当前位置:文档之家› 复杂过程控制系统设计与Simulink仿真

复杂过程控制系统设计与Simulink仿真

复杂过程控制系统设计与Simulink仿真
复杂过程控制系统设计与Simulink仿真

银河航空航天大学

课程设计

(论文)

题目复杂过程控制系统设计与Simulink仿

班级

学号

学生姓名

指导教师

目录

0. 前言 (1)

1. 总体方案设计 (2)

2. 三种系统结构和原理 (3)

2.1 串级控制系统 (3)

2.2 前馈控制系统 (3)

2.3 解耦控制系统 (4)

3. 建立Simulink模型 (5)

3.1 串级 (5)

3.2 前馈 (5)

3.3 解耦 (7)

4. 课设小结及进一步思想 (15)

参考文献 (15)

附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真

姬晓龙银河航空航天大学自动化分校

摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。

关键字:串级;前馈;解耦;建模;Simulink。

0.前言

单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。

计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

1.总体方案设计

本次设计共分为三个部分,分别对串级、前馈、解耦三个复杂过程控制系统进行设计。首先研究各复杂控制系统的结构以及工作原理原理,画出它们的原理框图,分析这些系统的特点,包括其被控过程的动态特性、对扰动的抗干扰能力等等,然后对这些系统进行具体设计,建立SImulink模型,然后选择合适的工业过程进行参数整定及系统分析。总体方案如图1所示:

图1 课程设计整体方案设计

2. 三种系统结构和原理

2.1 串级控制系统

控制系统具有多个控制器和一个执行机构,这些控制器被一个一个地串联起来,前一个控制器的输出就是后一个控制器的设定值,其执行机构由最后一个控制器控制,这种系统被称为串级控制系统。串级控制系统的基本组成如图2所示:

图2 串级控制系统的基本组成

为了提高系统性能,在以1c 为被控量的被控对象中适当选取另一个可测变量2c 为中间变量,2c 称为副被控量,也称副参数,相对于2c 把1c 称为主被控量,也称主参数。以2c 为分界,把整个受控过程分成两个组成部分,以2c 为输出的部分称为副对象,而以2c 为输入的部分称为主对象。主被控量和副被控量通过各自的控制器构成闭环控制。副被控量的控制回路在内,其设定值就是主控制器的输出,而副控制器的输出就直接控制控制阀,这

两个控制回路称为内环和外环。通常把作用在主对象上的扰动1q 称为一次扰动,作用在副回路上的扰动2q 称为二次扰动。 2.2 前馈控制系统

前馈控制是针对扰动量及其变化进行控制的。其原理图如图3:

图3 前馈控制原理图

在前馈控制中,)(s G f (s)3G 为干扰源至系统输出的干扰通道传递函数;)(s G d 为前馈调节器函数;)()(32s G s G 为干扰源至系统输出的控制通道传递函数;(s)1G 为给定环节传

2c

2q

1q

可测干扰

递函数。系统输出为:

Y=X·

(s)1G )()(32s G s G +M()(s G d (s)2G +)(s G f )(s)3G 干扰对系统的作用是通过干扰通道进行的,前馈的控制原理是给系统附加一个前馈通道,使所测量的系统扰动通过前馈控制器改变控制量。利用扰动所附加的控制量与扰动对被控量影响的叠加消除和减小干扰的影响。 2.3 解耦控制系统

解耦方法有很多方法,这里只说前馈补偿解耦设计。过程可以表示为

)()()()()(y 2121111s u s W s u s W s += )()()()()(2221212s u s W s u s W s y +=

若令 2112121111)()()()()()()(u s W s W s u s W s u s W s y FF ++= 而又满足 0)()()(11FF 12=+s W s W s W 则有 )()()(1111s u s W s y =

同理令

)()()()()()()()(22212211212s u s W s u s W s W s u s W s y FF ++=

可得 )()()(2222s u s W s y =

这样就实现了过程解耦,式(1)和式(2)为补偿器结构,它和串联补偿不同,采用的是前馈补偿的不变性原理。其系统构成如图4所示:

)

()

()(1112

2s W s W s W FF -=)

()()(22211s W s W s W FF -

=

(1)

(2)

3. 建立Simulink模型

3.1 串级

以隧道窑系统对象进行仿真研究。考虑将燃烧室温度作为副变量,烧成温度为主变量,燃烧室温度为副变量的串级控制系统中主、副对象的传递函数

1o

G和

2

o

G分别为:

主、副控制器的传递函数

1c

G和

2c

G为:

建立系统的Simulink模型如图5所示:

图5 串级控制时系统的Simulink模型

在图5中,q1为一次扰动,取阶跃信号;q2为二次扰动,取阶跃信号;PID C1为主

控制器,采用PID控制;PID C2为副控制器,采用PID控制;

2

o

G为副对象;

1o

G为主对象;r为系统输入,取阶跃信号;c为系统输出,它连接到示波器上,可以方便的观测输出。

3.2 前馈

这里进行前馈—反馈复合控制系统仿真。前馈—反馈复合控制系统仿真主要包括:系统辨识、控制系统整定和系统仿真等内容。假设被控对象的干扰通道传递函数为:

2

2

1)1

)(1

10

(

1

)

(

;

)1

3

)(1

30

(

1

)

(

+

+

=

+

+

=

s

s

s

G

s

s

s

G

o

o

2

2

1

1

1

)

(

);

1

1(

c

c

c

c

K

s

G

s

T

K

G=

+

=

s e s s s G s G 10)

110)(18(15

)()(-++=

系统被控部分传递函数为:

s e s s s G s G 8)

110)(15(6

)()(-++=

给定部分传递函数为:

1)(=s G c

采用前馈、反馈分别整定的方法,前馈整定参数为5.2-=d K ,8,521==d d T T 。若系统采用PID 控制,则系统结构框图如图6所示:

图6 前馈—反馈复合控制系统方框图

系统稳定性分析是实验调试中正确把握试验方法、试验参数的基本依据。对图5所示系统反馈环节开环稳定性进行分析(不含PID 调节器部分),为分析方便取:

s e e s s 311

133+≈=- s

e e s s

511155+≈=- 不含PID 调节器的开环传递函数可近似写成:

)

