当前位置:文档之家› 气泡的声学特性分析

气泡的声学特性分析

气泡的声学特性分析
气泡的声学特性分析

气泡的声学特性分析

2.2.1 气泡的散射特性

上世纪50年代后期,海洋学者开始意识到了气泡研究对于海洋探测的重要性,自从Urick 和Hoover 在1956年发现了气泡对于声波的散射后,气泡的散射问题就一直是水声研究领域的经典问题错误!未找到引用源。。目标对声信号的散射能力根据不同性质、大小、形状的目标而不同,同时也与声波的入射方向有关

[9]。因此,对于水声探测来说,目标散射场特性的研究尤为重要。沿x 轴方向传播的平面声波入射到半径为R 的软球边界上,观察点(,)S r θ处的声场。如图2.1所示,x 轴方向为零度方向。

)

,(t x p i θ

(,)

S r θx

R O

图2.1 平面声波在软球球面上的散射

入射平面声波表达式为:

)cos (0)(0),(θωωkr t j kx t j i e p e p t x p --==

(2-1) 其中,λ为波长,c 为介质声速,ω为角频率,λπω2==c k 为波数,),(θr 为点S 的球坐标。 根据波动方程和软球应满足的边界条件,球面上的声压为零,即

0 (r )i s R p p +== (2-2)

声场关于x 轴对称,所以取满足以x 轴对称的球坐标系的波动方程的解为 (2)0(cos )()j t

s m m m m p R P h kr e ωθ∞==∑ (2-3)

其中,m R 为常数, )()2(x h m

为第二类m 阶汉克尔(Hankel )函数,为m 阶勒让德(Legendre)多项式,代表声波的传播方向为由球心向外。入射平面声波可以分解为球函数的和:

∑∞=+-=00)()(cos )12()(),,(m m m m t

j i kr j P m j e p t r p θθω (2-4)

其中,)(kr j m 为m 阶球贝塞尔(Bessel )函数。将(2-2),(2-3)和(2-4)式合并,解出m a ,则s p 为:

(2)0(2)0()(,,)()(21)()(cos )()j t

m m s m m m m j kR p r t p e j m h kr P h kR ωθθ∞==-+∑(2-5)

式(2-5)中,s p 为声波散射场,R 表示散射球的半径。

图2.2 软球半径一定时软球散射场的指向性

由软球散射声场指向性图可知,在软球半径一致的条件下,随着发射信号的中心频率不断增加(50kHz,100kHz,200kHz,400kHz),散射声场指向性图中零点变多;波瓣变窄;同时伴随越来越剧烈的起伏。

图2.3 频率一定时软球散射声场的指向性

由图 2.3能够看出在发射信号的中心频率相同的条件下,随着软球半径的减小(2mm,1.5mm,1mm,0.5mm ),指向性逐渐增强。

基于软球尺度和回波散射强度的关联性,可以根据不同中心频率的发射信号的回波变化来推算出热液喷口物质的尺度分布情况。

2.2.2 气泡的谐振特性

气泡层的浓度和深度与表层水的湍动混合强度、溶解在水中的空气的饱和程度、波浪要素及空气强度有密切联系。声波在水下传播通过气泡层,由于气泡的散射作用和气泡的吸收作用会产生不同程度的衰减[10]。

通常状况下,气泡可看作为一个充满气体的腔,是某些频率围声波的有效吸收体和散射体。声波在水下传播通过气泡层,由于气泡中气体的存在使其传播介质出现不连续性,导致声波发生强烈的散射,声波强度大大减弱,这就是气泡对声波的散射作用声波在通过气泡层的过程中,气泡在声波的作用下作强迫振动,同时作为次级声源向周围介质中辐射声能,整个过程中伴随着声能量的衰减[11]。气泡在作强迫振动时受到压缩和伸,引起气泡的形变及部气体的温度的变化,气泡与海水介质进行热传导,将声能转化为热能扩散至海水介质中。此外,在流体的黏滞力作用下,作强迫振动的气泡表面在与介质之间产生摩擦作用,致使部分声能转化为热能散发出去。此为气泡对声波的吸收作用。另外,因为不同气体在水中的溶解度不同,所以气泡所含气体成分与大气中的成分并不相同。这也使气泡对于声波的散射影响不同错误!未找到引用源。。声波通过气泡群传播时的衰减最大,对应于声呐系统中的回声声源级的强烈衰减错误!未找到引用源。。

小气泡(a λ,a 为气泡半径)在声波作用下本身近似地作均匀形变,类比于一个弹性元件错误!未找到引用源。。通过分析可知气泡做强迫振动时的等效机械阻抗为:

(){}22000022

0()

()13m s s A A A A A A Z R j m D cs ka j cs ka p s V cs ka ka j p a ωρργω

ργρω=+-=+-=+-???? (2-6)

令上式虚部为0,得到气泡的谐振频率为:

0f =(2-7)

其中c 为介质中的声速,2k f c π=为波数,a 为气泡半径,单位为cm ,ω为声波圆频率,204s a π=为气体表面积,气泡周围介质密度为A ρ,所以可知气泡的

在压力为:02/A p p a τ=+,τ为表面力,0p 为1个标准大气压,γ为气泡等压比热与等容比热的比值,对于空气来说气体的比热比为 1.41γ=,气泡的体积是20=43V a π。由此可见,气泡的谐振频率由气泡的半径以及气泡部的压强决定。对于水中的气泡,取 1.41γ=,对于在水面附近的气泡来说,210/A p N cm =,水的密度3=1A g cm ρ,代入到式(2-7)可得:

0326f a = (2-8) 其中,a 的单位为cm ,0f 的单位为kHz 。

如果海水深度为d ,则气泡的谐振频率表示为:

032610.03f d a

=+ (2-9)

其中0f 的单位为kHz ,a 的单位为cm ,d 的单位为m 。 根据式(2-7),在水深为1m 的条件下,谐振频率0f 与气泡半径()a m μ的关系如图2.4所示;在气泡半径一定为100m μ的条件下,谐振频率0f 与水深d 之间的关系如图2.5所示。

图2.4 深度一定谐振频率 图2.5 气泡半径一定谐振频率

和气泡半径的关系 和深度之间的关系

2.2.3 气泡的散射功率及截面

将公式(2-7)带入到公式(2-6)中,得到气泡的机械阻抗为:

()22001m A Z cs ka ka j f f ρ??=+-?? (2-10) 根据公式(2-10)不难求出气泡的散射功率s W 为:

220222

022222020222202

0222202().2()

()(1).2()(1)4()(1)

A s s m A A A A A p s R W Z cs ka p cka ka f f s p c ka f f I a ka f f ρρρπ=

=+-=

+-=+- (2-11) 散射功率s W 与气泡截面2a π和入射声波强度0I 的乘积成正比;并会随着入

射声频率的变化而变化,在入射声频率等于谐振频率时达到最大:

0smax 24I W k π=

(2-12)

斯皮策(Spitzer )给出了理想情况下气泡散射截面s σ的表达式: 2

222204(1)+()s a f f ka πσ=- (2-13)

其中,a 为气泡半径,f 为入射声波频率,0f 为共振频率,k c ω=为共振时波数,其中c 为介质中的声速。由上式可知,散射截面在0=f f 时最大,但是当入

射声频率逐渐偏离共振频率时,散射截面随频率偏移而减小错误!未找到引用源。。这与具有电阻损耗的调谐电路的响应曲线一样。图 2.6为气泡半径分别为20,200,2000 m μ的情况下,散射截面与频率的关系。

图2.6 散射截面与频率的关系

图2.7为小气泡(a λ≤)在水中的散射截面随频率变化的关系[16]。图中T σ为总阻尼常数; 2s 1.3610σ-=?为散射引起的阻尼常数;横坐标为入射声波频率与共振频率比值;纵坐标为气泡散射截面与几何截面比值。图中的曲线为理想状态下及实际状态下气泡散射截面与几何截面比值随频率变化的曲线。

f f的关系曲线

图2.7 水中气泡散射截面与几何截面之比与归一化频率

在入射声波频率小于共振频率的条件下,气泡散射与频率的四次方成正比且散射很小错误!未找到引用源。;在入射声波频率增长到与共振频率相等时,气泡的散射截面达到最大;入射声波频率接近等于10倍的共振频率时,气泡散射截面趋近于一个4倍于气泡几何截面的常数;当声波频率继续增大时,气泡散射截面逐渐减小为与其几何截面相等。实际情况下的气泡在水中具有较大的阻尼,其散射截面大约为几何截面的200倍,散射截面小于理想状况下的值。

对于水下某一固定深度的气泡来说,气泡共振时其半径与共振频率存在固定的对应关系,且其散射截面有显著增大。综上可得出结论:在发射声学频率与气泡共振频率相等的条件下气泡产生共振,因为其散射截面最大且目标强度最强,所以最容易被声呐探测到。

气泡的声学特性分析

气泡的声学特性分析 2.2.1 气泡的散射特性 上世纪50年代后期,海洋学者开始意识到了气泡研究对于海洋探测的重要性,自从Urick 和Hoover 在1956年发现了气泡对于声波的散射后,气泡的散射问题就一直是水声研究领域的经典问题错误!未找到引用源。。目标对声信号的散射能力根据不同性质、大小、形状的目标而不同,同时也与声波的入射方向有关 [9]。因此,对于水声探测来说,目标散射场特性的研究尤为重要。沿x 轴方向传播的平面声波入射到半径为R 的软球边界上,观察点(,)S r θ处的声场。如图2.1所示,x 轴方向为零度方向。 ) ,(t x p i θ (,) S r θx R O 图2.1 平面声波在软球球面上的散射 入射平面声波表达式为: )cos (0)(0),(θωωkr t j kx t j i e p e p t x p --== (2-1) 其中,λ为波长,c 为介质声速,ω为角频率,λπω2==c k 为波数,),(θr 为点S 的球坐标。 根据波动方程和软球应满足的边界条件,球面上的声压为零,即 0 (r )i s R p p +== (2-2) 声场关于x 轴对称,所以取满足以x 轴对称的球坐标系的波动方程的解为 (2)0(cos )()j t s m m m m p R P h kr e ωθ∞==∑ (2-3) 其中,m R 为常数, )()2(x h m 为第二类m 阶汉克尔(Hankel )函数,为m 阶勒让德(Legendre)多项式,代表声波的传播方向为由球心向外。入射平面声波可以分解为球函数的和: ∑∞=+-=00)()(cos )12()(),,(m m m m t j i kr j P m j e p t r p θθω (2-4) 其中,)(kr j m 为m 阶球贝塞尔(Bessel )函数。将(2-2),(2-3)和(2-4)式合并,解出m a ,则s p 为:

音响系统声环境测试报告声学特性精编版

XXXXXXXXX礼堂扩声系统声学特性 测 量 报 告 测量: 审核: XXXXXXXXX 2015年10月日

受委托,对扩声系统的声学特性,按《厅堂扩声特性测量方法》国家标准,对最大声压级、传输频率特性、声场不均度、传声增益、系统总噪声级等五项声学特性指标进行了实地空场测量。并对有关建声指标混响时间,背景噪声也进行了实地空场测量。现把测量情况归纳如下: 一、XXXXXXXXX礼堂概况 该礼堂长约32m、宽约18m、高约9m,总面积576平方米,总容积5184 m3。可容纳观众470人左右,有吸音材料的软座,地面铺设塑料板,左右墙壁及后墙均装有吸声材料。 舞台宽约14.2m、深约8.5m、高约8m,容积965.6m3,墙壁为吸引材料,舞台上装有观看3D电影用的金属电影幕。 舞台口宽约16.5m、高约6m。在舞台口中线上方装有一组(两只)QSC K12 (全频)扬声器和一只KW181超重低音音箱,(每只K12全频扬声器的覆盖角度为75°圆锥形),舞台两侧八字墙下方各嵌入安装K12(全频)扬声器一只和KW181超低音音箱一只,两组之间水平间距约为15.5m。台唇处各装有三只K8(全频)扬声器(每只K8全频扬声器的覆盖角度为105°圆锥形),以用作补声,三只扬声器之间相距约3m,共计4只K12和3只K8全频扬声器及三只超低频扬声器以不同的角度覆盖观众区,使观众厅前半区的声场得到均匀的覆盖。另外在观众区中部及后部共计安装有四只K12扬声器,覆盖观众厅中后区,以满足多用途类扩声系统声学特性的要求。以上扬声器品牌均为QSC。

