当前位置:文档之家› 混响 声学特性

混响 声学特性

混响 声学特性
混响 声学特性

(reverberation)混响时间的长短就是音乐厅、剧院、礼堂等建筑物的重要声学特性。声波遇到障碍会反射,所以我们这个世界充满了混响。

混响的要求

声波在室内传播时,要被墙壁、天花板、地板等障碍物反射,每反射一次都要被障碍物吸收一些。这样,当声源停止发声后,声波在室内要经过多次反射与吸收,最后才消失,我们就感觉到声源停止发声后还有若干个声波混合持续一段时间。这种现象叫做混响,这段时间叫做混响时间。

对讲演厅来说,混响时间不能太长.我们平时讲话,每秒钟大约发出2~3个单字,假定发出两个单字“物理”,设想混响时间就是3秒,那么,在发出“物”字的声音之后,虽然声强逐渐减弱,但还要持续一段时间(3秒),在发出“理”字的声音的时刻,“物”字的声强还相当大。因而两个单字的声音混在一起,什么也听不清楚了。但就是,混响时间也不能太短,太短则响度不够,也听不清楚。因此需要选择一个最佳混响时间.北京科学会堂有一个学术报告厅,混响时间为1秒。

不同用途的厅堂,最佳混响时间也不相同,一般来说,音乐厅与剧场的最佳混响时间比讲演厅要长些,而且因情况不同而不同。轻音乐要求节奏鲜明,混响时间要短些,交响乐的混响时间可以长些。难于听懂的剧种如昆曲之类,混响时间一长,就更难于听懂、节奏较慢而偏于抒情的剧种,混响时间则可以长些。总之,要有一定的、恰当的混响时间,才能把演奏与演唱的感情色彩表现出来,收到应有的艺术效果。北京“首都剧场”的混响时间,坐满观众时为1、36秒,空的时候就是3、3秒。这就是因为满座时,吸收声音的物体多了,所以混响时间缩短,上面所说的最佳混响时间就是指满座时的混响时间。高级的音乐厅或剧场,为了满足不同的要求,需要人工调节混响时间.其中一种办法就是改变厅堂的吸声情况。在厅堂内安装一组可以转动的圆柱体,柱面的一半就是反射面,反射强、吸收少;另一半就是吸声面,反射弱、吸收多.把

反射面转到厅堂的内表面,混响时间就变长;反之,把吸收面转到厅堂的内表面,混响时间就变短。

高水平的音乐会都不使用扩音设备,为的就是使听众直接听到舞台上的声音、为了让全场听众都能听到较强的声音,音乐厅的天花板上挂着许多反射板,这些反射板的大小、形状、安放位置与角度都经过精确设计,以便把舞台上的声音反射到音乐厅的各个角落。

处理好不同建筑物的声响效果,取得好的音质,这就是一门很重要的学问,叫做建筑声学。上面介绍的混响只就是其中的一个方面,希望能引起同学们对声学的兴趣,钻研这门与我们生活关系密切的科学。

录音中的混响

真实世界中的混响

在这个世界中,就是否存在没有混响的地方呢?有!您坐上飞机,飞到一万米高空,然后往下跳,这时您大喊大叫,就就是没有混响的,因为您在空中,周围没有任何障碍物,您的声音将会无限扩散出去而不会被反射回来。所以就没有混响。

另一个没有混响的地方就就是声学实验室。声学实验室的墙壁、天花板、地面就是经过特殊处理的,声音到达墙壁后将会被墙壁吸收而不会被反射回来。为什么会被吸收?您可以做一个小实验,找100根针,就就是缝衣服的针,把它们捆在一起,弄齐,然后您可以瞧瞧这一捆针的针头面,您会发现它就是黑的,因为光线到达这一面后,经过多次反射,一直射到里面去,出不来,所以就没有光被反射出来,就好像光都被吸收了一样。声学实验室的布置也就是类似于此,把声音吸收。

录音棚就是半个声学实验室,能做到吸收大部份的混响。录音棚的墙壁排列都就是不规则的,表面就是用松软的棉制品构成,虽然比不上那捆针头,但声音到达墙壁后进入那乱糟糟的棉花里,七反射八反射就留在棉花里出不去了,所以录音棚里的混响也很小。

在一个房间里大吼一声,会有多少反射声,答案就是无数。

在这个房间里,您拍一下巴掌,得到的声音就是另一个样子

就是不就是很多?这其实就是比较简单的一个反射过程。如果这个房间里再摆上一些桌子椅子, 反射会更加复杂。

闭上眼睛,大吼一声,您就可以知道您大概处在一个什么样的环境中,在外面,还就是在家里。甚至您在家里大吼一声,就可以知道您在哪个房间里,在这个房间的哪个位置上。这就是因为各个房间由于空间大小不一样、家具的摆放不同、墙壁的材料不同,所以具有各自不同的混响特征;同一个房间里不同的位置上,由于您距离墙壁的远近不同,所以也具有不同的混响特征。您熟悉这些特征,所以您就能光凭声音就能分辨您在什么位置上。

一个瞧起来很菜鸟的问题:为什么录音与混音要加混响?

为什么录音与混音要加混响?答:因为录音时就是没有混响的。

为什么录音时就是没有混响的?答:因为录音棚就是无混响的。

为什么录音棚就是无混响的?