110()15)(13(6

2+++s s s

可见开环系统不稳定。

可测干扰 M(s)

反馈控制器取为PI 形式。采用阶跃响应法整定PI 参数。开环阶跃响应SImulink 框图如图7所示:

图7 开环阶跃响应Simulink 框图

其中阶跃输入控制量1=?u ,因此得:

利用各整定参数及系统模型辨识结果构建系统前馈—反馈复合控制Simulink 框图如图8所

示:

图8 系统前馈—反馈复合控制Simulink 框图

3.3 解耦

这里进行前馈补偿解耦控制仿真。以锅炉燃烧系统为对象,可控制输入量为燃料流量

29

.09.0=?????=

L

y T

u K p 009.03==L

K K P

I

和助燃空气流量,被控量和温度,为系统蒸汽压采用参数前馈补偿解耦法对噶系统进行仿真。

此为双输入双输出系统,初步选择输入x1、x2分别对应输出y1、y2。经辨识,得系统输入、输出的传递关系为:

由式(3)的系统静态放大系数矩阵为:

即系统的第一放大系数矩阵为:

系统的相对增益矩阵为:

由相对增益矩阵可以看出,控制系统输入、输出的配对选择是错误的,应调换。为了表述方便,调换后仍用输入x1(原x2)、x2(原x1)分别对应输出y1、y2,输入、输出之间的传递关系为:

输入、输出重新匹配后,系统输入、输出结构如图9所示:

(3)

?????

?=??????1.055.0122211211k k k k ??

?

???????

?

?

????++++=??????)()(191.01

125125.0131

)()(2121s X s X s s s s S Y S Y ??

????=??????=??????=1.055.012221121122211211

k k k k p p p p P ?

?

????--=Λ04.104.104.104.0???

????

???

??????++++=??????(s)X (s)1s 1251s 91.01s 311s 25

.0(s)(s)2121X Y Y (4)

(5)

(6)

(7)

图9 重新匹配后的系统耦合关系

可求得相对增益矩阵为:

由式(8)知,输入x1、x2分别对输出y1、y2的控制能力接近于1,通道间相互耦合接近零。如不强调系统的动态跟随特性,只考虑稳态特性,则系统的两个通道耦合很弱不需要解耦。但如果考虑动态情况,由于系统纯在耦合,则容易形成正反馈,应对系统进行耦合分析。

本次选择前馈方式实现解耦,前馈解耦控制器分别为:

(1X 2X ?

?

????--=Λ04.104.004.004.1(8)

1

324)(12++-

=s s s G p (9)

)

19(50112)(21++-

=s s s G p (10)

采用前馈解耦后,系统的结构图如图10所示:

图10 采用前馈耦合后系统结构

解耦前后系统的Simulink 阶跃仿真框图如

图11所示:

1

s 25.0+ 1

s 91.0+1

s 31+ 1

s 125+50

450112++s s 1

324++s s 输入

)(1s X

输入

)(2s X

+ _

_ +

+

+

+ +

输出 )(1s Y

输出

)(2s Y

前馈补偿

被控耦合系统

(a)系统不纯在耦合

的Simulink仿真框图

(b) 系统耦合Simulink仿真框图

(c) 利用前馈补偿实现系统耦合的Simulink仿真框图

图11 系统解耦状态对比Simulink仿真框图

图11(a)为系统无耦合的Simulink阶跃仿真框图;图11(b)为系统耦合时Simulink阶

跃仿真框图;图11(c)为系统采用前馈耦合后的Simulink阶跃仿真框图。

通过前馈补偿解耦,原系统已可看成两个独立的单输入单输出系统。考虑到PID应用的广泛性和系统无静差要求,控制器采用PI形式。

PI参数整定通过解耦的两个单输入单输出系统进行。其Simulink框图分别如图12所示。整定采用试误法。

(a)x1y1通道PI整定Simulink框图

(b) x2y2通道PI整定Simulink框图

图12 系统解耦后各通道独立整定Simulink框图

实现完全解耦的系统可以分别用两个单输入单输出系统仿真。但为了从整体角度进一步管擦解耦情况,仿真时按整体进行如图13所示:

(a)PI模块的结构

(b) 解耦时系统的Simulink仿真框图

(c) 不解耦时系统的Simulink仿真框图

图13 系统解耦与不解耦时,系统的Simulink仿真框图

为了对比解耦和不解耦两种情况,图13(b)为解耦时系统的Simulink仿真框图,图13(c)为不解耦时系统的Simulink仿真框图。其中PI1—PI4的结构如图13(a)所示。各处干扰均为幅度为1

的随机扰动。

4. 课设小结及进一步思想

通过这次紧张的课程设计,我收获颇多,每天面对着电脑,翻阅各种相关资料,体会颇深。对于复杂过程控制和Matlab中仿真工具Simulink的学习,有种意犹未尽之感,在这次课设中,加深了对复杂过程控制和Matlab中仿真工具Simulink相关知识的理解,巩固了原有知识的同时又学到了一些新鲜的知识。

很感谢老师的耐心教导,她的认真负责让我们折服。这次的课设让我找到了方向,让我懂得了很多:知识是多方面的,要想学好任何一门知识都要付出很多努力,坚持不懈;同时,想要做好一件事就要身心投入,认真去做。

由于时间仓促,以及自身水平有限,这次的课设只对复杂过程控制中的串级、前馈、和解耦进行了学习和Simulink建模,对于仿真需要的参数还没有整定出来,因此也未能进行具体的仿真分析。在课设结束之后我要继续学习,把毕设中的其它工作早日完成。参考文献

[1]王正林,郭阳宽. 过程控制与Simulink应用. 北京:电子工业出版社, 2006.7

[2]邵裕森、戴先中. 过程控制工程. 北京: 机械工业出版社, 2000.5

[3]刘文定. 过程控制系统的MATLAB仿真. 机械工业出版社, 2009.2

[4] 萧德云译. 过程控制系统——应用、设计与整定(第3版). 清华大学出版社,2004.5

[5] 金以慧. 过程控制.清华大学出版社,2002.3

[6] 马莉. MATLAB数学实验与建模. 清华大学出版社,2010.1

[7] 李国勇. 过程控制系统. 北京:电子工业出版社,2009.4

[8] 陈杰. MATLAB宝典. 北京:电子工业出版社,2011.1

附录设备清单不需要

顺利完成

————俊彩滕王

通信仿真课程设计-matlab-simulink

成都理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 201620101133 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,电话,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