二、测量标准及条件 1、测量方法按GB/T4959-95《厅堂扩声特性测量方法》国家标准; 2、性能指标按GB50371-2006《厅堂扩声系统设计规范》标准中多用途类 扩声系统一级指标要求; 3、测量仪器:美国TERRASONDE,TOOLBOX,ATB-PLUS型音频分析仪 及配套用的标准测量用传声器。 4、测试点位置: 按国家标准GB/T4959-95《厅堂扩声特性测量方法》声场测量点规 定应为:听众区座位的1/60。该厅堂听众区座位约为470个,测试应选 8个测量点。由于场地是对称的,按规定部分项目可以只测量中轴线一 侧的区域(4个测量点即可)。为了能够更为精确地获取测试数据,我们 共计选取了8个测量点,其分布如下图1: 图1测量点位分布图

水下目标回波特性计算的图形声学方法

第31卷第6期2006年11月 声学学报 ACTAACUSTICA V01.31,NO.6 NOV.,2006 水下目标回波特性计算的图形声学方法冰 范军卓琳凯 (上海交通大学船舶海洋与建筑工程学院,振动、冲击、噪声国家重点实验室上海200030) 2005年6月9日收到 2006年3月3日定稿 摘要根据Kirchhoff近似公式建立了一种水下目标回波特性实时工程预报的新方法一可视化图形声学计算方法GRACO(GraphicalAcousticsComputing)。该方法利用三维图形处理系统,采用建模软件对水下复杂目标进行几何建模,并基于OpenGL技术把几何模型转化为屏幕上目标的可视化像素图形,获取像素中包含的目标表面法向量和空间距离信息,最后通过把回波特性预报中的面积分转化为屏幕上可视化图形的像素求和计算,完成水下目标回波特性预报。计算结果表明图形声学方法有较高的精度,计算速度比板块元方法快9—10倍。 PACS数:43.30 Graphicalacousticscomputingmethodforechocharacteristics calculationofunderwatertargets FANJunZHUOLinkai (School吖NavalArchitecture,OceanandCivilEngineeringJStataKeyLaboratoryofVibration,Shock&Noise ShanghaiJiaotongUniversityShanghai200030) ReceivedJun.9,2005 RevisedMar.3,2006 AbstractOnthebasisofKirchhoffapproximateequation,anewapproach—GRACO(GraphicalAcousticsComput—ing)isdevelopedforforecastingtheechocharacteristicsofunderwatertargetsinrealtime.Using3Dgraphicprocessingsystem,thegeometricalmodelofcomplexunderwatertargetisestablished.BasingonOpenGL,thegeometricalmodelistransformedintothevisualimageonthecomputer’Sscreen,andtargetsurface’Snormalvectorandspaceincludedintheinformationofpixelsareobtained.Insteadofcomputingthesurfaceintegraldirectly,theforecastofechocharacteristicofunderwatertargetisachievedbycalculatingthesumofthecontributionfromallthepixelsinthescreenimage.NumericalresultsshowthatGRACOmethodenjoyshighprecisionandcomputingspeedis9to10timesfasterthanthePlanarElementsMethod. 引言 声呐工程中对于水中复杂形状目标回波特性的预报目前主要采用两种方法。一是基于亮点模型的部件法【1'2j,这种方法将复杂形状的目标分解为一组简单形状的子目标,每个子目标的回波用解析形式表示,计算简单且物理概念清晰。但由于子目标的限制,对实际目标形状的逼近误差较大;二是数值计算方法[3】,如目前比较常用的板块元方法【剖。这种方法虽然能较精确地逼近复杂形状的目标,并且计算速度比直接数值积分提高了很多,但由于要划分的板块数木国防重点实验室基金资助项目(51444050101JW0301)量巨大,板块之问的遮挡和消隐也需要耗费大量计算时间和资源,因此仍然满足不了工程实时l生的要求。 随着声呐技术和水下武器系统的发展,要求目标回波特性预报的精度更高、速度更快。基于运算速度快,实时性好的图形化可视化计算技术在雷达RCS预测上的成功应用[5-sj,能否在水下目标上运用该技术便成为了水中目标回波特性研究的一个新方向。 本文建立了适合水下目标回波特性快速预报的可视化图形声学计算方法(GRACO)。该方法利用三维图形处理系统,采用建模软件对水下复杂目标进行几何建模,并基于OpenGL技术把几何模型转  万方数据

海洋声学基础讲义-吴立新

海洋声学基础——水声学原理 绪论 各种能量形式中,声传播性能最好。在海水中,电磁波衰减极大,传播距离有限,无法满足海洋活动中的水下目标探测、通讯、导航等需要。 声传播性能最好,水声声道可以传播上千公里,使其在人类海洋活动中广泛应用,随海洋需求增大,应用会更广。 §0-1节水声学简史 01490年,意大利达芬奇利用插入水中长管而听到航船声记载。 11827年,瑞士物理学家D.colladon法国数学家c.starm于日内瓦湖测声速为1435米每秒。 21840年焦耳发现磁致伸缩效应 1880年居里发现压电效应 31912年泰坦尼克号事件后,L.F.Richardson提出回声探测方案。 4第一次世界大战,郎之万等利用真空管放大,首次实现了回波探测,表示换能器和弱信号放大电子技术是水声学发展成为可能。(200米外装甲板,1500米远潜艇) 5第二次世界大战主被动声呐,水声制导鱼雷,音响水雷,扫描声呐等出现,对目标强度、辐射噪声级、混响级有初步认识。(二战中被击沉潜艇,60%靠的是声呐设备) 6二、三十年代——午后效应,强迫人们对声音在海洋中的传播规律进行了大量研究,并建立起相关理论。对海中声传播机理的认识是二次大战间取得的最大成就。 7二战后随着信息科学发展,声呐设备向低频、大功率、大基阵及综合信号处理方向发展,同时逐步形成了声在海洋中传播规律研究的理论体系。 81、1945年,Ewing发现声道现象,使远程传播成为可能,建立了一些介质 影响声传播的介质模型。 2、1946年,Bergman提出声场求解的射线理论。 3、1948年,Perkeris应用简正波理论解声波导传播问题。

