且仅当A=∏/4时取等号)

解三角形中相关的取值范围问题

解决与三角形相关的取值范围问题 例1:在锐角ABC 中,2A B =,则c b 的取值范围是 例2:若ABC 的三边,,a b c 成等比数列,,,a b c 所对的角依次为,,A B C ,则sin cos B B +的取值范围是 例3:在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列。(1)求B 的大小。 (2)若5b =,求ABC 周长的取值范围。 例4:在ABC 中,2222 3a b c ab +=+,若ABC ,则ABC 的面积的最大值为

例5:(2008,江苏)满足 2,AB AC =的ABC 的面积的最大值是 例6:已知角,,A B C 是ABC 三个内角,,,a b c 是各角的对边,向量 (1cos(),cos )2A B m A B -=-+, 5(,cos )82A B n -=,且98 m n ?= (1)求tan tan A B ?的值。 (2)求 222 sin ab C a b c +-的最大值。 通过以上例题,我们发现与三角形相关的取值范围问题常常结合正弦定理、余弦定理、面积公式、数列、三角函数、基本不等式、二次函数、向量等知识综合考查。这一类问题有利于考查学生对知识的综合运用能力,是高考命题的热点。理顺这些基本知识以及技巧和方法可以提高我们解题的能力。希望本文能对同学们复习备考有所帮助。 巩固练习 1.在ABC 中,2,1a c ==,则C ∠的取值范围为 2.若钝角三角形的三内角的度数成等差数列,且最大边长与最小边长的比值为m ,则m 的取值范围是

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离是 0r =>,那么 sin ,cos y x r r αα= =, () tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系: 22221sin cos 1,1tan cos αααα+=+= (2)商数关系: sin tan cos α αα= (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成α π±2k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?????=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)???????-=+=+ααπααπsin )2cos(cos )2sin(

2021届新高考数学二轮 培优点7 三角函数中的范围、最值问题(原卷版)

培优点7 三角函数中的范围、最值问题 【方法总结】 以三角函数为背景的范围与最值问题是高考的热点,对问题的准确理解和灵活转化是解题的关键. 【典例】1 (1)若函数y =sin 2x +acos x +58a -32在? ?????0,π2上的最大值是1,则实数a 的值为________. (2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若3acos C +b =0,则tan B 的最大值是________. 【典例】2 (1)(2020·烟台模拟)将函数f(x)=cos x 的图象向右平移2π3 个单位长度,再将各点的横坐标变为原来的1ω(ω>0),得到函数g(x)的图象,若g(x)在??????0,π2上的值域为???? ??-12,1,则ω的取值范围为( ) A.??????43,83 B.??????13,53 C.??????43,+∞ D.???? ??83,+∞ (2)若将函数f(x)=sin ? ????2x +π4的图象向右平移φ个单位长度,所得图象关于y 轴对称,则φ的最小正值是________. 【方法总结】 (1)求解三角函数的范围或最值的关键在于根据题目条件和函数形式选择适当的工具:三角函数的有界性,基本不等式,二次函数等. (2)求解和三角函数性质有关的范围、最值问题,要结合三角函数的图象. 【拓展训练】

1.已知函数f(x)=2sin(ωx +φ)(ω>0)的图象关于直线x =π3 对称,且f ? ?? ??π12=0,则ω的最小值为( ) A .2 B .4 C .6 D .8 2.若函数f(x)=2sin x +cos x 在[0,α]上是增函数,则当α取最大值时,sin 2α的值等于( ) A.45 B.35 C.25 D.215 3.已知函数f(x)=2sin ? ????ωx +π6中x 在任意的15个单位长度的距离内能同时取得最大值和最小值,那么正实数ω的取值范围是________. 4.已知函数f(x)=sin ? ????ωx +π3(ω>0),若f(x)在??????0,2π3上恰有两个零点,且在???? ??-π4,π24上单调递增,则ω的取值范围是________.

三角函数及解三角形知识点总结

三角函数及解三角形知识点 总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意 一点(异于原点),它与原点的距离是0r =>,那么 sin ,cos y x r r αα= =,()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号: (一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:22221 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换 4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)??? ??=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin(

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

三角函数的最值问题(章节练习)

三角函数的最值问题 三角函数最值问题散见于不同的章节,或作为问题的背景、或作为单独的数学问题、或作为解题的工具。今天,我们就求解最值的方法层面展开讨论! 一 化为单名函数的形式 例1 函数f(x)=x x x x 44 sin cos sin 2cos -- ①求f(x)得最小正周期; ② ?? ????∈2,0πx 时,求f(x)的最小值。 解: (1) x x x x x f cos sin 2sin cos )(22 --= x x 2sin 2cos -= )2 2 2sin 222(cos 2?-=x x )4 2cos(2π += x ∴ f(x)最小正周期是π=T (2)2 0π≤≤x ∴ ?? ? ???∈+45,42 2πππx ∴ 4 4 2π π = +x 即0=x 时最大值是1 ππ=+4 2x 即8 3π=x 时最小值是- 2 注意 ① 辅助角公式)sin(cos sin 22?++=+x b a x b x a 的应用 ② 注意三角函数区间最值的正确取舍 二 单名函数的复合型