Simulink系统仿真课程设计

《信息系统仿真课程设计》 课程设计报告 题目:信息系统课程设计仿真 院(系):信息科学与技术工程学院 专业班级:通信工程1003 学生姓名: 学号: 指导教师:吴莉朱忠敏 2012 年 1 月 14 日至2012 年 1 月 25 日 华中科技大学武昌分校制

信息系统仿真课程设计任务书

目录 摘要 (5) 一、Simulink仿真设计 (6) 1.1 低通抽样定理 (6) 1.2 抽样量化编码 (9) 二、MATLAB仿真设计 (12) 2.1、自编程序实现动态卷积 (12) 2.1.1 编程分析 (12) 2.1.2自编matlab程序: (13) 2.1.3 仿真图形 (13) 2.1.4仿真结果分析 (15) 2.2用双线性变换法设计IIR数字滤波器 (15) 2.2.1双线性变换法的基本知识 (15) 2.2.2采用双线性变换法设计一个巴特沃斯数字低通滤波器 (16) 2.2.3自编matlab程序 (16) 2.2.4 仿真波形 (17) 2.2.5仿真结果分析 (17) 三、总结 (19) 四、参考文献 (19) 五、课程设计成绩 (20)

摘要 Matlab 是一种广泛应用于工程设计及数值分析领域的高级仿真平台。它功能强大、简单易学、编程效率高,目前已发展成为由MATLAB语言、MATLAB工作环境、MATLAB图形处理系统、MATLAB数学函数库和MATLAB应用程序接口五大部分组成的集数值计算、图形处理、程序开发为一体的功能强大的系统。本次课程设计主要包括MATLAB和SIMULINKL 两个部分。首先利用SIMULINKL 实现了连续信号的采样及重构,通过改变抽样频率来实现过采样、等采样、欠采样三种情况来验证低通抽样定理,绘出原始信号、采样信号、重构信号的时域波形图。然后利用SIMULINKL 实现抽样量化编码,首先用一连续信号通过一个抽样量化编码器按照A律13折线进量化行,观察其产生的量化误差,其次利用折线近似的PCM编码器对一连续信号进行编码。最后利用MATLAB进行仿真设计,通过编程,在编程环境中对程序进行调试,实现动态卷积以及双线性变换法设计IIR数字滤波器。 本次课程设计加深理解和巩固通信原理、数字信号处理课上所学的有关基本概念、基本理论和基本方法,并锻炼分析问题和解决问题的能力。

上海电力学院2020年考研复试大纲:F024过程控制系统设计

上海电力学院2020年考研复试大纲:F024过程 控制系统设计 考研大纲频道为大家提供上海电力学院2019年考研复试大纲: F024过程控制系统设计,有需要的同学赶紧复习吧!更多考研资讯 请关注我们网站的更新! 上海电力学院2019年考研复试大纲:F024过程控制系统设计 课程名称:过程控制系统设计 参考书目:王再英、刘淮霞、陈毅静编著.《过程控制系统与仪表》(普通高等教育“十一五”国家级规划教材),机械工业出版社,2017年09月。 复习的总体要求 《过程控制系统设计》是一门将控制理论、过程生产工艺、仪器仪表知识、系统设计方法相结合的综合性应用课程。本课程要求学 生了解过程控制系统的组成及性能指标,掌握被控过程的特性与建 模方法,领会测量变送器、执行器和PID控制器的组成、工作原理 和选型原则,完成简单和复杂过程控制系统的设计和整定,实现典 型过程控制应用案例的分析和设计。 复习内容 知识点 1、过程控制概述:过程控制的特点和任务;过程控制系统的分类;过程控制的性能指标要求; 2、控制仪表:控制仪表的分类;PID控制规律及特点;PID控制器的应用; 3、执行器:执行器的分类;调节阀的结构和工作原理;调节阀的 结构特性和流量特性;调节阀的选型原则;

4、被控过程的数学模型:数学模型的作用和建模方法;机理建模法的原理和建模过程;阶跃响应曲线法建模的原理和方法; 5、简单控制系统的设计与整定:简单控制系统的组成;简单控制系统设计的基本要求和设计步骤;被控参数、控制变量、控制器调节规律和正反作用的选择;控制器参数的衰减频率特性整定法;控制器 参数的工程整定法; 6、串级控制系统的设计:串级控制系统的结构和工作原理;串级控制系统的特点;串级控制系统的设计原则和控制器参数的整定方法; 7、前馈控制系统的设计:前馈控制的原理和特点;静态和动态前馈的设计方法;前馈与反馈复合控制系统的设计; 8、大滞后控制系统设计:Smith预估控制的结构和原理;Smith 预估控制的特点分析;改进的Smith预估控制的应用; 9、比值控制系统的设计:比值控制系统的种类;比值系数的计算;比值控制的实现方法; 10、分程控制、均匀控制和选择性控制系统的设计:分程控制、均匀控制和选择性控制的工作原理、适用场合和设计原则; 11、解耦控制系统设计:相对增益的定义、作用、计算和应用;解耦控制器的设计;解耦控制的近似实现; 12、典型过程控制应用案例的分析与设计:大型火电机组热工控制系统的分析与设计;精馏塔控制系统的分析与设计。 考核要求 1)理解和掌握过程控制的基本概念:过程控制的特点、系统基本组成和分类; 2)掌握控制装置的使用:正确选择检测装置、控制器和执行器; 3)掌握对象建模的方法:根据设计需要,用机理建模法或工程测试法对被控对象进行建模;

5.2 闭环电子控制系统的设计与应用(1)