树脂流动对气泡运动特性的影响

树脂流动对气泡运动特性的影响 风电叶片制造技术2010-05-05 20:27:35 阅读29 评论0 字号:大中小 树脂流动对气泡运动特性的影响 作者:张佐光发表于:2010-01-29 08:50:03 点击:159 复材在线原创文章,转载请注明出处 摘要:为了排除复合材料成型过程中的气泡,建立了气泡运动可视化装置,研究了树脂流动状态和流动速度对气泡运动速度的影响,并在此基础上建立了气泡运动模型。研究结果表明:树脂流动对气泡运动有明显的带动或阻碍作用。当树脂流动方向与气泡运动方向相同时,随着树脂流速的增加,气泡的运动速度明显增大;而流动方向相反时,随着树脂流速的增加,气泡的运动速度呈明显下降的趋势。所建立的气泡运动模型与实验结果基本吻合。该研究结果将为热压成型过程中气泡运动模型的建立奠定基础。 关键词:复合材料;树脂;气泡;孔隙 先进树脂基复合材料是由纤维和树脂按一定方式复合而成的一类新型材料。然而复合材料的制造过程非常复杂,在其制备过程中由于各种因素以及工艺实施不完善等造成最终复合材料制品存在孔隙。孔隙的存在严重地影响材料的质量和力学性能,为外界空气和水分扩散进制品提供了路径,使聚合物降解并引起氧化作用,削弱纤维和基体的界面结合力El,2],进而影响复合材料的层间剪切强度、弯曲强度和模量、拉伸强度和模量、压缩强度和模量、抗疲劳以及高温性能。许多学者Is]认为,对于环氧基复合材料,孔隙含量每增加1 ,材料的剪切性能将下降6 ~8 。因此,为了提高复合材料的制备质量,必须合理地控制制备环境条件及固化温度、压力等工艺参数,使气泡在树脂凝胶之前尽量排出,以便降低孔隙含量。 在复合材料成型过程中,气泡主要随着树脂的流动而运动[4 ],因此,对树脂流动和气泡运动关系的研究是十分必要的。本文中利用自行建立的气泡运动可视化装置,研究了树脂流动对气泡运动速度的影响关系,并在实验基础上建立了气泡运动模型,该研究结果将为复合材料成型过程中气泡运动模型的建立提供依据。1实验部分 1.1 实验材料及设备 环氧618:环氧值0.51,无锡树脂厂生产;1,4-二氧六环:分析纯,北京益利精细化学品有限公司生产;数码相机:尼康C001PIX995,尼康株式会社;微量进样器(量程为5~100 L):上海医用激光仪器厂。1.2 实验装置及方法 为了研究树脂流动对气泡运动行为的影响,首先建立了气泡运动的可视化装置,如图1所示。该实验系统由流体装载、流体接收、气泡发生(微量进样器)以及图像采集等部分组成。主要利用重力差原理,控制装载部分和流出部分的液面高度差来使树脂流动,并通过调节控制阀来改变树脂的流速。

韵母构音运动声学特征分析及治疗策略的制定

韵母构音运动声学特征分析及治疗策略的制定 【摘要】:我国目前对于构音运动仅限于定性描述,缺乏下颌、唇、舌构音运动客观测量,不能较好反映构音运动的精细变化。故本研究通过共振峰F1、F2、F3研究正常成人的声学特征,在此基础上比较构音异常运动的特征,从而构建韵母构音运动的治疗体系。本研究在口部运动和言语构音运动的基础上,从单一构音运动和转换运动两个角度,构建了下颌、唇、舌的构音运动模型。通过对30例正常成人的下颌韵母构音运动、唇韵母构音运动及舌韵母构音运动进行声学特征分析,确定了反映下颌、唇及舌构音运动的敏感参数,优化了韵母构音运动理论模型和声学参数模型,最终构建正常成人韵母构音运动声学评定体系,为辅助诊断下颌、唇及舌构音运动障碍提供定量的参考标准。本研究在正常成人构音运动声学特征的基础上,采用听觉感知评估、视觉运动评估以及声学客观测量三种评估方式,对构音运动异常者进行主客观评估,研究韵母构音运动异常的构音运动特征,为构音运动异常治疗方案的制定提供可靠的依据。本研究在构音运动异常特征的基础上,探讨了构音运动治疗的原则,围绕优化的韵母构音运动理论模型,从构音运动训练和构音重读治疗两个方面分别构建了下颌、唇、舌构音运动的治疗策略,大大提高了康复疗效。本文的创新之处表现在以下几方面:(1)建构了韵母构音运动模式,为构音运动的理论研究做出突破性贡献。(2)提出韵母构音运动声学参数,制定了成人韵母运动声学测量的参考标准,使得构音运动障碍的诊断更加精细量化;(3)通过

分析了韵母构音运动异常人群的声学特征,细化了韵母构音运动异常临床症状的特点。(4)制定了韵母构音运动异常的治疗策略,对临床实践指导具有较大的应用价值。本文还存在以下不足:(1)对参数的临床意义还可以深入探讨,进行适当补充。(2)被试样本数量较少,建议进一步拓展被试量。【关键词】:构音运动声学分析构音障碍治疗策略【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2011 【分类号】:H018.4 【目录】:摘要6-7Abstract7-9第一章研究背景及思路9-23第一节构音与构音运动9-13第二节国内外研究现状13-21第三节本研究的内容与意义21-23第二章韵母构音运动模型构建23-35第一节下颌韵母构音运动模型的构建23-26第二节唇韵母构音运动模型的构建26-29第三节舌韵母构音运动模型的构建29-35第三章正常成人韵母构音运动声学特征研究35-76第一节实验方法35-39第二节下颌韵母构音运动的声学特征研究39-49第三节唇韵母构音运动的声学特征研究49-59第四节舌韵母构音运动的声学特征研究59-76第四章韵母构音运动异常的特征研究76-128第一节实验方法76-80第二节主观评估结果整体分析80-85第三节下颌韵母构音运动异常的特征研究85-105