其实专业的录音棚就是有混响的,她们有很多板状的材料,可以灵活把房间改造成各种混响特征。但随着数字录音技术的飞速发展,数字混响效果器能够模拟真实情况下的混响,所以大家就干脆把录音棚弄成无混响的,录完音后再用效果器来模拟混响效果,想要什么混响就有什么混响……这就就是为什么录音棚,尤其就是中小录音棚与个人工作室,都做成无混响的原因。

人造混响原理

在这样一个房间里,教师的声音经过多次反射,假如有5条声音反射线到达学生耳朵, 以上只列举出了5 条声音反射路线,实际上就是几千几万条到无数条。为了讲解方便,我们就说这5 条。

大厅混响时间计算实例

大厅混响时间计算实例 播雨 1前言 审批大厅主要用于政府机关,事业单位审批办公功能。由于早期设计没有建声环节,顶棚为石膏板棚结构,墙壁采用粉刷墙,地面采用大理石结构。顶棚及地面未设置有效的吸声材料,声波在厅内多次反射,造成声音混浊,混响时间大,影响语言交流及办事效率,故此必须进行声学处理。 2建筑结构及材料 3建筑声学设计 3.1混响时间计算 混响时间计算公式(Eyring公式)为: T 60 = 0.161V/[-S ln(1- ā)+4mV] 其中: V----室内容积 ā=ΣS i α i /ΣS i ----平均吸音系数 S=ΣS i ----室内表面积 4mV----1000Hz以上高频空气吸声量 混响时间应按公式(2.2.4)分别对125Hz、250Hz、500Hz、1000Hz、2000Hz、4000Hz六个频率进行计算,计算值取到小数点后一位。 3.2吸声材料及吊顶的选择: 顶棚与地面距离仅3.5米,最容易产生多重回声,从而也是吸声效率较高的位置。 采用50-100厚铝合金穿孔板护面玻璃丝棉,贴后贴无纺布,做成平板状悬挂现在顶棚下方。地面采用地毡铺地。由于大厅水平尺寸比较大,四周墙壁较远,且开口门窗比较多,因此墙壁不做吸声处理。 主要声学结构做法及材料、分布、面积统计表和混响时间(治理前后)见计算表。

4,计算与实测值比较 理论计算的混响时间与实测的比较,如图2所示。计算治理前后的混响时间比较,如图3所示。 5,结论 由实测和计算可知,大厅混响时间并不很大,几乎接近体育馆混响时间标准。原因是大厅平面尺寸较大,顶棚又做了吸声处理有一定吸声效果。 计算值与实测值比较:计算值有一定误差,但平均误差为2.48 %不足5 %。计算值与实测值比较见表3与图2所示。治理后的计算结果比较,可见混响时间大大下降,通过计算表明有6.5dB的降噪量。 2

浅谈“混响室法测吸声系数”

浅谈“混响室法测吸声系数” 关键词: 混响室法吸声系数有效性误差扩散发展 摘要:材料的吸声系数是材料的各项声学性能参数中非常重要的一个,它对各种材料在生活和工业中的应用有着积极的指导意义。对材料吸声系数的测量通常采用标准的混响室方法,对应有相应的国际ISO标准和国家GBJ47-83标准。混响室方法要求材料被制成10到12平方米的标准试件。另外对应一些较小的材料还常采用驻波管方法测量其吸声系数。混响室法测吸声系数广泛应用于声学工程的设计计算,噪声控制工程的吸声降噪计算,材料吸声性能的等级评定它能测量声波无规入射时的平均吸声系数,这与实际工程中声波的入射方式较为接近,且不能用其它方法替代。 ABSTRACT Sound absorption coefficient of the material is the acoustic performance parameters of the material is very important, it has a variety of materials used in life and industry has a positive significance. Measurement of the absorption coefficient of the material commonly used standard method of reverberation chamber, which corresponds with the corresponding international ISO standards and national GBJ47-83 standard. Reverberation chamber method requires that the material is made from 10 to 12 square meters of standard test pieces. Also corresponding smaller standing wave tube material is also often used method to measure the absorption coefficient. Reverberation chamber method to measure the absorption coefficient is widely used in acoustic engineering design calculations, the sound absorption of noise control engineering calculations, material sound absorption performance grading can measure the average absorption coefficient at random incidence sound waves, which the actual incidence of acoustic engineering approach closer, and can not use other methods of alternative. 混响室法来源回顾 如果一个声源在封闭空间内连续稳定地辐射一定频谱的声波,它就能激发起 室内许多个不同的固有振动方式,声波按不同方式在许多方向来回反射地传播。 在先的声波逐渐衰减,在后的声波不断补充,达到动态平衡状态。这时,除紧靠 壁面处和邻近声源处外,室内声场有可能达到:1,各点的平均能量密度相等;2, 各点从各方向来的平均能量流相等;3,到达某点的各波数间的相位是无规的。 符合这三个条件的声场,即称为扩散声场或无规声场,有时也称为混响声场。能 满足这样条件的封闭空间就是混响室。 美国声学专家赛宾(Sabine)最初在教室里面进行了一系列的实验,建立了 著名的混响公式,即赛宾公式。并在1929 年提出了“混响室法测量吸声系数” 的论文,这就是混响室测量细声系数的开端。早期的混响室,不少是利用地下室, 储藏室等改装而成,主要用来测量建筑材料的吸声系数。但是在测量过程中人们 发现,同种材料在不同的混响室中测得的吸声系数相差很大。在50-60 年代,国 际标准协会组织了吸声材料的巡回测试,制订了在混响室中测量吸声系数的国际 规范,规定了测试样品的大小和混响室的体积范围,并要求混响室内安装扩散体 以改进室内的声场扩散。这样在实际应用中,符合规范要求的混响室,所得实验 数据的离散程度可以控制在一定范围内,并对不通的混响室,彼此可以相互比较;

气泡的声学特性分析

气泡的声学特性分析 2.2.1 气泡的散射特性 上世纪50年代后期,海洋学者开始意识到了气泡研究对于海洋探测的重要性,自从Urick 和Hoover 在1956年发现了气泡对于声波的散射后,气泡的散射问题就一直是水声研究领域的经典问题错误!未找到引用源。。目标对声信号的散射能力根据不同性质、大小、形状的目标而不同,同时也与声波的入射方向有关 [9]。因此,对于水声探测来说,目标散射场特性的研究尤为重要。沿x 轴方向传播的平面声波入射到半径为R 的软球边界上,观察点(,)S r θ处的声场。如图2.1所示,x 轴方向为零度方向。 ) ,(t x p i θ (,) S r θx R O 图2.1 平面声波在软球球面上的散射 入射平面声波表达式为: )cos (0)(0),(θωωkr t j kx t j i e p e p t x p --== (2-1) 其中,λ为波长,c 为介质声速,ω为角频率,λπω2==c k 为波数,),(θr 为点S 的球坐标。 根据波动方程和软球应满足的边界条件,球面上的声压为零,即 0 (r )i s R p p +== (2-2) 声场关于x 轴对称,所以取满足以x 轴对称的球坐标系的波动方程的解为 (2)0(cos )()j t s m m m m p R P h kr e ωθ∞==∑ (2-3) 其中,m R 为常数, )()2(x h m 为第二类m 阶汉克尔(Hankel )函数,为m 阶勒让德(Legendre)多项式,代表声波的传播方向为由球心向外。入射平面声波可以分解为球函数的和: ∑∞=+-=00)()(cos )12()(),,(m m m m t j i kr j P m j e p t r p θθω (2-4) 其中,)(kr j m 为m 阶球贝塞尔(Bessel )函数。将(2-2),(2-3)和(2-4)式合并,解出m a ,则s p 为:

第三章海洋的声学特性教材

第三章 海洋的声学特性 本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中目标探测、声信号识别、通讯和环境监测等问题的解决。 3.1 海水中的声速 声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。 海洋中声波为弹性纵波,声速为: s c ρβ1 = 式中,密度ρ和绝热压缩系数s β都是温度T 、盐度S 和静压力P 的函数,因此,声速也是T 、S 、P 的函数。 1、声速经验公式 海洋中的声速c (m/s )随温度T (℃)、盐度S (‰)、压力P (kg/cm 2)的增加而增加。 经验公式是许多海上测量实验的总结得到的,常用的经验公式为: 较为准确的经验公式: STP P S T c c c c c ????++++=22.1449 式中,4734221007.510822.2104585.56233.4T T T T c T ---?-?+?-=? ()()2235108.735391.1-?--=-S S c S ? 4123925110503.310451.3100279.11060518.1P P P P c P ----?-?+?+?=? ()[ ][][]T P T T P T T T P PT P P T S c STP 31021012382546214310745.110286.910391.210644.6103302.110796.21009.21096.11061.210197.135----------?-?+?-+?-?+?-+?-?-?+?--=? 上式适用范围:-3℃

海洋声学基础讲义-吴立新

海洋声学基础——水声学原理 绪论 各种能量形式中,声传播性能最好。在海水中,电磁波衰减极大,传播距离有限,无法满足海洋活动中的水下目标探测、通讯、导航等需要。 声传播性能最好,水声声道可以传播上千公里,使其在人类海洋活动中广泛应用,随海洋需求增大,应用会更广。 §0-1节水声学简史 01490年,意大利达芬奇利用插入水中长管而听到航船声记载。 11827年,瑞士物理学家D.colladon法国数学家c.starm于日内瓦湖测声速为1435米每秒。 21840年焦耳发现磁致伸缩效应 1880年居里发现压电效应 31912年泰坦尼克号事件后,L.F.Richardson提出回声探测方案。 4第一次世界大战,郎之万等利用真空管放大,首次实现了回波探测,表示换能器和弱信号放大电子技术是水声学发展成为可能。(200米外装甲板,1500米远潜艇) 5第二次世界大战主被动声呐,水声制导鱼雷,音响水雷,扫描声呐等出现,对目标强度、辐射噪声级、混响级有初步认识。(二战中被击沉潜艇,60%靠的是声呐设备) 6二、三十年代——午后效应,强迫人们对声音在海洋中的传播规律进行了大量研究,并建立起相关理论。对海中声传播机理的认识是二次大战间取得的最大成就。 7二战后随着信息科学发展,声呐设备向低频、大功率、大基阵及综合信号处理方向发展,同时逐步形成了声在海洋中传播规律研究的理论体系。 81、1945年,Ewing发现声道现象,使远程传播成为可能,建立了一些介质 影响声传播的介质模型。 2、1946年,Bergman提出声场求解的射线理论。 3、1948年,Perkeris应用简正波理论解声波导传播问题。

厅堂混响时间测量规范

厅堂混响时间测量规范 第1章总则 第1.0.1条为统一厅堂混响时间的测量系统和测量方法,使不同单位测量的结果具备互相可比的统一基础,特制定本规范。 第1.0.2条本规范适用于一般厅堂的混响时间的测量。 第1.0.3条测量厅堂混响时间,除应执行本规范外,尚应遵守国家现行的其它有关标准或规范。 第2章测量系统 2.3接收设备 第2.3.1条接收系统应包括传声器、测量放大器、1/3倍频程滤波器和记录仪器。接收系统的设备,宜符合下列要求: 一、传声器应是无指向性的。 二、记录系统宜采用声级记录仪(电平记录仪)。记录时,所选用的记录仪的笔速,不得影响衰变特性,并应调节记录仪的纸速使衰变曲线的斜度接近45°。 记录系统亦可采用与声级记录仪(电平记录仪)性能相当的能直接读出混响时间数字的记录仪器。 如采用录声机(录音机)记录声衰变,录声机(录音机)的录放系统则应在本规范要求的频率范围内具有线性频率特性,其信噪比不应少于40分贝。 测量用的录声机(录音机),应符合现行的国家标准《磁带录音机基本参数和技术要求》中盘式二级、盒式三级的规定。

第3章测量方法 3.2测点选择 第3.2.1条测量厅堂的混响时间的测点数,满场时不应少于3个,空场时不应少于5个。 对于非对称性厅堂,应适当增加测点。 第3.2.2条所选择的测点应有代表性。对于对称性厅堂,测点必须在偏离纵向中心线1.5米的纵轴上及侧座内选取。 测点位置的选择,应包括池座前部约1/3处,挑台下以及侧座,但应避免在直达声场内。 对于有楼座的厅堂,应有楼座区域的测点。 满场时的测点位置应尽量与空场时的测点相重合。 如有必要应加测舞台测点;对有明显耦合的厅堂,应在耦合变异外加测点,其结果不计入全场平均。 第3.2.3条测点距离地面高度应为2.3米,与墙面的距离,应大于所测频带下限中心频率的半波长。 3.3记录数目与选值 第3.3.1条每一测点对于每一测量频率的有效混响时间衰变曲线不应少于三条。 第3.3.2条衰变曲线的衰变范围不应少于35分贝,在该范围的衰变曲线应从起始水平以下5分贝到25分贝呈直线形,并应由此直线的斜率决定混响时间。

