当前位置:文档之家› 压铸件气孔的成因和解决办法

压铸件气孔的成因和解决办法

压铸件气孔的成因和解决办法
压铸件气孔的成因和解决办法

压铸件气孔的成因和解决办法

铝压铸是将铝液快速高压充填到模具型腔的铸造。铝液充填压铸模型腔的时间极短,一般为百分之几秒或千分之几秒。压铸过程中形成的气孔有光滑的表面,形状多为圆形或椭圆形,其多存在于铸件的表面或皮下针孔,也可能在铸件内部。气孔的来源主要为压铸过程中卷入的气体或铝液析气。

一、压铸过程中卷气。

1、压铸机压铸现在基本上采取三级压射,在第一级压射时,压射冲头以较慢的速度推进(通常在s以内),这有利于将压室中的气体挤出;第二级压射则是按压铸件的结构、壁厚选择适当的流速,内浇口速度极快(一般冲头速度为1~6m/s,薄壁件、高气密性件、镁合金件有可能达到8m/s以上的速度),将铝液把型腔基本充满。这一级是压铸件产生气孔的关键,速度越高越易产生涡流而形成气孔。这一过程里,控制压铸件气孔主要通过控制一、二级压射速度和一、二级切换点来实现。一、二级速度尽量低一点(但太低会影响铸件成型或表面质量,要根据实际情况而定);二级压射的起点可选择在不允许有铸件气孔的部位之后,不同的铸件我们可选择不同的起点。同时随着压铸机射出速度、增压建压时间、提速时间等工作性能的不断提高和完善,铸件气孔将会越来越少。

2、一套好的压铸模应具备良好的浇注系统、排溢系统。在压铸过程中要尽量使多股浇道,铝液流与铸件方向保持一致,尽量不互相碰撞而产生涡流及因充填混乱造成卷气;另外使多股浇道充填型腔要注意做到同时填充,不能让一股或几股铝液先到最后端死角后再返回产生涡流。压铸模上的集渣包和排气道分布要合理。

3、压铸模具的温度对铸件的质量和气孔也有着关键的影响。当模温过高时,脱模剂在高温下挥发不能形成致密的皮膜,易造成粘膜;而模温过低,则脱模剂形成的皮膜有未挥发的水分,使脱模效果差,导致铸件气孔。通常模具预热温度为150℃~180℃,工作保持温度为220℃~280℃。

4、涂料产生的气体

a、首先是涂料的性能:挥发点太高,发气量大对铸件气孔有直接影响。

b、从喷涂工艺上看:喷涂使用量过多,喷涂时间过长,易造成气体挥发量大,还会使模具表面温度过低,模具表面水气一时无法蒸发,合模后型腔产生大量气体。生产过程中我们要选择性能好的涂料,挥发点要低,产生气体量要小。

5、最后由于压铸的特点是以很快的速度充填型腔,铝液在模具内快速凝固形成产品,所以铸件内部一定会有因铝液卷气产生的气孔。但铸件表层也会因快速凝固形成细晶粒的致密层,这些细晶粒具有较高的机械性能,只要铸件的加工余量尽量小一点,铸件的物理性能也可以得到保证。过大的加工余量就会把表面致密层加工掉,从而引起内部气孔暴露,铸件的物理性能降低。

下面举例说说我们生产的铝不粘锅的工艺:

1、产品名称:铝不粘锅,铸件轮廓尺寸为Φ250×180的圆锅,壁厚。

2、材料:ADC12。

3、压铸机:650T。

4、产品要求:表面质量要求光滑,需在430℃高温下进行特氟隆处理,如果铸件有气孔,表面会鼓包,因此铸件不能有气孔、缩松、夹杂。

5、压铸工艺:

(1)、比压:65MP以上,高比压可使铸件组织致密度高

(2)、慢压射:s,以防压室卷气,冲头从0逐渐加速到s,尽量把型腔的气体排出

(3)、快压射:5m/s,防止高速太低,铸件壁薄的部位(锅的把手)附近产生流痕。

(4)、脱模剂:脱模剂不能在铸件表面上有任何残留物。

(5)、模温:220℃~280℃,考虑到铸件壁薄,模温稍高有利于成型。

(6)、铝液温度:680℃,铸件壁薄,铝液温度稍高,有利于成型。

(7)、快压射行程尽量短通过这种工艺的控制,铝不粘锅气孔率控制在2%~5%以内。

(8)、浇道的布局和方向对铸件的气孔也起着很关键的作用。

我们有一套模具,生产的铸件加工后40%有气孔,后来通过改变浇道的布局和方向,铸件加工后的气孔减少到5%以内。

二、铝液析出气体

铝液很容易吸收大气、合金锭或工具表面的湿气、也容易吸收燃烧油气中的氢元素。铝液中的气体主要是氢,氢以原子的形式溶解于铝液中,而它大约占了气体总量的85%。熔炼温度越高,氢在铝液中溶解的浓度就越高,但在固态铝中氢的溶解浓度非常低。铸件在凝固时氢气会析出,使内部产生气体。我们在熔炼回炉料时应该分批分级使用,并且把熔炼温度控制在670℃~760℃范围。通常压铸时铝液温度控制在640℃~660℃。

实例分析:

某铸件的轮廓尺寸为320×120×80mm,铸件有一平面100×120mm,加工后的气孔率15%。这是我们生产的一个老产品,出现这种问题肯定是生产工艺的哪个环节出了问题,首先检查:

压铸机(1)压机压力(2)冲头是否平稳推进

压铸模(1)模具分型面是否跑料

(2)平面滑块是否退让,加工余量是否过大

(3)排气、集渣包是否顺畅、完好

(4)浇道开设是否合理

其次检查:

(1)铝合金熔炼质量是否有问题,检查杂质含量

(2)熔炼温度、保温炉温度工艺参数

(3)一速、二速的速度和位置

(4)涂料喷涂时间是否过长

通过检查发现:压铸二快氮气压力偏低,模具分型面有轻微跑料,涂料喷涂时间过长,浇道开设有问题,几股浇道产生涡流,综合上述原因最终在平面形成气孔。

逐一针对性改善后,气孔率得到了有效控制,达到4%以内。

铸件气孔产生和控制气孔的办法,实际生产中还应该根据不同的铸件选定不同的工艺参数。如何合理的根据铸件实际情况选择工艺参数,我们还得在实际生产中依据经验判定。

压铸件的缩孔缩松问题解决方案-12页文档资料

压铸件的缩孔缩松问题解决方案 1.压铸件缩孔缩松现象存在的原因 压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩.由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时, 内部必然产生缩孔缩松问题. 所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的. 2.解决压铸件缩孔缩松缺陷的唯一途径 压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从 系统外寻求解决的办法. 这个办法又是什么呢? 从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行.铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题. 3.补缩的两种途径 对铸件的补缩,有两种途径,一是自然的补缩,一是 强制的补缩. 要实现自然的补缩,我们的铸造工艺系统中,就要有能实现“顺序凝固”的工艺措施.很多人直觉地以为,采用低

压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这 么回事.运用低压铸造工艺,并不等于就能解决铸件的缩孔 缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之 一百存在缩孔缩松缺陷的. 由于压铸工艺本身的特点,要设立自然的“顺序凝固”的工艺措施是比较困难的,也是比较复杂的.最根本的原因 还可能是, ”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾. 强制凝固补缩的最大特点是凝固时间短,一般只及”顺序凝固”的四分之一或更短,所以,在压铸工艺系统的基础上,增设强制的补缩工艺措施,是与压铸工艺特点相适应的,能很好解决压铸件的缩孔缩松问题. 4.强制补缩的两种程度:挤压补缩和锻压补缩 实现铸件的强制补缩可以达到有两种程度.一种是 基本的可以消除铸件缩孔缩松缺陷的程度,一种是能使毛坯 内部达到破碎晶粒或锻态组织的程度.如果要用不同的词来 表述这两种不同程度话,那么,前者我们可以用“挤压补缩” 来表达,后者,我们可以用“锻压补缩”来表达. 要充分注意的一个认识,分清的一个概念是,补缩都 是一种直接的手段,它不能间接完成.工艺上,我们可以有一个工艺参数来表达,这就是”补缩压强”.