气泡的声学特性分析

气泡的声学特性分析 221 气泡的散射特性 上世纪50年代后期,海洋学者开始意识到了气泡研究对于海洋探测的重要性,自从UriCk和HOOVer在1956年发现了气泡对于声波的散射后,气泡的散射问题就一直是水声研究领域的经典问题错误未找到引用源。。目标对声信号的散射能力根据不同性质、大小、形状的目标而不同,同时也与声波的入射方向有关[9]。因此, 对于水声探测来说,目标散射场特性的研究尤为重要。沿X轴方向传播的平面声 波入射到半径为R的软球边界上,观察点S(rc)处的声场。如图2.1所示,X轴方向为零度方向。 图2.1平面声波在软球球面上的散射 入射平面声波表达式为: P i(x,t)=p°e j(Z) = P O e j g rCO S e)(2-1)其中,,为波长,C为介质声速,「为角频率,C=二,为波数,(r,d)为点S的球坐标。 根据波动方程和软球应满足的边界条件,球面上的声压为零,即 P i P S=O (^ R) (2-2)声场关于X轴对称,所以取满足以X轴对称的球坐标系的波动方程的解为 Oel P s =Σ R m P m(CoS日)h m2>(kr)e jκt(2-3) m z0 其中,R m为常数,h r mυ(x)为第二类m阶汉克尔(Hankel)函数,「:?为m阶勒 让德(Legendre)多项式,代表声波的传播方向为由球心向外。入射平面声波可以分解为 球函数的和: Oa P i(r,8,t) =p°e j°5∑ (―j)m(2m+1)P m(cos日)j m(kr) (2-4) m =0 其中,j m(kr)为m阶球贝塞尔(BeSSe)函数。将(2-2),(2-3)和(2-4)式合并,解出a m ,则P S为:

水下吸声覆盖层结构及吸声机理研究进展

第31卷第8期2009年8月舰 船 科 学 技 术 SH I P SC I E NCE AND TECHNOLOGY Vol .31,No .8 Aug .,2009   水下吸声覆盖层结构及吸声机理研究进展 罗 忠1 ,朱 锡1 ,林志驼2 ,王卫忠 2 (1.海军工程大学船舶与动力学院,湖北武汉430033;2.海军92143部队,海南三亚572021) 摘 要: 经过50多年的发展,尤其是近20年中,在水下目标声隐身背景需求的促进和推动下,以吸声覆盖层为主要研究对象的声隐身结构研究,已经建立了完整的理论框架。本文将目前国内外主要的吸声覆盖层结构分为粘弹性复合吸声结构、周期散射复合吸声结构、孔腔谐振吸声结构等,比较了各种吸声覆盖层的结构形式对吸声性能的影响,并从吸声机理出发,分析了各种吸声覆盖层结构的主要研究方法,最后展望了我国水下吸声覆盖层结构及吸声机理研究的趋势。 关键词: 声隐身;吸声覆盖层;粘弹性;散射;谐振 中图分类号: T N91117 文献标识码: A 文章编号: 1672-7649(2009)08-0023-08 DO I:1013404/j 1issn 11672-7649120091081002 A rev i ew of underwa ter anecho i c coa ti n g structure and absorpti on theor i es LUO Zhong 1 ,ZHU Xi 1 ,L IN Zhi 2tuo 2 ,WANG W ei 2zhong 2 (1.College of Naval A rchitecture and Power,Naval University of Engineering,W uhan 430033,China; 2.Unit 92143,P LA,Sanya 572021,China ) Abstract: The require ments of under water acoustic stealth technique had p r omoted the research on under water anechoic coating structure for recent 50years . Accordingly,a comp rehensive theoretical f oundati on had been f or med f or the passed 20years .This paper su mmarized the main structure and valuable results of under water anechoic coatin g .More s pecifically,it classified the main structure int o vis oelastic composite abs or p ti on structures,cycle scattering composite abs or p ti on structures,cavity res onant abs or p ti on structures .The effect of structure for m t o abs or p ti on p r operties was compared .The under water anechoic coating structures and abs or p ti on theories were analyzed .I n the end of this paper,it p r os pected the feature researc h trend on this t op ic in our country . Key words: acoustic stealth;anechoic coating;viscoelastic;scattering;res onant 收稿日期:2009-02-10;修回日期:2009-03-10 基金项目:国家973重大基础研究基金资助项目(51335020101);国防重点预研基金资助项目作者简介:罗忠(1982-),男,博士研究生,主要从事水下声隐身材料与结构研究工作。 0 引 言 潜艇的最大特点就在于它具有隐蔽性与突发攻 击能力,降低潜艇的声目标强度将减小敌方发现我艇的距离,提高我艇的生存能力,目前主要采用在潜艇壳体上敷设吸声覆盖层结构来降低声目标强度。经过半个多世纪的发展,水声吸声材料的研究已取得了丰硕的成果,以橡胶类和聚氨酯类为基体的水声吸声材料研究日益成熟,内耗大、阻尼性能好的高分子材 料发展为吸声覆盖层提供了更广阔的选材空间,如丁 基橡胶、聚氨酯橡胶、互穿聚合物网络等。当声波通过高分子材料覆盖层时,会将能量传递给大分子链段,引起大分子链段的相对运动,分子链间产生内摩擦将入射声能转化为热能而吸收。 随着潜艇巡航深度的增大和声呐探测技术的不断发展,对潜艇的声隐身技术提出了新的挑战,水下吸声覆盖层结构正朝着耐压、低频和宽频段吸收的方 向发展[1] 。对单一均质材料而言,由于阻抗匹配的

音响系统声环境测试分析报告声学特性

精心整理XXXXXXXXX礼堂 扩声系统声学特性 测 量 报

受委托,对扩声系统的声学特性,按《厅堂扩声特性测量方法》国家标准,对最大声压级、传输频率特性、声场不均度、传声增益、系统总噪声级等五项声学特性指标进行了实地空场测量。并对有关建声指标混响时间,背景噪声也进行了实地空场测量。现把测量情况归纳如下: 一、XXXXXXXXX礼堂概况 该礼堂长约32m、宽约18m、高约9m,总面积576平方米,总容积5184m3。 (全频)75° 超低 (每只 相距约 的要求。以上扬声器品牌均为QSC。 二、测量标准及条件 1、测量方法按GB/T4959-95《厅堂扩声特性测量方法》国家标准; 2、性能指标按GB50371-2006《厅堂扩声系统设计规范》标准中多用途类扩 声系统一级指标要求;