剧院声学设计说明(供装修说明)资料讲解

电视的声学设计说明(供装饰招标用) 一.设计依据 1.XX院提供的XX广电城建筑平、剖面图纸 2.中华人民共和国行业标准“剧场建筑设计规范”JGJ 57—2000 3.中华人民共和国国家标准“剧场、电影院和多用途礼堂建筑声学设计规范”GB/T 50356—2005 4.Acoustics–measurement of the reverberation time of rooms with reference to other acoustical parameters (ISO 3382) 5.中华人民共和国国家标准“厅堂扩声系统设计规范” GB 50371—2006 6.“音乐厅和歌剧院”(白瑞纳克著) 二.功能及建筑概况 使用功能:以大型舞台剧、综艺演出、歌剧为主,兼顾音乐会和会议功能。

容座:观众厅容座为XX座,其中池座XX座(其中轮席椅4个),一层楼座XX座,二层楼座76座。 建筑概况:建筑平面呈马蹄形。 三.主要建声设计技术指标 1.中频满场混响时间: (设置可变混响装置,建议采用木格栅后藏可升降吸声帘幕) RT=1.4±0.1秒(大型舞台剧、综艺演出、歌剧演出时) RT=1.2±0.1秒(会议时) RT=1.6±0.1秒(音乐演出时,舞台设置音乐反射罩)混响时间频率特性如下: 中频基本平直,低频有一定提升(相对中频约提升20%),高频由于空气吸收,允许略有下降。 2.低频比重BR:在1.1~1.3之间 3.透明度C:在-1~3dB之间 4.清晰度D:在35% ~ 60%之间

5.重心时间t s:≤130ms 6. 侧向反射系数LF:在10% ~ 20%之间 7. 声场力度G:≥0dB 8. 初始时间延迟间隙t I:<25ms 9. 声场不均匀度ΔL P:≤±4dB 10.本底噪声:LA≤30dBA 或NR≤25曲线 四.观众厅的体形设计 1.确定观众厅的体积 为了使观众厅获得合适的混响时间,观众厅需要合适的体积。体积太小,有可能不加任何吸声材料,也难以达到需要的混响时间;体积太大,虽然通过增加较多的吸声材料,可以获得合适的混响时间,但厅内的声能密度会相应地减少。 同时由于观众和座椅具有较大的吸声量,所以每座容积是一个很重要的设计标准。对于本音乐剧剧场而言,每座容积宜控制在7~8m3/座。 本剧场的观众席座位数为XX座,故观众厅的体积宜控制在8680 ~9920m3。

报告厅的声学设计

报告厅的声学设计 一、报告厅的声学设计的特点: 报告厅声学设计的特点是由会议本身的规模、使用范围和要求所决定的。其特点有如下几方面: 1.报告厅规模(容积和容量)的差异比所有会堂都大。小至十几人,能容纳100m3左右;大的可容纳万名听众,容积为100000m3用乃至更大规模的报告厅,差距达千倍。因而相应的混响时间差别也很大,必须根据容积确定混凝土响时间值,通常在0.5-1.8s范围内; 2.报告厅的等级、用途和标准的差异很大,如有本部门或本系统的报告厅,也有供国际会议使用的各类报告厅、室。由于等级、用途和标准不同,所用扔设备、内装修和声学处理,显然也有较大的差别。 3.由于报告厅均采用强吸声、短混响的声学处理方式,因此,体形在声学上作用不大,选择比较自由。 4.报告厅根据容量和用途可采用扩声系统,也可用自然声,这在建筑设计和声学处理上也将区别对待。 由于报告厅以上的特点,相应地在声学设计上引出有别于其它会堂的特点。 二、报告厅最佳混响时间的选择 根据语言清晰度的要求和扩声系统设计的需要,应尽可能采用短混响。但在大容积的报告厅内选用短混响,特别是控制低频混响,就会增加投资,同时也难以实施。因此,确定既能满足语言的良好听闻,又能节约投资的合理的最佳的混响时间值,应根据容积大小而定。 有关报告厅的最佳混响时间,很多文献内有介绍,但有较大的出入,特别在大容积报告厅内,国内外提出的推荐值,差距较大。对此,我们通过对国内42个大小报告厅(或以会议为主的会堂)的声学调查,进行统计分析,提出了随容积变化的混响时间建议值。 建议值允许有±0.1s的变动范围.此外,当容积小于30m3时,不必低于0.4s,当容积大于40000m3时,不应大于1.9s。根据调查,当大容积报告厅,混响大于1.9s时,语言清晰度都较差.必须通过分散式扩声系统,即每个座位的椅背上配置小功率扬声器,满足其听闻效果,这时还须设置声延迟系统.这无论在增加投

韵母构音运动声学特征分析及治疗策略的制定

韵母构音运动声学特征分析及治疗策略的制定 【摘要】:我国目前对于构音运动仅限于定性描述,缺乏下颌、唇、舌构音运动客观测量,不能较好反映构音运动的精细变化。故本研究通过共振峰F1、F2、F3研究正常成人的声学特征,在此基础上比较构音异常运动的特征,从而构建韵母构音运动的治疗体系。本研究在口部运动和言语构音运动的基础上,从单一构音运动和转换运动两个角度,构建了下颌、唇、舌的构音运动模型。通过对30例正常成人的下颌韵母构音运动、唇韵母构音运动及舌韵母构音运动进行声学特征分析,确定了反映下颌、唇及舌构音运动的敏感参数,优化了韵母构音运动理论模型和声学参数模型,最终构建正常成人韵母构音运动声学评定体系,为辅助诊断下颌、唇及舌构音运动障碍提供定量的参考标准。本研究在正常成人构音运动声学特征的基础上,采用听觉感知评估、视觉运动评估以及声学客观测量三种评估方式,对构音运动异常者进行主客观评估,研究韵母构音运动异常的构音运动特征,为构音运动异常治疗方案的制定提供可靠的依据。本研究在构音运动异常特征的基础上,探讨了构音运动治疗的原则,围绕优化的韵母构音运动理论模型,从构音运动训练和构音重读治疗两个方面分别构建了下颌、唇、舌构音运动的治疗策略,大大提高了康复疗效。本文的创新之处表现在以下几方面:(1)建构了韵母构音运动模式,为构音运动的理论研究做出突破性贡献。(2)提出韵母构音运动声学参数,制定了成人韵母运动声学测量的参考标准,使得构音运动障碍的诊断更加精细量化;(3)通过