如图所示是JN6201集成电路鸡蛋孵化温度控制器电路图,根据该原理图完成1~3题。 1.该电路图作为控制系统的控制(处理)部分是IC JN6201,当JN6201集成输出9脚长时间处于高电平,三极管V2处于截止状态,继电器释放,电热丝通电加热。 2.安装好调试时,先将温度传感器Rt1放入37℃水中,调整电位器Rp1,使继电器触点J-2吸合,再将温度传感器Rt2放入39℃水中,调整Rp2,使继电器触点J-2释放。 3.调试时发现,不管电位器Rp1和Rp2怎么调,继电器J 始终吸合,检查电路元器件安装和接线都正确,用万用表测三极管V2集电极电位,在不同的调试状态分别为2.8V 和0V ,可知电路发生故障的原因是( B ) A.二极管V6内部断路 B.三极管V3内部击穿(短路) C.电阻R4与三极管V3基极虚焊 D.继电器线圈内部短路 如图所示是运算放大器鸡蛋孵化温度控制器电路图,根据该原理完成4~6题。 4.该电路作为控制系统的输出部分是继电器J 、电热丝等,当电路中集成运放2脚的电位低于3脚的电位,三极管V3处于饱和状态,继电器J 吸合,电热丝通电加热。 上限 V2饱和导通时候Uce 电压降0.2V ,所以留下来给集电极2.8V ,截止时候0V

5.安装好后调试时,将温度传感器Rt 放入39℃水中,调R4,使电压U2=U3,集成运放输出端6脚的电压为0V ,电路实现39℃单点温度控制。 6.调试时发现,将温度传感器Rt 放入高于39℃水中,继电器吸合;将温度传感器Rt 放入低于39℃水中,继电器释放,出现该故障现象的原因可能是( A ) A.集成运放2脚与3脚接反 B.二极管V4接反 C.电阻R2断路 D.三极管V3损坏 如图所示是晶体管组成的水箱闭环电子控制系统电路,根据该原理图完成7~9题。 7.该电路作为控制系统被控对象的是水箱内的水,水箱的水位从a 点降到b 点的过程中,三极管V1处于饱和状态,三极管V2处于截止状态,继电器触点J-1处于吸合状态。 8.安装调试时,将三个水位探头按图中的高低放入空玻璃杯中,如果电路正常,电路通电后,继电器J 吸合;向玻璃杯中加水,到达a 点时,继电器J 释放;接着将玻璃杯中的水排出,水位降到b 点以上时,继电器J 释放;水位降到b 点以下时,继电器J 吸合。 9.调试时发现,玻璃杯中的水位在b 点以下时,继电器J 就吸合;水位加到b 点,继电器J 就释放。出现该故障现象的原因是( D ) A.继电器J 没用 B.三极管V1损坏 C.二极管V3接反 D.电路没接J-1触点,b 点直接接到了电阻R1 如图所示是555集成电路组成的水箱水位闭环电子控制系统电路图, (第4~6题) (第7~9题) R4 10k ?R5 4.7k R3 4.7k

实验五基于MATLAB工具箱的控制系统分析与设计.

实验五、基于MATLAB工具箱的控制系统分析与设计(2学时) (综合型实验) 一、实验目的 (1)掌握线性时不变系统的对象模型的构造及其相互转换; (2)掌握线性时不变系统浏览器——LTI Viewer使用方法; (3)掌握单变量系统设计工具——SISO Design Tool的使用方法; (4)掌握非线性系统的控制器优化设计和仿真; (5)自行设计一个PID控制系统并进行PID控制器的优化设计(选)。 二、实验设备 MATLAB6.1系统教学软件及计算机一台。 三、实验内容 1、将下述传递函数转换成tf对象。 2、将第6章的例6-16中非线性系统进行线性化处理后所得线性化状态空间模型的系数矩阵(A,B,C,D)的值转换成LTI对象,然后利用线性时不变系统浏览器—LTI Viewer对系统进行分析。 3、使用 LTI Viewer对以下滑艇系统的动力学方程进行非线性系统的线性分析 4、以下单位反馈系统。利用单变量系统设计工具SISO Design Tool。(1)对其进行分析,画出系统的根轨迹图以及系统波特图,并求解相位裕量。 (2)对以上系统进行串联校正装置,其传递函数如下。 对校正后进行分析,画出校正后系统的根轨迹图以及系统波特图,并求解相位裕量。 5、对以下系统。 要求系统单位阶跃响应的最大上升时间为10秒、最大调节时间为30秒、最大超调量为20%。利用非线性控制器设计模块集(Nonlinear Control Design Blockset),试求PID控制器的最佳整定参数Kp、Ki和Kd。假设,三阶线性对象模型的不确定参数:40< a1<50,2.5< a2<10。