3、测量仪器:美国TERRASONDE,TOOLBOX,ATB-PLUS型音频分析仪及 配套用的标准测量用传声器。 4、测试点位置: 按国家标准GB/T4959-95《厅堂扩声特性测量方法》声场测量点规定 应为:听众区座位的1/60。该厅堂听众区座位约为470个,测试应选8 个测量点。由于场地是对称的,按规定部分项目可以只测量中轴线一侧的 气压:1012kPa 相对湿度:80% 测量人员:XXXXXXXXX; 扩声系统设计施工方:XXXXXXXXX。

四扩声系统声学特性要求: 声学特性按GB50371-2006《厅堂扩声系统设计规范》标准文艺多用途类扩声系统一级指标要求如下: a)最大声压级:≥103dB; b)传输频率特性:以100Hz~6300Hz的平均声压级为0dB,在此频带内变化为 -4dB~+4dB、50Hz~100Hz和6300Hz~12500Hz允许范围见该标准规定的 c) d) e) A a) b) 化为 c)3;d) e)系统总噪声级:当扩声系统增益开到最大时,测量得到的系统总噪声级和实际测得礼堂背景噪声级一样,详见测量结果附表5。由于背景噪声较大,系统总噪声低于背景噪声,所以系统总噪声级不能测得,估计可以达到NR20的要求。B建声测量结果 a)混响时间详见测量结果附表6;

气泡动力学研究

气泡动力学研究 A.Shima Professor Emeritus of Tohoku University, 9-26 Higashi Kuromatsu, Izumi-ku, Sendai 981, Japan Received 17 June 1996 / Accepted 15 August 1996 摘要:为了弄清楚与空化现象密切相关的气泡的特性,气泡动力学的研究已经深入的进行并且建立了其研究领域。本文旨在结合激波动力学简单的介绍气泡动力学及其历史。 关键字:气泡、空化、脉冲压力、液体射流、冲击波、损害坑。 1引言 在1894年的英格兰,当船在高速螺旋桨推动下试运行的时候达不到设计速度。为了查清这种现象的原因而设计了一个试验并最终发现了空化现象。从那时起,空化现象的研究日益进展,因为空化现象是阻碍工作在流体环境中的水力机械性能提高的一个重要因素。 然而,现在为了根本的理解空化现象及其相关内容,人们已经意识到应该研究气泡动力学。作者研究空化现象和气泡动力学四十多年,本文简单介绍一些气泡动力学研究及其与冲击波动力学的联系。 2空化和气泡核 水在水轮机,水泵,螺旋桨和带有各种沟渠的水力机械中流过,当液体和固态水翼的表面或者沟槽壁的相对速度变得如此大以至于局部水流的静压力减小到极限压力以下时空化现象就出现了,这个极限压力被称为空化初始压力。 通常情况下当水中不满足空化条件时,称为气泡核的小气泡是不存在的,水能抵抗非常大的负压,空化现象不能轻易的发生。 然而,水中通常包含几个百分点的空气,因此在这种情况下气泡核生长称为可见的气泡和容易被告诉摄影观察到(Knapp and Hollander 1948)。这就是所谓的空化现象。 同样地,假设有一个气泡核半径为,在液体中随着温度变化而生长,气泡存在和稳 定的条件通过由静力平衡关系得到的公式给出(Daily and Johnson 1956)。 上式中σ是液体的表面张力,是液体饱和蒸汽压,P是液体压力。当上式中的值超过右 端或小于左端的值时,气泡核分别开始无限的膨胀或收缩。由此看来气泡表现出复杂的行为取决于气泡周围各种水力状况。由于这些状况存在于空化噪声,空泡腐蚀等许多现象中,所以空泡动力学的研究要澄清空化现象的机理。 3无限液体中气泡的行为 Besant (1859) 提出(在真空、无限的、非粘滞性的并且不能压缩的液体中运动的球形气泡)一个预测液体中各点压强和气泡溃灭时间的难题。 Rayleigh (1917)从理论上解决了这一难题并且得到了描述气泡运动的解析式。他的在无限的、非粘滞性的、不能压缩的液体中单个球形气泡运动公式如图示1所示。气泡的表面速 度V通过假定液体所做的功——当一个气泡由初始半径缩小到R——等于气泡运动的全部 动能获得。