分析了韵母构音运动异常人群的声学特征,细化了韵母构音运动异常临床症状的特点。(4)制定了韵母构音运动异常的治疗策略,对临床实践指导具有较大的应用价值。本文还存在以下不足:(1)对参数的临床意义还可以深入探讨,进行适当补充。(2)被试样本数量较少,建议进一步拓展被试量。【关键词】:构音运动声学分析构音障碍治疗策略【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2011 【分类号】:H018.4 【目录】:摘要6-7Abstract7-9第一章研究背景及思路9-23第一节构音与构音运动9-13第二节国内外研究现状13-21第三节本研究的内容与意义21-23第二章韵母构音运动模型构建23-35第一节下颌韵母构音运动模型的构建23-26第二节唇韵母构音运动模型的构建26-29第三节舌韵母构音运动模型的构建29-35第三章正常成人韵母构音运动声学特征研究35-76第一节实验方法35-39第二节下颌韵母构音运动的声学特征研究39-49第三节唇韵母构音运动的声学特征研究49-59第四节舌韵母构音运动的声学特征研究59-76第四章韵母构音运动异常的特征研究76-128第一节实验方法76-80第二节主观评估结果整体分析80-85第三节下颌韵母构音运动异常的特征研究85-105

气泡的声学特性分析

气泡的声学特性分析 221 气泡的散射特性 上世纪50年代后期,海洋学者开始意识到了气泡研究对于海洋探测的重要性,自从UriCk和HOOVer在1956年发现了气泡对于声波的散射后,气泡的散射问题就一直是水声研究领域的经典问题错误未找到引用源。。目标对声信号的散射能力根据不同性质、大小、形状的目标而不同,同时也与声波的入射方向有关[9]。因此, 对于水声探测来说,目标散射场特性的研究尤为重要。沿X轴方向传播的平面声 波入射到半径为R的软球边界上,观察点S(rc)处的声场。如图2.1所示,X轴方向为零度方向。 图2.1平面声波在软球球面上的散射 入射平面声波表达式为: P i(x,t)=p°e j(Z) = P O e j g rCO S e)(2-1)其中,,为波长,C为介质声速,「为角频率,C=二,为波数,(r,d)为点S的球坐标。 根据波动方程和软球应满足的边界条件,球面上的声压为零,即 P i P S=O (^ R) (2-2)声场关于X轴对称,所以取满足以X轴对称的球坐标系的波动方程的解为 Oel P s =Σ R m P m(CoS日)h m2>(kr)e jκt(2-3) m z0 其中,R m为常数,h r mυ(x)为第二类m阶汉克尔(Hankel)函数,「:?为m阶勒 让德(Legendre)多项式,代表声波的传播方向为由球心向外。入射平面声波可以分解为 球函数的和: Oa P i(r,8,t) =p°e j°5∑ (―j)m(2m+1)P m(cos日)j m(kr) (2-4) m =0 其中,j m(kr)为m阶球贝塞尔(BeSSe)函数。将(2-2),(2-3)和(2-4)式合并,解出a m ,则P S为:

音响系统声环境测试分析报告声学特性

精心整理XXXXXXXXX礼堂 扩声系统声学特性 测 量 报

受委托,对扩声系统的声学特性,按《厅堂扩声特性测量方法》国家标准,对最大声压级、传输频率特性、声场不均度、传声增益、系统总噪声级等五项声学特性指标进行了实地空场测量。并对有关建声指标混响时间,背景噪声也进行了实地空场测量。现把测量情况归纳如下: 一、XXXXXXXXX礼堂概况 该礼堂长约32m、宽约18m、高约9m,总面积576平方米,总容积5184m3。 (全频)75° 超低 (每只 相距约 的要求。以上扬声器品牌均为QSC。 二、测量标准及条件 1、测量方法按GB/T4959-95《厅堂扩声特性测量方法》国家标准; 2、性能指标按GB50371-2006《厅堂扩声系统设计规范》标准中多用途类扩 声系统一级指标要求;

3、测量仪器:美国TERRASONDE,TOOLBOX,ATB-PLUS型音频分析仪及 配套用的标准测量用传声器。 4、测试点位置: 按国家标准GB/T4959-95《厅堂扩声特性测量方法》声场测量点规定 应为:听众区座位的1/60。该厅堂听众区座位约为470个,测试应选8 个测量点。由于场地是对称的,按规定部分项目可以只测量中轴线一侧的 气压:1012kPa 相对湿度:80% 测量人员:XXXXXXXXX; 扩声系统设计施工方:XXXXXXXXX。

四扩声系统声学特性要求: 声学特性按GB50371-2006《厅堂扩声系统设计规范》标准文艺多用途类扩声系统一级指标要求如下: a)最大声压级:≥103dB; b)传输频率特性:以100Hz~6300Hz的平均声压级为0dB,在此频带内变化为 -4dB~+4dB、50Hz~100Hz和6300Hz~12500Hz允许范围见该标准规定的 c) d) e) A a) b) 化为 c)3;d) e)系统总噪声级:当扩声系统增益开到最大时,测量得到的系统总噪声级和实际测得礼堂背景噪声级一样,详见测量结果附表5。由于背景噪声较大,系统总噪声低于背景噪声,所以系统总噪声级不能测得,估计可以达到NR20的要求。B建声测量结果 a)混响时间详见测量结果附表6;