过程控制系统论文关于过程控制的论文

过程控制系统论文关于过程控制的论文 高炉TRT过程控制系统的研究与应用 摘要:TRT为高炉煤气余压能量回收透平发电装置的简称,它是把高炉出口煤气中所蕴含的压力能和热能,通过透平膨胀机作功,驱动发电机发电的一种能量回收装置。从而达到节能、降噪、环保的目的,具有很好的经济效益和社会效益,是目前现代国际、国内钢铁企业公的节能环保装置。TRT机组运行的关键是:在任何时刻,都不能影响高炉的炉顶压力。 关键词:PLC;可靠性;PID;自动控制 1 概述 TRT为高炉煤气余压能量回收透平发电装置的简称,它是把高炉出口煤气中所蕴含的压力能和热能,通过透平膨胀机作功,驱动发电机发电的一种能量回收装置。从而达到节能、降噪、环保的目的,具有很好的经济效益和社会效益,是目前现代国际、国内钢铁企业公认的节能环保装置。 2 高炉TRT过程控制系统工艺简介 目前,作为我国高炉节能、降噪、环保的能量回收装置TRT,不可避免在运行过程中出现紧急停机现象。特别是目前高炉普遍的塌料现象,如果对于系统的过程控制方案采取不当,将会导致高炉炉顶压力迅间增大,以至“憋压”。当压力超上限,就迫使TRT紧急跳车,使机组及时的退出静叶对高炉顶压的自动调节。当快切阀门关闭以后,调节高炉顶压的控制权就交给两个液压伺服控制的旁通阀(快开阀)。在国内TRT的发展历史上,由于所选择的控制系统方案不当而导致了多次事故的发生,一般情况下很容易将透平止推瓦损坏,更为严重的是由于炉顶压力的迅间增大,给高炉造成了极大的危险和危害,以至被迫停炉,影响了生产。 3 关键技术 通过参照TRT工艺的要求,对机组紧急停机时的高炉顶压调节采取了前馈-反馈(FFC-FBC)控制方案。该控制方案综合了前馈控制与反馈控制的优点,将反馈控制不易克服的干扰(高炉煤气流量)进行前馈控制,快速打开旁通阀,使高炉煤气形成畅通。但是由于前馈控制属于开环控制,尽管可以消除这一不安全因素,但不能完全保证顶压稳定,如果顶压波动较大,势必影响高炉生产,因此就对该过程采取了前馈-反馈控制(也称为复合控制)。机组发电运行阶段,高炉顶压的控制权交给了透平静叶,具有一定的干扰。如果不选择合适的控制方案,则也将影响高炉炉顶压力。为了提高系统的抗干扰能力,我们对这一过程采取了串级控制通过静叶来调节高炉顶压,目前,在国内很多公司TRT控制设备通常在TRT自动投入的时候,通常采取顶压功率复合控制,他们把功率PID调节器输出与顶压PID调节器输出的最小值作为顶压功率复合调节的输出。这种控制方案的实施在抗干扰能力方面稍逊于串级控制思想方案的调节。因为一般在设备运行过程中,高炉煤气发生量随时变化,除此之外,煤气的温度及透平入口的压力也时刻在发生变化,这将会造成静叶的开度时刻的改变,这就是调节过程中产生的干扰因素。为此要克服对高炉顶压调节的干扰,采取串级控制回路调节是山东莱钢银前1000m3高炉TRT系统控制的一大亮点。这种调节方案的实施稳定的调节高炉的炉顶压力,设备运行稳定,也给操作人员带来了便利。从高炉TRT串级调节系统方框途中可以看出,该系统有两个环路,一个内环(副环)和一个外环(主环)。PID调节器是主调节器,伺服控制器是副调节器。主被控变量为高炉炉顶压力,透平静叶的开度为副变量。主控制器的输出是副控制器的给定,而副控制器的输出直接送到电液伺服阀。在该串级控制系统中,主环是一个定值控制系统,而副回路是一个随动系统。对于本系统采取串级控制思路有如下好处:首先,从TRT系统的串级调节方框图上可以看出,由于副回路的存在,改善了对象(高炉炉

通信仿真课程设计-matlab-simulink

理工大学工程技术学院 《通信仿真课程设计》报告 班级:信息工程1班 姓名:寇路军 学号: 3 指导教师:周玲 成绩: 2019 年 3月 23 日

目录 通信仿真课程设计报告 (2) 一.绪论 (2) 二.课程设计的目的 (2) 三.模拟调制系统的设计 (3) 3.1 二进制相移键控调制基本原理 (3) 3.2 2PSK信号的调制 (3) 3.2.1模拟调制的方法 (3) 3.3 2PSK信号的解调 (4) 3.4 2PSK的“倒∏现象”或“反向工作” (5) 3.5功率谱密度 (5) 四.数字调制技术设计 (7) 4.1 2PSK的仿真 (7) 4.1.1仿真原理图 (7) 4.1.2 仿真数据 (7) 4.1.3 输出结果 (9) 总结 (10) 参考文献 (11)

通信仿真课程设计报告 一.绪论 随着社会的快速发展,通信系统在社会上表现出越来越重要的作用。目前,我们生活中使用的手机,,Internet,ATM机等通信设备都离不开通信系统。随着通信系统与我们生活越来越密切,使用越来越广泛,对社会对通信系统的性能也越高。另外,随着人们对通信设备更新换代速度越来越快。不得不缩短通信系统的开发周期以及提高系统性能。针对这两方面的要求,必需要通过强大的计算机辅助分析设计技术和工具才能实现。自从现代以来,计算机科技走上了快速发展道路,实现了可视化的仿真软件。 通信系统仿真,在目前的通信系统工程设计当中。已成为了不可替代的一部分。它表现出很强的灵活性和适应性。为我们更好地研究通信系统性能带来了很大的帮助。本论文主要针对模拟调制系统中的二进制相移键控调制技术进行设计和基于Simulink进行仿真。通过系统仿真验证理论中的结论。本论文设计的目的之一是进一步加强理论知识,熟悉Matlab软件。 Simulink是MATLAB最重要的组件之一,它提供一个动态系统建模、仿真和综合分析的集成环境。在该环境中,无需大量书写程序,而只需要通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应面广、结构和流程清晰及仿真精细、贴近实际、效率高、灵活等优点,并基于以上优点Simulink 已被广泛应用于控制理论和数字信号处理的复杂仿真和设计。同时有大量的第三方软件和硬件可应用于或被要求应用于Simulink。 二.课程设计的目的 1.掌握模拟系统2PSK调制和解调原理及设计方法。 2.熟悉基于Simulink的通信系统仿真。