反流性咽喉病患者嗓音声学特征分析

反流性咽喉病患者嗓音声学特征分析 发表时间:2019-03-27T11:39:45.887Z 来源:《医药前沿》2019年2期作者:王鑫于方方 [导读] 通过DSI检测,能够反映患者病情的严重程度,对于LPRD病症的诊断可以根据RSI量表评分并结合嗓音声学分析来确定。 (青海省中医院耳鼻喉科青海西宁 810000) 【摘要】目的:用英文表示反流性咽喉病为LPRD,本文的研究目的是分析LPRD患者的嗓音声学特征。方法:本文研究的对象是在我院耳鼻咽喉科门诊接受反流性咽喉病治疗的患者,要对他们进行反流症状指数(RSI)评分,选择评分总数大于或者等于13分的反流性咽喉病患者48例和正常人42例作为本次研究的对象,48例反流性咽喉病患者称为研究的LPRD组,42例正常人称为研究的正常组。对所有研究对象进行硬管喉镜检查,然后还要检测研究对象的持续元音信号,主要利用的技术是德国XION DIVAS嗓音测试方法,计算出患者的嗓音障碍指数(DSI),并进行相关的对比和分析,然后还要分析48例反流性咽喉病患者RSI量表评分、声嘶症状评分和DSI值之间的关联性。结果:48例反流性咽喉病患者的反流症状指数的平均分为(17.5±5.35)分,对所有患者进行喉镜检查,杓状软骨区有充血、糜烂、溃疡和水肿的现象;与正常人相比,LPRD患者基频微扰(jitter)和振幅微扰(shimmer)的平均值都比较高,最长发声时间(MPT)和DIS的平均值,病患者的都比正常人要低。反流性咽喉病患者的DSI值和RSI量表评分与声嘶症状评分呈现负相关的关系。结论:反流性咽喉病患者嗓音会出现异常,可能会因为声带产生改变进而影响嗓音。 【关键词】反流性咽喉病;嗓音声学特征;嗓音障碍指数 【中图分类号】R767 【文献标识码】A 【文章编号】2095-1752(2019)02-0239-01 人的胃部内容物如果出现异常,就有可能从食管反流到上括约肌,甚至到达咽喉部位,这时人的咽喉就会产生一系列的不适,这就是本文所研究的反流性咽喉病。目前我国对反流性咽喉病的研究和报道比较少,外国曾作出相关报道,表明大多数的LPRD患者会出现声嘶症状,其嗓音会受到损害。 1.资料与方法 1.1 一般资料 在2015年3月—2016年3月于我院耳鼻咽喉科接受LPRD治疗患者中,选择RSI评分总数大于或者等于13分的LPRD患者48例和正常人42例作为本次研究的对象,48例LPRD患者称为研究的LPRD组,42例正常人称为研究的正常组。LPRD组患者生病时间在3月~7.5年之间。首先要将其他类似症状的病症患者排除在外,如呼吸道感染患者,扁桃体炎症患者等。对反流性咽喉病的诊断要以RSI量表为标准进行筛选,评分的标准主要是根据RSI量表中的9个项目来定的,包括:声嘶、清嗓、痰多、吞咽困难、吃完饭以后或者平躺时咳嗽加剧、呼吸不顺畅、咳嗽严重、咽喉有异物感、烧心、胃疼或者胸痛,规定每项的分数是0~5,0表示没有出现这些症状,分数越高症状越明显,病情越严重。正常组中有男性20人,其他为女性,这些人的发声都没有问题。所有被研究的正常人都不是专业的用嗓人员,且都没有咽喉以及上述中所提到的疾病。 1.2 检测方法 首先要对LPRD和研究的正常人进行嗓音声学检测,采用的检测系统是德国公司制定的DIVAS嗓音分析系统检测过程中要控制环境噪声不能超过40dB(A),所有被研究人员要处于舒适的站立状态,在距离话筒大约30厘米处发声检测。对研究人员进行中音域测试的步骤为:首先进行低音量采样,用平时说话的最小音调来发/a:/的音,持续3~5s,以此为标准,降低和升高音调以最小声音发音进行分别取样;然后进行低音量采样,以平时说话的最大音调发/a:/的音,以此为标准,降低和升高音调以最大的声音发音进行分别取样,获得声学参数。还要用平稳的音调发/a:/的音,坚持7~8s,取最少4s的平稳段进行分析,最后计算出基频微扰(jitter),振幅微扰的计算,还应该检测研究对象的发声时间,通过软件计算出嗓音障碍指数,最终利用公式获得振幅微扰。 1.3 观察指标 本次研究的观察指标是LPRD患者的RSI评分,声嘶症状评分,喉镜检查的结果以及两组研究对象的嗓音声学分析结果。 2.结果 2.1 LPRD患者RSI评分结果。 48例患者中RSI评分最高的是36分,最低的是12分,平均分为(17.5±5.35)分;声嘶症状的平均分为(1.91±0.84)分。 2.2 LPRD患者喉镜检查结果。 48例患者喉镜检查结果显示,有39例表现为杓状软骨区红斑或者充血,有41例表现为杓区水肿,有25例表现为糜烂或者溃疡,有29例表现为声门后区增生,有5例表现为肉芽肿,有18例表现为声带水肿或者肥厚。 2.3 正常组和LPRD组嗓音声学分析结果 LPRD组有42例患者的嗓音声学分析出现异常,其基频微扰和振幅微扰都比正常组高,而最长发声时间和嗓音障碍指数都比正常组低,如表。 表正常组和LPRD组嗓音声学分析结果 注:有统计意义(P<0.05)。 3.讨论 目前临床认为诊断LPRD的最好的方法是利用24h食管和喉咽部双探针PH,这种方法的费用非常昂贵,因此不太被患者接受。根据本文的喉镜检查结果,我们可以看到患者胃里的物质反流到了咽喉,使声带的震动和声门闭合受到影响,进而使嗓音发生异常。同时本文的研究表明多数LPRD患者RSI总评分在13分之上,这些患者的嗓音声学分析都显现异常。因此可以用这两种方法相结合来诊断LPRD,对于这