混响 声学特性

(reverberation)混响时间的长短就是音乐厅、剧院、礼堂等建筑物的重要声学特性。声波遇到障碍会反射,所以我们这个世界充满了混响。 混响的要求 声波在室内传播时,要被墙壁、天花板、地板等障碍物反射,每反射一次都要被障碍物吸收一些。这样,当声源停止发声后,声波在室内要经过多次反射与吸收,最后才消失,我们就感觉到声源停止发声后还有若干个声波混合持续一段时间。这种现象叫做混响,这段时间叫做混响时间。 对讲演厅来说,混响时间不能太长.我们平时讲话,每秒钟大约发出2~3个单字,假定发出两个单字“物理”,设想混响时间就是3秒,那么,在发出“物”字的声音之后,虽然声强逐渐减弱,但还要持续一段时间(3秒),在发出“理”字的声音的时刻,“物”字的声强还相当大。因而两个单字的声音混在一起,什么也听不清楚了。但就是,混响时间也不能太短,太短则响度不够,也听不清楚。因此需要选择一个最佳混响时间.北京科学会堂有一个学术报告厅,混响时间为1秒。 不同用途的厅堂,最佳混响时间也不相同,一般来说,音乐厅与剧场的最佳混响时间比讲演厅要长些,而且因情况不同而不同。轻音乐要求节奏鲜明,混响时间要短些,交响乐的混响时间可以长些。难于听懂的剧种如昆曲之类,混响时间一长,就更难于听懂、节奏较慢而偏于抒情的剧种,混响时间则可以长些。总之,要有一定的、恰当的混响时间,才能把演奏与演唱的感情色彩表现出来,收到应有的艺术效果。北京“首都剧场”的混响时间,坐满观众时为1、36秒,空的时候就是3、3秒。这就是因为满座时,吸收声音的物体多了,所以混响时间缩短,上面所说的最佳混响时间就是指满座时的混响时间。高级的音乐厅或剧场,为了满足不同的要求,需要人工调节混响时间.其中一种办法就是改变厅堂的吸声情况。在厅堂内安装一组可以转动的圆柱体,柱面的一半就是反射面,反射强、吸收少;另一半就是吸声面,反射弱、吸收多.把

教室声学音质设计一例

教室声学音质设计一例 燕翔徐学军侯冰洋汤静波 ( 清华大学建筑学院建筑物理实验室,北京,100084 ) 摘要:清华大学建筑馆北114教室听课效果不良,于2002年进行了装修改造。改造过程中,教师指导学生对教室声学问题进行了细致深入的研究,提出科学的设计方案,装修后的教室声学效果非常理想。本文介绍了改造的声学研究过程和得出的一些结论,文中包括国内外教室声学设计的调研、教室声学设计的考虑、北114教室存在的音质问题的分析和实际测量、提出多种音质改造的设计方案、使用缩尺比例模型和计算机模拟两种方法对设计方案的分析测量和评价、可听化音质模拟的听众主观评价和最终设计方案的确定、改造后的音质测量结果和音质效果调查等等。 关键词:教室声学,音质,可听化模拟,计算机音质模拟,比例模型音质模拟 清华大学建筑馆北114教室是建筑学院的专业教室,可容纳100名学生。教室长14.4m,宽7.0m,净高4.0m,体形瘦长。使用中学生的评价很差,主要是听不清老师的讲课。学院决定对114教室进行装修,同时解决音质问题,设计方案由建筑物理实验室完成。在实验室,教师指导学生对教室音质进行了研究,以求获得最佳设计方案。研究分为以下步骤: 1 教室音质设计文献调研 “为学校创造安静的环境,保证教室和其它教学用房具有良好的听闻条件,是学校建筑设计中最基本的要求之一。……噪声的长期作用不仅会直接影响到教学质量,同时,在一定程度上还影响到学生(特别是儿童)的健康和正常的发育。……教室内合适的混响时间,均匀的声场分布也是确保教室良好听闻的重要条件。”——《实用建筑声学》 “在一般小型教室,主要是防止混响时间过长,特别是在听众没有坐满时。大型教室或讲堂还要适当设置反射表面,以充分利用第一次反射声,保证室内有足够的声压级。为了使室内有足够的声压级和短的混响时间(小型教室在0.6s以内,500人的教室不超过1s),教室、讲堂的每座容积不超过(3~3.5)m3。”——《建筑声环境》。 “小型教室混响时间最好应在:0.4~0.6s之间,最多不能超过1s。如果设计适当,500座位以内的教室或讲堂可以不用电声系统。考虑到墙壁之间的共振,吸声材料一定不要集中放在天花和地面,而要分散开。这样声场也会均匀。学生区增加吸声量,可有效的减少学生本身的噪音,对学生之间的交流有利,但对于讲课并无太大作用。天花的中间区域必须由反射声音的材料构成,以加强1次直达声。老师头上的天花应当倾斜,以加强1次反射声。” ——以上摘自《Classroom Acoustics》通过文献调研可知:

反流性咽喉病患者嗓音声学特征分析

反流性咽喉病患者嗓音声学特征分析 发表时间:2019-03-27T11:39:45.887Z 来源:《医药前沿》2019年2期作者:王鑫于方方 [导读] 通过DSI检测,能够反映患者病情的严重程度,对于LPRD病症的诊断可以根据RSI量表评分并结合嗓音声学分析来确定。 (青海省中医院耳鼻喉科青海西宁 810000) 【摘要】目的:用英文表示反流性咽喉病为LPRD,本文的研究目的是分析LPRD患者的嗓音声学特征。方法:本文研究的对象是在我院耳鼻咽喉科门诊接受反流性咽喉病治疗的患者,要对他们进行反流症状指数(RSI)评分,选择评分总数大于或者等于13分的反流性咽喉病患者48例和正常人42例作为本次研究的对象,48例反流性咽喉病患者称为研究的LPRD组,42例正常人称为研究的正常组。对所有研究对象进行硬管喉镜检查,然后还要检测研究对象的持续元音信号,主要利用的技术是德国XION DIVAS嗓音测试方法,计算出患者的嗓音障碍指数(DSI),并进行相关的对比和分析,然后还要分析48例反流性咽喉病患者RSI量表评分、声嘶症状评分和DSI值之间的关联性。结果:48例反流性咽喉病患者的反流症状指数的平均分为(17.5±5.35)分,对所有患者进行喉镜检查,杓状软骨区有充血、糜烂、溃疡和水肿的现象;与正常人相比,LPRD患者基频微扰(jitter)和振幅微扰(shimmer)的平均值都比较高,最长发声时间(MPT)和DIS的平均值,病患者的都比正常人要低。反流性咽喉病患者的DSI值和RSI量表评分与声嘶症状评分呈现负相关的关系。结论:反流性咽喉病患者嗓音会出现异常,可能会因为声带产生改变进而影响嗓音。 【关键词】反流性咽喉病;嗓音声学特征;嗓音障碍指数 【中图分类号】R767 【文献标识码】A 【文章编号】2095-1752(2019)02-0239-01 人的胃部内容物如果出现异常,就有可能从食管反流到上括约肌,甚至到达咽喉部位,这时人的咽喉就会产生一系列的不适,这就是本文所研究的反流性咽喉病。目前我国对反流性咽喉病的研究和报道比较少,外国曾作出相关报道,表明大多数的LPRD患者会出现声嘶症状,其嗓音会受到损害。 1.资料与方法 1.1 一般资料 在2015年3月—2016年3月于我院耳鼻咽喉科接受LPRD治疗患者中,选择RSI评分总数大于或者等于13分的LPRD患者48例和正常人42例作为本次研究的对象,48例LPRD患者称为研究的LPRD组,42例正常人称为研究的正常组。LPRD组患者生病时间在3月~7.5年之间。首先要将其他类似症状的病症患者排除在外,如呼吸道感染患者,扁桃体炎症患者等。对反流性咽喉病的诊断要以RSI量表为标准进行筛选,评分的标准主要是根据RSI量表中的9个项目来定的,包括:声嘶、清嗓、痰多、吞咽困难、吃完饭以后或者平躺时咳嗽加剧、呼吸不顺畅、咳嗽严重、咽喉有异物感、烧心、胃疼或者胸痛,规定每项的分数是0~5,0表示没有出现这些症状,分数越高症状越明显,病情越严重。正常组中有男性20人,其他为女性,这些人的发声都没有问题。所有被研究的正常人都不是专业的用嗓人员,且都没有咽喉以及上述中所提到的疾病。 1.2 检测方法 首先要对LPRD和研究的正常人进行嗓音声学检测,采用的检测系统是德国公司制定的DIVAS嗓音分析系统检测过程中要控制环境噪声不能超过40dB(A),所有被研究人员要处于舒适的站立状态,在距离话筒大约30厘米处发声检测。对研究人员进行中音域测试的步骤为:首先进行低音量采样,用平时说话的最小音调来发/a:/的音,持续3~5s,以此为标准,降低和升高音调以最小声音发音进行分别取样;然后进行低音量采样,以平时说话的最大音调发/a:/的音,以此为标准,降低和升高音调以最大的声音发音进行分别取样,获得声学参数。还要用平稳的音调发/a:/的音,坚持7~8s,取最少4s的平稳段进行分析,最后计算出基频微扰(jitter),振幅微扰的计算,还应该检测研究对象的发声时间,通过软件计算出嗓音障碍指数,最终利用公式获得振幅微扰。 1.3 观察指标 本次研究的观察指标是LPRD患者的RSI评分,声嘶症状评分,喉镜检查的结果以及两组研究对象的嗓音声学分析结果。 2.结果 2.1 LPRD患者RSI评分结果。 48例患者中RSI评分最高的是36分,最低的是12分,平均分为(17.5±5.35)分;声嘶症状的平均分为(1.91±0.84)分。 2.2 LPRD患者喉镜检查结果。 48例患者喉镜检查结果显示,有39例表现为杓状软骨区红斑或者充血,有41例表现为杓区水肿,有25例表现为糜烂或者溃疡,有29例表现为声门后区增生,有5例表现为肉芽肿,有18例表现为声带水肿或者肥厚。 2.3 正常组和LPRD组嗓音声学分析结果 LPRD组有42例患者的嗓音声学分析出现异常,其基频微扰和振幅微扰都比正常组高,而最长发声时间和嗓音障碍指数都比正常组低,如表。 表正常组和LPRD组嗓音声学分析结果 注:有统计意义(P<0.05)。 3.讨论 目前临床认为诊断LPRD的最好的方法是利用24h食管和喉咽部双探针PH,这种方法的费用非常昂贵,因此不太被患者接受。根据本文的喉镜检查结果,我们可以看到患者胃里的物质反流到了咽喉,使声带的震动和声门闭合受到影响,进而使嗓音发生异常。同时本文的研究表明多数LPRD患者RSI总评分在13分之上,这些患者的嗓音声学分析都显现异常。因此可以用这两种方法相结合来诊断LPRD,对于这

音响系统声环境测试报告声学特性

XXXXXXXXX礼堂扩声系统声学特性 测 量 报 告 测量: 审核: XXXXXXXXX 2015年10月日

受委托,对扩声系统的声学特性,按《厅堂扩声特性测量方法》国家标准,对最大声压级、传输频率特性、声场不均度、传声增益、系统总噪声级等五项声学特性指标进行了实地空场测量。并对有关建声指标混响时间,背景噪声也进行了实地空场测量。现把测量情况归纳如下: 一、XXXXXXXXX礼堂概况 该礼堂长约32m、宽约18m、高约9m,总面积576平方米,总容积5184 m3。可容纳观众470人左右,有吸音材料的软座,地面铺设塑料板,左右墙壁及后墙均装有吸声材料。 舞台宽约、深约、高约8m,容积3,墙壁为吸引材料,舞台上装有观看3D 电影用的金属电影幕。 舞台口宽约、高约6m。在舞台口中线上方装有一组(两只)QSC K12 (全频)扬声器和一只KW181超重低音音箱,(每只K12全频扬声器的覆盖角度为75°圆锥形),舞台两侧八字墙下方各嵌入安装K12(全频)扬声器一只和KW181超低音音箱一只,两组之间水平间距约为。台唇处各装有三只K8(全频)扬声器(每只K8全频扬声器的覆盖角度为105°圆锥形),以用作补声,三只扬声器之间相距约3m,共计4只K12和3只K8全频扬声器及三只超低频扬声器以不同的角度覆盖观众区,使观众厅前半区的声场得到均匀的覆盖。另外在观众区中部及后部共计安装有四只K12扬声器,覆盖观众厅中后区,以满足多用途类扩声系统声学特性的要求。以上扬声器品牌均为QSC。