过程控制系统方案设计

过程控制仪表与系统 题目:工业含硫废气控制系统方案设计 学院:信息科学与工程学院 专业班级:测控技术与仪器1503班 学号: 7 学生姓名:王哲 教师:李飞

工业含硫废气控制系统方案设计 摘要:许多化工厂在厂区内燃料燃烧和生产工艺过程中都会产生各种含有污染的有害气体,其中含硫的气体对环境造成的污染尤为严重。因此对含硫废气正确合理的处理至关重要。在我国工业含硫废气一般多采用焚烧工艺,经焚烧炉焚烧,使污染性气体转换成安全物质。经方案论证后,本设计采用双闭环串级控制系统,控制目标温度在600-800℃设定尾气焚烧炉炉温波动范围不超过±30℃。该控制系统中运用PID算法,传感器将检测到的模拟信号送到变送器,变送器输出4~20mA的电流信号。将变送器输出的标准信号送入控制器中,控制器通过分析比较所测参数与预设参数之后输出控制信号,执行器根据传送过来的信号进行变化,最终达到对系统温度的控制。 关键词:双闭环串级控制系统;炉温控制;流量控制;变送器 1 引言 含硫废气与加氢反应器出口过程器被加热至270-320℃左右与外补富氢气混合后进入加氢反应器在加氢催化剂的作用下转化为H2S。加氢反应为放热反应,离开反应器的尾气-换热器换冷却后进入冷凝塔。 废气在冷凝塔中利用循环机冷水来降温。70℃冷凝水自冷凝塔底部流出,经济冷泵加压后经急冷水冷却器用循环水冷却至40℃,循环至冷却塔顶。部分急冷水经急冷水过滤器过滤后返回急冷水泵入口。尾气中的水蒸气被冷凝,产生的酸性水由急冷水泵送至酸性水处理处。为防止酸性水对设备的腐蚀,需向急冷水中注入氨根据ph值大小决定注入氨的量。 冷凝后的尾气离开冷凝塔进入回收塔,用30%的甲基二乙醇胺溶液吸收废气中的硫化氢,同时吸收部分二氧化碳。吸收塔底富液用富液泵送至溶剂再生部分统一处理。从塔顶出来的净化气经尾气分液罐分液后进入焚烧炉燃烧,有燃料气流量控制炉膛温度;废气中残留的硫化氢几乎全转化成二氧化硫,最后再对二氧化硫进行处理。 焚烧炉要控制温度在600-800℃,保证尾气可以充分燃烧,对环境和人的健康都没有危害。 温度控制系统可采用的方法有双闭环串级控制系统、前馈控制系统、比值控制系统、前馈-反馈控制系统、分程控制系统等。

复杂过程控制系统设计与Simulink仿真

银河航空航天大学 课程设计 (论文) 题目复杂过程控制系统设计与Simulink仿 真 班级 学号 学生姓名 指导教师

目录 0. 前言 (1) 1. 总体方案设计 (2) 2. 三种系统结构和原理 (3) 2.1 串级控制系统 (3) 2.2 前馈控制系统 (3) 2.3 解耦控制系统 (4) 3. 建立Simulink模型 (5) 3.1 串级 (5) 3.2 前馈 (5) 3.3 解耦 (7) 4. 课设小结及进一步思想 (15) 参考文献 (15) 附录设备清单 (16)

复杂过程控制系统设计与Simulink仿真 姬晓龙银河航空航天大学自动化分校 摘要:本文主要针对串级、前馈、解耦三种复杂过程控制系统进行设计,以此来深化对复杂过程控制系统的理解,体会复杂过程控制系统在工业生产中对提高产品产量、质量和生产效率的重要作用。建立Simulink模型,学习在工业过程中进行系统分析和参数整定的方法,为毕业设计对模型进行仿真分析及过程参数整定做准备。 关键字:串级;前馈;解耦;建模;Simulink。 0.前言 单回路控制系统解决了工业过程自动化中的大量的参数定制控制问题,在大多数情况下这种简单系统能满足生产工艺的要求。但随着现代工业生产过程的发展,对产品的产量、质量,对提高生产效率、降耗节能以及环境保护提出了更高的要求,这便使工业生产过程对操作条件要求更加严格、对工艺参数要求更加苛刻,从而对控制系统的精度和功能要求更高。为此,需要在单回路的基础上,采取其它措施,组成比单回路系统“复杂”一些的控制系统,如串级控制(双闭环控制)、前馈控制大滞后系统控制(补偿控制)、比值控制(特殊的多变量控制)、分程与选择控制(非线性切换控制)、多变量解耦控制(多输入多输出解耦控制)等等。从结构上看,这些控制系统由两个以上的回路构成,相比单回路系统要多一个以上的测量变送器或调节器,以便完成复杂的或特殊的控制任务。这类控制系统就称为“复杂过程控制系统”,以区别于单回路系统这样简单的过程控制系统。 计算机仿真是在计算机上建立仿真模型,模拟实际系统随时间变化的过程。通过对过程仿真的分析,得到被仿真系统的动态特性。过程控制系统计算机仿真,为流程工业控制系统的分析、设计、控制、优化和决策提供了依据。同时作为对先进控制策略的一种检验,仿真研究也是必不可少的步骤。控制系统的计算机仿真是一门涉及到控制理论、计算机数学与计算机技术的综合性学科。控制系统仿真是以控制系统的模型为基础,主要用数学模型代替实际控制系统,以计算机为工具,对控制系统进行实验和研究的一种方法。在进行计算机仿真时,十分耗费时间与精力的是编制与修改仿真程序。随着系统规模的越来越大,先进过程控制的出现,就需要行的功能强大的仿真平台Math Works公司为MATLAB提供了控制系统模型图形输入与仿真工具Simulink,这为过程控制系统设计与参数整定的计算与仿真提供了一个强有力的工具,使过程控制系统的设计与整定发生了革命性的变化。

信息系统分析与设计名词解释

一、名词解释 1、软件维护指软件交互使用之后,为了改正软件中的错误或满足新的需求而修改软件的过程。 2、调试在成功地进行了测试之后,进一步诊断和改进程序中存在的错误过程。 3、可行性研究又叫可行性分析,它是所有工程项目在开始阶段必须进行的一项工作。可行性研究是指项目正式开发之前,先投入一定的精力,通过一套准则,从经济、技术、社会等方面对项目的必要性、可能性、合理性,以及项目所面临的重大风险进行分析和评价,得出项目是否可行的结论。 4、结构化程序设计是一种设计程序的技术,采用自顶向下、逐步细化的设计方法和单入口、单出口的控制技术,任何程序都可以通过顺序、选择和循环3种基本控制结构的复合实现。 5、信息系统在其使用过程中随着生存环境的变化,要不断维护、修改,当它不再适应需求的时候就要被淘汰,就要由新系统代替老系统,这种周期循环称为信息系统的生命周期。 6、供应链管理系统就是为了实现供应链上各企业的共同目标,对整个供应链的物流与信息流进行集成的管理和统一协调的计算机软件系统、网络与通信系统、有关数据、规章制度和人员的统一体。 7、这是在现代信息技术的基础上,交叉管理学、行为科学、运筹学,控制论等学科运用、人工智能、专家系统、知识工程等理论和方法,辅助支持企业,决策活动的信息系统。 8、信息系统是指利用计算机、网络、数据库等现代信息技术,处理组织中的数据、业务、管理和决策等问题,并为组织目标服务的综合系统。 9、数据字典为了对数据流程图中的各个元素进行详细的说明,数据字典的主要内容是对数据流程图中的数据项、数据结构、数据流、处理逻辑、数据存储和外部实体等几个方面进行具体的定义。数据字典配以数据流程图,就可以从文字和图形两个方面对系统的逻辑模型进行完整的描述。 二、填空 1、按照生命周期法建设信息系统过程中的主要文档有:系统开发立项报告,( 可行性研究报告),系统开发计划书,( 系统分析说明书),系统设计说明书,程序设计报告,系统测试计划与测试报告,系统使用与维护手册,系统评价报告,系统开发月报与系统开发总结报告. 2、描述程序处理过程的工具称为过程设计工具,可以分为图形、表格和语言3类。其中图形工具包括(程序流程图)、(N-S图)和(PAD图);表格工具包括(判定表)和(判定树);语言工具包括