驾驶室低频噪声的声学特性分析与控制

V ol 35No.1 Feb.2015 噪 声与振动控制NOISE AND VIBRATION CONTROL 第35卷第1期2015年2月 文章编号:1006-1355(2015)01-0145-06 驾驶室低频噪声的声学特性分析与控制 朱晓东1沈忠亮2汪一峰2 1.江淮汽车股份有限公司技术中心,合肥230022 2.合肥工业大学噪声振动工程研究所,合肥230009 摘要:在某卡车驾驶室结构有限元与声学有限元计算以及驾驶室声固耦合建模的基础上,进行结构模态计算分析以及试验验证。再进行声学模态分析以及声固耦合系统模态分析。考虑声—固耦合作用,利用耦合声学有限元进行了驾驶室内部声学特性研究,识别出主要噪声频率。继而进行面板声学和模态贡献量分析,找到了峰值声压产生的主要原因,确定了贡献显著的面板。通过结构改进,提升了板件刚度,抑制了结构振动,试验结果表明,驾驶室内部噪声得到较明显下降。 关键词:声学;低频噪声;有限元法;面板贡献量;结构优化中图分类号:TB132;O422.6 文献标识码:A DOI 编码:10.3969/j.issn.1006-1335.2015.01.030 Analysis and Optimization of Acoustic Characteristics of Low-frequency Noise in a Cab ZHU Xiao-dong 1,SHEN Zhong-liang 2,WANG Yi-feng 2 (1.Center of Technology,Jianghuai Automobile Co.Ltd.,Hefei 230022,China; 2.Institute of Sound and Vibration Research,Hefei University of Technology,Hefei 230009,China ) Abstract :The structural finite element model,acoustic finite element model and the structural-acoustic coupling finite element model for a cab were established respectively.The modal analyses of the three models were carried out and verified by testing.The acoustic properties of the internal cavity of the cab were analyzed using the structural-acoustic coupling finite element model,and the main noise frequencies were https://www.doczj.com/doc/2110109715.html,bining the panel acoustic contribution analysis method with the modal contribution analysis method,the major factors causing peak sound pressure were discovered,and the panel with significant contribution to the noise at the main noise frequencies was identified.The stiffness of the panel was raised and its vibration was controlled through the structural modification.The experimental result shows that the internal noise of the cab is reduced obviously. Key words :acoustics ;low frequency noise ;finite element method ;panel contribution ;structure optimization 驾驶室的NVH 性能是影响驾驶室乘坐舒适性的主要因素,随着生活水平的提高,人们对驾驶室乘坐舒适性有了更高的要求。当前,世界各大汽车制造商已将车内噪声控制作为提升其产品市场竞争力的一种有效途径,车内噪声的分析和控制已经渗透到整车的开发流程中。因此,对驾驶室内部低频噪声的分析与控制研究具有十分重要的意义。 车内部噪声主要包括空气噪声和结构噪声,其中空气噪声主要分布在中高频,而低频则主要以结 收稿日期:2014-06-30 作者简介:沈忠亮(1989-),男,硕士研究生,主要研究方向: 汽车NVH 与CAE 分析。E-mail:szl943192147@https://www.doczj.com/doc/2110109715.html, 构噪声为主[1],所以对车内低频噪声分析,主要集中 在车内结构噪声。近年来,在车内部噪声分析和控制研究方面,国内外学者进行了不懈努力和探索。如Citarella R 等[2]应用边界元法研究了车内声学响应和车身板块贡献。张志飞等[3]以某商用车驾驶室为例,进行了利用阻尼材料改善驾驶室声学特性中的研究,成功降低了目标频率声压幅值。文献[4]在建立某轿车有限元与边界元模型的基础上,结合边界元法和声传递向量法,进行了车身板件声学贡献量研究。文献[5]利用声学有限元法,开展了某驾驶室声学特性分析,找到了峰值声压的主要来源。 本文针对某中卡驾驶室,在建立了驾驶室结构有限元模型和声固耦合模型,进行了驾驶室结构模

液体通流微小槽道内气泡动力学行为模拟_周吉

第62卷 第10期 化 工 学 报 V ol.62 N o.10 2011年10月 CIESC Jo urnal Oc to be r 2011研究论文液体通流微小槽道内气泡动力学行为模拟 周 吉,朱 恂,丁玉栋,王 宏,廖 强,谢 建 (重庆大学低品位能源利用技术及系统教育部重点实验室,重庆大学工程热物理研究所,重庆400044) 摘要:采用VO F方法,对液体通流微小通道内壁面逸出气泡的形成、生长及脱离运动进行了数值模拟,并讨论 了壁面浸润性、液体流速、气体流速对气泡动力学行为的影响。结果表明:气泡生长壁面亲水性增强有利于其 从壁面脱离;气泡生长壁面气相覆盖率随壁面接触角的增大而增大;流动阻力因子随壁面接触角的增大而减小。 较高的液体流速会导致气泡的脱离时间和脱离体积、壁面气相覆盖率及流动阻力因子减小;而较高的气体逸出 速率(气相Reynolds数高于14时)对气泡脱离体积、壁面气相覆盖率和流动阻力因子影响不大。 关键词:气泡;VO F方法;小槽道;动力特性;数值模拟 D OI:10.3969/j.issn.0438-1157.2011.10.010 中图分类号:T M911.4 文献标志码:A文章编号:0438-1157(2011)10-2740-07 N um erical sim ula tion of gas bu bble e mergin g fro m pore in to liquid flo w micro-ch an n el ZH OU Ji,ZHU Xu n,DING Yu dong,WAN G Hong,LIAO Qian g,XIE Jian (K ey L aboratory o f Low-grade Energ y Utilization Technologies and Sy stems, Institute o f Engineering Thermophysics,Chongqing University,Chongqing400044,China) Abstract:The dynam ic behavio r o f a gas bubble entering a liquid flow micro-channel through a pore w ith prescribed mass flow rate w as simulated by using computational fluid dynamics in co njunctio n w ith a volume of fluid(VOF)method.Sim ulations of the processes of gas bubble emergence,g row th, defo rmatio n and detachm ent w ere performed to ex plicitly track the evolutio n of the liquid-gas interface, and to characte rize the dy namics o f a gas bubble subjected to w ater flow in terms of departure v olume, flo w resistance coefficient,and g as coverage ratio.The effects of w ettability of the w all w here the bubble eme rges fro m,w ater and air mass flow rates w ere discussed w ith a particular focus on the effect o f the wettability of the bo ttom w all w hile the static contact ang les of the o ther channel w alls w ere set to90°. The simulated results sho wed that the hy dro philic w all facilita ted the departure of bubble w hile g as cove rage ratio increased and dimensionle ss flow resistance coefficient decreased fo r hydrophobic w all.High w ater inlet mass flow rate resulted in an ea rlier departure and decreased departure vo lum e of the bubble as well as low gas coverage ratio and flow resistance coefficient.I t w as found that increasing air mass flo w rate led to earlie r detachm ent of the bubble.H ow eve r,hig her air m ass flow ra te show ed scarce influence on the dy namic behavior of the bubble o nce the Rey nolds number of air w as over14. Key words:bubble;vo lume of fluid method;mini-channel;dynamics;numerical simulation 2011-01-10收到初稿,2011-04-28收到修改稿。 联系人:朱恂。第一作者:周吉(1986—),男。 基金项目:国家自然科学基金项目(50876119);重庆市自然科学基金项目(CS TC,2009BB6212);教育部新世纪优秀人才支持计划项目(NCE T-07-0912)。 Received date:2011-01-10. Correspon ding author:Prof.ZH U Xun,zhu xun@https://www.doczj.com/doc/2110109715.html, Foun dation item:supported by the National Natural S cience Foundation of China(50876119),the Natural S cience Foundation of Ch ong qin g(CS TC,2009BB6212)and th e Prog ram for New Century Excellent T alents in University(NCET-07-0912).

相关主题
文本预览
相关文档 最新文档