二、测量标准及条件 1、测量方法按GB/T4959-95《厅堂扩声特性测量方法》国家标准; 2、性能指标按GB50371-2006《厅堂扩声系统设计规范》标准中多用途类 扩声系统一级指标要求; 3、测量仪器:美国TERRASONDE,TOOLBOX,ATB-PLUS型音频分析仪 及配套用的标准测量用传声器。 4、测试点位置: 按国家标准GB/T4959-95《厅堂扩声特性测量方法》声场测量点规 定应为:听众区座位的1/60。该厅堂听众区座位约为470个,测试应选 8个测量点。由于场地是对称的,按规定部分项目可以只测量中轴线一 侧的区域(4个测量点即可)。为了能够更为精确地获取测试数据,我们 共计选取了8个测量点,其分布如下图1: 图1测量点位分布图

混响时间测量

混响时间测量 一、实验目的 1、掌握混响时间的基本测量方法。 2、了解室内声场的衰减过程。 3、巩固混响时间的概念以及在厅堂音质设计中的应用。 二、实验设备 声学分析系统,功率放大器,球型声源等。 三、预习要求 《建筑物理》第十一章。 四、实验原理与方法 1、概述 混响时间测量是建筑声学中最经常的测量。一方面混响时间是目前评价厅堂音质的最重要的和有明确概念的客观参量;另一方面吸声材料和结构的扩散入射吸声吸数的测量、围护结构的隔声测量等都需要用到混响时间的测量,声源的性能测量。因此,混响时间的测量是建筑声学实验中最为基本的实验项目。 在封闭的声场中,声源开始辐射声能,声波即在同一时间开始传播,声源停止发声,室内接收点的声音并不会马上停止,而要有一个过程,这一过程就是声音的衰减过程。通过研究,定义“室内声场达到稳态,声源停止发声后,声音衰减60dB所用的时间”为混响时间(T60)。并且得出了著名的“赛宾公式”和“伊林公式”。 2、混响时间测量 混响时间的测量就是由信号发声器通过发大器驱动扬声器发出声音,并纪录,在室内声场达到稳态时,切断发声,记录声音的衰减过程,可以得出衰减曲线和混响时间的测量结果。 信号发声可以有两种方法:一种是噪声法,发出调频的正弦信号或无规则噪声,目的是避免单纯正弦信号会出现驻波现象;一种是脉冲法,声源型号采用脉冲声,包括发令枪、爆竹、气球炸裂等。 在厅堂内进行混响时间测试时,声源的位置一般在自然声源位置。传声器布置在代表性的位置。测试时需要纪录不同频率的混响时间,评价不同频率声波在声场中的衰减性能。 五、实验步骤指导 1、检查仪器以及校准仪器

2、采用声学分析系统测量混响室的混响时间

HJT90 2004声屏障声学设计和测量规范1

声屏障声学设计和测量规范 Norm on Acoustical Design and Measurement of Noise Barriers 目次 前言 1.主题内容与适用范围 (1) 2.规范性引用文件 (1) 3.名词术语 (1) 4.声屏障的声学设计 (3) 5.声屏障声学性能的测量方法 (13) 6.声屏障工程的环保验收 (20) 附录A(规范性附录)反射声修正量△Lr的计算 (22) 附录B(规范性附录)等效频率fe的计算 (26) 附录C(资料性附录)参考文献 (27) 前言 为了贯彻执行《中华人民共和国环境噪声污染防治法》第36条“建设经过已有的噪声敏感建筑物集中区域的高速公路和城市高架、轻轨道路,有可能造成环境污染的,应当设置声屏障或者采取其他有效的控制环境噪声污染的措施”,制订本规范。 本规范规定了声屏障的声学设计和声学性能的测量方法。 本规范的附录A、B是规范性附录。附录C是资料性附录。 本规范由国家环境保护总局科技标准司提出并归口。 本规范起草单位:中国科学院声学研究所、同济大学声学研究所、北京市劳动保护科学研究所、福建省环境监测中心。 参加单位:青岛海洋大学物理系、北京市环境监测中心、上海市环境科学研究院、天津市环境监测中心、上海申华声学装备有限公司、上海市环保科技咨询服务中心、宜兴南方吸音器材厂、北京市政工程机械厂。 本规范由国家环境保护总局负责解释。 本规范2004年10月1日起实施。 1 主题内容与适用范围 1.1 本规范规定了声屏障的声学设计和声学性能的测量方法。 1.2本规范主要适用于城市道路与轨道交通等工程,公路、铁路等其他户外场所的声屏障也可参照本规范。 2 规范性引用文件 下列标准和规范中的条款通过在本规范中引用而构成本规范的条款,与本规范同

(完整版)第三章海洋的声学特性

第三章海洋的声学特性 本章从声学角度讨论海洋、海洋的不均匀性和多变性,弄清声信号传播的环境,有助于海中 目标探测、声信号识别、通讯和环境监测等问题的解决。 3.1海水中的声速 声速:海洋中重要的声学参数,也是海洋中声传播的最基本物理参数。 海洋中声波为弹性纵波,声速为: 1 c ---------- s 式中,密度 和绝热压缩系数 s 都是温度T 、盐度S 和静压力P 的函数,因此,声速也是 T 、S 、 P 的函数。 1、声速经验公式 海洋中的声速c (m/s )随温度T (C)、盐度S (%。)、压力P (kg/cm 2)的增加而增加。 经验公式是许多海上测量实验的总结得到的,常用的经验公式为: 较为准确的经验公式: c ST p S 35 1.197 10 3T 2.61 10 4P 1.96 10 1P 2 2.09 10 6 PT P 2.796 10 4T 1.3302 10 5T 2 6.644 10 8T 3 P 2 2.391 10 1T 9.286 10 10T 2 1.745 10 10 P 3T 上式适用范围:-3C

相关主题
文本预览
相关文档 最新文档