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

基于Arduino的一种电子显示屏控制系统设计剖析

《学术论文写作》课程论文 基于Arduino的一种电子显示屏控制 系统设计 姓名: 学院(系): 专业:自动化 班级: 学号:

基于arduino的一种简易电子显示屏设计 摘要:LED显示屏因其工作稳定可靠、寿命长、亮度高等优点,在许多场合中应用广泛。加强显示屏控制系统的可靠性研究意义重大。基于Arduino单片机,研究设计了一种新的电子显示屏控制系统。以PC机为上位机,向单片机发送显示代码和控制命令,单片机控制显示驱动模块驱动LED点阵显示屏进行扫描显示。PC机与单片机之间的通信采用ISP下载编程器来实现。利用按键模块通过单片机对显示屏的显示内容进行翻页和更新控制。 关键词:显示屏;可靠性;Arduino;控制 The Design of Electronic Display Control System based on Arduino Abstract: LED displays is widely used in many occasions because of its a dvantages such as stable, reliable and long life. It is of great significance to strengthen the research of the reliability of electronic display control system. Here introduces a new kind of el ectronic display control system based on Arduino microcontroller. System uses PC as uppe r computer.PC send control commands and display code it has stored to the Arduino microcontr oller. And arduino microcontroller receives and deals with control command and display cod e which are from PC. Then drives scan display o f the display screen. Communication betwee n PC and the microcomputer can be implemented by using ISP download programmer. At last, page and update the content which is displayed of the billboard by using the key module an d all is based on th e single chip microcomputer. Keywords: electronic display; reliability; Arduino microcontroller 1.系统整体设计 本系统硬件的设计采用模块化设计,既能满足模块本身功能又要能够和整个系统兼容,如图1.1所示。系统硬件由Arduino控制系统,显示扫描电路,显示屏,键盘扫描电路及数据传输部分以及上位机六部分组成。上位机通过数据传输部分向MCU系统发送显示代码和控制命令,MCU系统执行显示命令并将显示代码处理后控制显示部分的显示内容和显示方式。

过程控制系统课程设计

步进式加热炉控制系统设计 一、步进式加热炉工艺流程 1. 步进式加热炉简介 ⑴步进式加热炉步进式加热炉是一种靠炉底或水冷金属梁的上升、前进、下降、后退的动作 把料坯一步一步地移送前进的连续加热炉。 炉子有固定炉底和步进炉底,或者有固定梁和步进梁。前者叫做步进底式炉,后者叫做步进梁式炉。轧钢用加热炉的步进梁通常由水冷管组成。步进梁式炉可对料坯实现上下双面加热。 (2)步进式炉的几种类型 步进式炉从炉子构造上分目前有:单面供热步进式炉、两面供热步进式炉、钢料可以翻转的步进式炉、交替步进式炉、炉底分段的步进式炉等等。 单面供热步进式炉也称步进底式炉,钢料放置在耐火材料炉底或铺设在炉底上的钢枕上。钢坯吸热主要来自上部炉膛,由于一面受热,这种炉子的炉底强度较低。它适用于加热薄板坯、小断面方坯或有特殊要求的场合。 两面供热步进式炉也称步进梁式炉,活动梁和固定梁上都安设有能将钢坏架空的炉底水管。在钢坯的上部炉膛和下部炉膛都设置烧嘴,因此炉底强度较高,适用于产量很高的板坯或带钢轧前加热。 钢坯可以翻转的步进式炉是每走一步炉内钢料可以翻转某一角度,步进梁和固定梁都带有锯齿形耐热钢钢枕,这是加热钢管的步进式炉,每走一步钢管可以在锯齿形钢枕上滚动一小段距离,使受热条件较差的底面逐步翻转到上面,以求加热均匀。 交替步进式炉则有两套步进机构交替动作。运送过程中,钢坯不必上升和下降,振动较小,底面不会被划伤,表面质量较好 炉底分段的步进式炉的加热段和预热段可以分开动作。例如预热段每走一步,加热段可以

走两步或两步以上。这种构造是专门为易脱碳钢的加热而设计的。钢坯在预热段放置较密,可以得到正常的预热作用,在加热段钢坯前进较快,达到快速加热,以减少脱碳。 (3)步进式炉的优缺点 步进式炉是借机械将炉内钢坯托着一步一步前进,因此钢坯与钢坯还不必紧挨着,其间距可根据需要加以改变。 原始的步进式炉只用于加热推钢机无法推进的落板坯或异形坯,随着轧机的大型化和连续化,推钢式炉已不能满足轧机产量和质量的要求。在这种情况下,近十年来造价较高的步进式炉得到了快速发展,其结构也日趋完善。 步进式炉具有以下特点:(1)炉子长度不受钢坯厚度的限制,不会拱钢,炉子可以建得很长,目前有些炉子已接近60 米长,一个步进式炉可以代替1.5—2 个推钢式炉。(2)操作上灵活性较大,可以通过改变装料间隙调节钢坯加热时间,且更换品种方便。(3)炉内钢料易于清空,减少停炉时清除炉内钢料的时间。(4)钢坯在炉内不与水管摩擦,不会造成通过轧制还不能消除的伤痕。(5)水管黑印小,即能得到尺寸准确的轧材。(6)两面加热步进式炉可以不要实底均热段,因此加热能力比推钢式炉稍大。(7)没有出料滑坡,减少了由于滑坡高差作用而吸入炉内的冷空气。(8)钢坯有侧面加热,这样可实现三面或四面加热,因此加热时间短,钢坯氧化少。( 9)生产能耗大幅度降低,从炼钢连铸后开始全连续的直接生产。( 10)产量大幅度提高,在100* 104t/a 以上。( 11)生产自动化水平非常高,原加热炉的控制系统大都是单回路仪表和继电器逻辑控制系统,传动系统也大多是模拟量控制式供电装置,现在的加热炉的控制系统大多数都具有二级过程控制系统和三级生产管理系统,传动系统都是全数字化的直流或交流供电装置。 步进式炉的缺点是炉底机械设备庞大,维护和检修都较复杂,炉子造价太高。两面供热的步进式炉炉底水管较多,热损失大。单面供热的步进式炉虽然无水冷热损失,但产量较低。因此,尽管步进式炉有很多优点,仅由于它造价太高,目前在中小型厂全面推广还不适宜。