例2 3 1sin sin =+y x ,求x y 2 cos sin -的最值 解:∵ x y sin 3 1sin -= ∴ 1sin 3 11≤-≤-x ∴ 3 4sin 3 2≤≤-x ∴ 12 11 )21(sin cos sin 22 --=-=x x y u ∴ 21sin =x u 的最小值为12 11- ; 3 2sin -=x u 的最大值为94 注意:隐含条件不可忽视! 三 关系代换x x cos sin ±与x x cos sin 例3 求函数x x x x y cos sin 1cos sin ++= 的最值 解:令x x t cos sin += 则 x x t cos sin 12 += ∴ )1(2 1121 2-=+-=t t t y ∴ 22≤≤- t 且 1≠t ∴ ) 12(2 1 )12( 2 1-≤≤+-y 且 1-≠y 注意① 代换要等效 ;② 原函数中对代换量的现定! 四 限量代换 例4 求函数2 1x x y -+ =的值域 解:函数的定义域[]1,1-∈x 令 θcos =x , πθ≤≤0 )4sin(2sin cos π θθθ+=+=y ∴ 21≤ ≤-y 注意:限量代换要求对代换量进一步分析并“定性”

高考数学压轴专题专题备战高考《三角函数与解三角形》难题汇编及答案

新高考数学《三角函数与解三角形》练习题 一、选择题 1.在ABC ?中,060,10,A BC D ∠==是边AB 上的一点,2,CD CBD =?的面积为 1, 则BD 的长为( ) A .32 B .4 C .2 D .1 【答案】C 【解析】 1210sin 1sin 25 BCD BCD ???∠=∴∠= 2 2 2 2102210425 BD BD ∴=+-??? =∴=,选C 2.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( ) A . 2 π B . 3 π C . 4 π D . 6 π 【答案】C 【解析】 【分析】 设AE BF a ==,1 3 B EBF EBF V S B B '-'= ??V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解. 【详解】 设AE BF a ==,则()()2 3119333288B EBF a a V a a '-+-?? =???-?≤=???? ,当且仅当3a a =-,即3 2 a = 时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点,

方法一:连接A E',AF,则 3 5 2 A E'=, 3 5 2 AF=,22 9 2 A F AA AF '' =+=,132 22 EF AC ==, 因为// EF AC,所以A FE ' ∠即为异面直线A F'与AC所成的角, 由余弦定理得 222 81945 2 424 cos 93 22 22 22 A F EF A E A FE A F EF +- '' +- ' ∠=== ' ???? , ∴ 4 A FE π ' ∠=. 方法二:以B为坐标原点,以BC、BA、BB'分别为x轴、y轴、z轴建立空间直角坐标系, 则() 0,3,0 A,() 3,0,0 C,() 0,3,3 A', 3 ,0,0 2 F ?? ? ?? , ∴ 3 ,3,3 2 A F ?? '=-- ? ?? u u u u r ,() 3,3,0 AC=- u u u r , 所以 9 92 2 cos, 92 32 2 A F AC A F AC A F AC + '? '=== '?? u u u u r u u u r u u u u r u u u r u u u u r u u u r, 所以异面直线A F'与AC所成的角为 4 π . 故选:C 【点睛】 本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题. 3.在ABC ?中,角,, A B C所对的边分别为,, a b c满足,222 b c a bc +-=, AB BC ?> u ur u u r u u , 3 a=b c +的取值范围是( ) A. 3 1, 2 ?? ? ?? B. 33 22 ?? ? ? ?? C. 13 , 22 ?? ? ?? D. 3 1, 2 ?? ? ??

三角函数的最值

三角函数的最值 一、知识归纳 1. 基础知识 (1) 配方法求最值 主要是利用三角函数理论及三角函数的有界性,转化为二次函数在闭区间上的最值问题,如求函数2 sin sin 1y x x =++的最值,可转化为求函数 []21,1,1y t t t =++∈-上的最值问题。 (2) 化为一个角的三角函数,再利用有界性求最值: sin )a x bcox x ?+=+ 如函数1 2sin y x cox = ++的最大值是( ) A . 12- B.12+ C.12- D.12 -- 应选B (3) 数形结合 常用到直线斜率的几何意义,例如求函数sin 2 x y cox = +的最大值和最小值。函数 sin 2 x y cox = +的几何意义为两点(2,0),(cos ,sin )P Q x x -连线的斜率k ,而Q 点的 轨迹为单位圆,由图可知max min y y == (4) 换元法求最值 ①利用换元法将三角函数问题转化为代数函数,此时常用万能公式和判别式求最值。 ②利用三角代换将代数问题转化为三角函数,然而利用三角函数的有界性等求最值。 例如:设实数y x ,满足,12 2 =+y x 则y x 43+的最大值为______. 解:由,12 2 =+y x 可设θθsin ,cos ==y x 则)sin(5sin 4cos 343?θθθ+=+=+y x ,则其最大值为5。 2. 重点难点: 通过三角变换结合代数变换求三角函数的最值。 3. 思维方式 (1) 认真观察函数式,分析其结构特征,确定类型。 (2) 根据类型,适当地进行三角恒等变形或转化,这是关键的步骤。 (3) 在有关几何图形的最值中,应侧重于将其化为三角函数问题来解决。

相关主题
文本预览
相关文档 最新文档