铝压铸件产生气孔的可能原因

铝压铸件产生气孔的可能原因(供参考) 一. 人的因素: 1. 脱模剂是否噴得太多? 因脱模济发气量大,用量过多时,浇注前未燃尽,使挥发气体被包在铸件表层。所以在同一条件下,某些工人操作时会产生较多的气孔的原因之一。 选用发气量小的脱模济,用量薄而均匀,燃净后合模。 2 未经常清理溢流槽和排气道? 3 开模是否过早? 是否对模具进行了预热?各部位是否慢慢均匀升温,使型腔、型芯表面温度为150℃~200℃。 4 刚开始模温低时生产的产品有无隔离? 5 如果无预热装置时是否使用铝合金料慢速推入型腔预热或用其它方法 加热? 6 是否取干净的铝液,有无将氧化层注入压室? 7 倒料时,是否将勺子靠近压室注入口,避免飞溅、氧化或卷入空气降 温等。 8 金属液一倒入压室,是否即进行压射,温度有无降低了?。 9 冷却与开模,是否根据不同的产品选择开模时间? 10 有无因怕铝液飞出(飞水),不敢采用正常压铸压力?更不敢偿试 适当增加比压。? 11 操作员有无严格遵守压铸工艺? 12 有无采用定量浇注?如何确定浇注量? 二. 机(设备、模具、工装)的因素: 主要是指模具质量、设备性能。 1 压铸模具设计是否合理,会否导致有气孔? 压铸模具方面的原因: 1.浇口位置的选择和导流形状是否不当,导致金属液进入型腔产生正面撞击和产生旋涡。(降低压射速度,避免涡流包气) 2.浇道形状有无设计不良? 3.内浇口速度有无太高,产生湍流? 4.排气是否不畅? 5.模具型腔位置是否太深? 6.机械加工余量是否太大?穿透了表面致密层,露出皮下气孔? 压铸件的机械切削加工余量应取得小一些,一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本,又可避免皮下气孔露出。余量最好不要大于0.5mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 2 排气孔是否被堵死,气排不出来? 3 冲头润滑剂是否太多,或被烧焦?这也是产生气体的来源之一。 4 浇口位置和导流形状,有无金属液先封闭分型面上的排溢系统? 5 内浇口位置是否不合理,通过内浇口后的金属立即撞击型壁、产生涡 流,气体被卷入金属流中? 6 排气道位置不对,造成排气条件不良?

侵入气孔、析出气孔、针状气孔产生的原因有哪些

侵入气孔、析出气孔、针状气孔产生的原因有哪些? 侵入气孔产生的原因是:型砂中的水分与粘结剂中的挥发物,都会因受热变成气体。如果型砂(或芯砂)透气性差,或浇注系统设计不合理,或砂型紧实度过高.或砂型排气不良以及气道堵塞,都会使铸型中所产生的气休(浇注时)不能及时排出,就可能冲破金属表面凝固膜,而钻进铁水里去,若不能上浮排出,便留在铸件中形成气孔。因此应尽量减少铸型中的气体来源和增加铸型的排气能力。其具体措施有: (1)严格控制型砂的水分,同时起膜与修型时,不宜刷水过多。煤粉等加入量不宜过多,从而减少发气量。一般型砂中水<6%,煤<7%。 (2)干型要保证烘干的质量,烘干后停放时间不宜过长,以免返潮。 (3)适当地提高浇注温度,浇注时缓慢平稳,保征型腔内原有气体来得及排出。 (4)铸型紧实度要适当,保持良好的透气性。同时还要开气冒口,扎气眼;泥芯要有通气道等。 (5)浇注系统的设置要合理,要考虑型腔内排气畅通及金属液平稳地流入铸型。 (6)合箱时要注意封死芯头间隙,以免铁水钻入而堵塞通气道。 (7)对于大平面铸件,最好采用倾斜浇注,出气孔处高势,以利排气。 (8)泥芯撑和冷铁必须干净无锈 (9)适当减少粘结剂,可附加一些透气性材料,如木屑等。 (10)可选用圆性砂粒,增加型砂的透气性。 析出气孔产生的原因是:气体在金属中的溶解度随温度下降而急剧减少。在熔炼过程中,金属吸收了较多的气体,而在冷却凝固过程中,析出的气体若不能排出型外,则留在铸件中成为气孔。因此,要尽量减少铁水在熔炼和浇注时的吸气和减少铁水的粘度,以便气泡上浮排除。其具体措施有: (1)使用干燥炉料,并限制含气量较多的回炉料的用量。对锈蚀严重成表面有油的炉料要经过热处理后再使用,对本身含气量高的炉料,应重熔再生后再使用。 (2)尽量减少炉料与炉气接触:在金属液表面复盖溶剂,采用快速熔炼工艺,严格控制风量和风压等。 (3)浇包要完全烘干。 (4)进行脱气处理:方法是加入合金不溶性气体,把溶于金属液中的气体带出。如炼钢中加铁矿石沸腾而除去氢气、氮气等。 (5)采用真空熔炼,以清除金属液中气体或使用金属液在压力下结品,使已溶于金属的气体未来得及析出就已凝固。 (6)增加型砂的透气性:紧实度要合适,扎气眼,水分适宜。 (7)适当提高浇注温度,以降低金属液枯度。让气体易于排除。 (8)炉缸、前炉和铁水包需烘干后再使用。 (9)浇注时要避免断流,从而做到连续浇注。 (10)浇注时,必须点火引气。 针状气孔小,细而长,如针状,主要由氢和氧生成。其中氢可能以分子状态存在,也可能以原子状态存在。以分子状态存在时,如钢中有足够的氧化亚铁,则氢与氧化亚铁中的氧化合而成水蒸气,这种水蒸气可以直接生成针孔,也可以作为针孔的核心,周围的氢向其扩散,聚集而长大,终于生成针孔。以原子状态存在时,则熔解于钢水(或铁水)中,随着温度下降,氢被析出,并迅速扩散,或扩散到已有核心处,聚集长大,或扩散到已有析出氧的地方,与氧化合而成水蒸汽,从而生成针孔。在所有情况下,氢的扩散都要受到相邻金属品粒的阻碍,被迫向细长方向发展而成为针状。氧多以分子状态存在,并