机电控制系统分析与设计

一、简述题(每小题10分,共100分) 1、机电控制系统的基本要求? 答:稳定性(长期稳定性)、准确性(精度)和快速性(相对稳定性). 稳定性:对恒值系统要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值. 对随动系统,被控制量始终跟踪参据量的变化.稳定性是对系统的基本要求,不稳定的系统不能实现预定任务.稳定性,通常由系统的结构决定与外界因素无关. 快速性:对过渡过程的形式和快慢提出要求,一般称为动态性能.稳定高射炮射角随动系统,虽然炮身最终能跟踪目标,但如果目标变动迅速,而炮身行动迟缓,仍然抓不住目标. 准确性:用稳态误差来表示.如果在参考书如信号作用下,当系统达到稳态后,其稳态输出与参考输入所要求的期望输出之差叫做给定稳态误差.显然,这种误差越小,表示系统的输出跟随参考输入的精度越高. 由于被控对象具体情况的不同,各种系统对上述三方面性能要求的侧重点也有所不同.例如随动系统对快速性和稳态精度的要求较高,而恒值系统一般侧重于稳定性能和抗扰动的能力.在同一个系统中,上述三方面的性能要求通常是相互制约的.例如为了提高系统的动态响应的快速性和稳态精度,就需要增大系统的放大能力,而放大能力的增强,必然促使系统动态性能变差,甚至会使系统变为不稳定.反之,若强调系统动态过程平稳性的要求,系统的放大倍数就应较小,从而导致系统稳态精度的降低和动态过程的缓慢.由此可见,系统动态响应的快速性、高精度与动态稳定性之间是一对矛盾. 2、机电控制系统的基本结构?画图说明 答:机电控制系统是机电控制技术的具体表现形式,通过控制器并合理选择或设计放大元件、执行元件、检测元件与转换元件、导向与支承元件和传动机构等.使机电装备达到所要求的性能和功能。机电控制系统是 机电一体化 产品及系统中承担着控制对象输出,并按照指令规定的规律变化的功能单元,是机电一体化产品及系统的重要组成部分。机电控制系统是一种自动控制系统。 机电控制系统一般由指令元件,比较、综合与放大元件,转换与功率放大元件,执行元件,工作机构,检测与转换元件等6部分组成,如图1.4所示。为了研究问题方便,通常又把指令元件和比较、综合与放大元件合称为 控制器 (控制元件);将转换与功率放大元件和执行元件合称为机电动力机构;机电动力机构和工作机构合称为被控对象。对于控制精度要求不高且执行元件的输出能够按其给定规律运动时,可以采用开环控制。此时检测与转换元件也可以没有;但为了显示与检测,系统中仍应装有检测与转换元件。

单闭环直流调速系统simulink仿真课程设计

目录 一、摘要.......................................................... - 3 - 二、课程设计任务 .................................................................................................... - 3 - 三、课程设计内容 .................................................................................................... - 3 - 1、PID控制原理及PID参数整定概述.................................................................... - 3 - 2、基于稳定边界法(临界比例法)的PID控制器参数整定算法 ............................ - 5 - 3、利用Simulink建立仿真模型............................................................................ - 8 - 4、参数整定过程 .................................................................................................- 12 - 5、调试分析过程及仿真结果描述.........................................................................- 16 - 四、总结 ...................................................................................................................- 17 - 五、参考文献 ...........................................................................................................- 17 -

过程控制系统设计

过程控制系统设计 仿真实验报告 实验名称:单回路控制系统PID控制器仿真实验 姓名:罗一弘 学号:20091593 班级:2009034

一、实验目的 1. 熟悉简单控制系统响应曲线法和临界比例度法整定PID 参数过程。 2. 掌握采用Matlab 仿真工具进行PID 参数整定的方法和过程。 3. 掌握PID 控制器中不同参数对控制系统性能的影响。 二、实验步骤 (一)、响应曲线法求PI 和PID 控制器的参数 1、PI 控制参数 1681)(3000+= +=--s e s T e k s G s s τ P 0= %5.12%1001 =?k P=1.1 00 P T τ=4.4% T i =3.30τ=9.9s 2、PID 控制参数 P=0.85 00 P T τ=3.4% T i =20τ=6s T d =0.50τ=1.5s 图1-系统simulink 模型 (二)、稳定边界法求PI 和PID 控制器的参数 1、PI 控制参数 首先取T i =∞,T d =0,根据广义对象特性选择一个较大的P 值,待系统运行平稳后,逐渐减小P ,直至系统出现等幅震荡(图2)。

图2-系统等幅震荡曲线 由结果记录下P m=2.062,T m=10.406s。 P=2.2P m=4.54% T i=0.85T m=8.85s 2、PID控制参数 P=1.7P m=3.51%T i=0.50T m=5.2s T d=0.125 T m=1.3s (三)、实际微分算法实现PID控制 采用经验法进行参数整定,并使用实际微分算法(图3) 图3-采用实际微分算法的系统模型 1、先置T i=∞,T d=0,不断调节K p,使过渡过程达到4:1至10:1的衰减比。 2、将获得的K p缩小10%-20%,T i由大至小逐步增加,直至获得衰减比为4:1至10:1的过程。 3、将K p增大10%-20%,T i适当缩短后,逐步调节T d的值,直至获得满意的过渡过程。

相关主题
文本预览
相关文档 最新文档