液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因

液态收缩和凝固收缩是铸件产生缩孔和缩松的基本原因 影响铸件收缩的因素: 化学成分与合金类别:如铸钢的收缩最大,灰铸铁最小。 浇注温度:合金浇注温度越高,过热度越大,液体收缩越大。 铸件结构和铸型工艺条件:铸件的收缩并非自由收缩,而是受阻收缩。1)铸件中各部分冷却速度不同,收缩先后不一致,相互制约产生阻力;2)铸型等对铸件收缩产生的机械阻力。 铸件在冷却和凝固过程中,若液态收缩和凝固收缩所缩减的体积得不到补充,往往在铸件最后凝固的地方出现孔洞。容积大而且比较集中的孔洞—缩孔;细小而且分散的孔洞—缩松。 产生原因:液态收缩和凝固收缩值大于固态收缩值 缩孔和缩松存在:铸件有效承载面积减小,引起应力集中,力学性能下降,还降低气密性和物理性能。 缩孔的形成:在铸件上部或最后凝固的部位; 其外形特征是:近于倒圆锥形。 缩松的形成:由于结晶温度范围较宽,树枝晶发达,流动性低、液态和凝固收缩所形成的细小、分散孔洞得不到液态金属补充而造成。 纯金属和共晶成分的合金,易形成集中缩 如何防止缩孔和缩松: 防止措施①合理选用铸造合金②按照定向凝固原则进行凝固采用各种措施保证铸件结构上各部分按照远离冒口的部分先凝固然后是靠近冒口部分最后是冒口本身的凝固③合理选择浇注系统和浇注位置④合理地应用冒口、冷铁和补贴等工艺措施。附缩孔补救措施焊补。挖去缺陷区金属用与基体金属相同或相容的焊条焊补缺陷区焊后修平进行焊后热处理。 举例: Ti-47Al-2Cr-2Nb合金铸锭有很强的柱状晶生长趋势,在轴线附近区域形成分散的缩松;加入0.8%B(原子分数)后,铸锭的组织得到细化,并削弱了柱状晶生长趋势,收缩缺陷分布集中以大缩孔方式存在,显微缩松的密度和尺寸均降低.添加0.1%C(原子分数)后,铸锭的组织和缩孔缩松与Ti-47Al-2Cr-2Nb比均无明显变化. 热应力:铸件在凝固和冷却过程中,不同部位由于不均衡的收缩而引起的应力。为铸造残留应力 减少或消除应力的方法: 减少铸件各部位的温差,尽量形成同时凝固。 改善铸型和型芯的退让性,以减少收缩的机械阻力。 在性能满足的前提下,选择弹性模量E小和收缩系数小的合金。 消除应力方法:1)人工失效:去应力退火 2)自然失效 3)振动时效 铸件内应力的预防措施铸件产生铸造内应力的主要原因是合金的固态收缩。为了减小铸造内应力在铸造工艺上可采取同时凝固原则。所谓同时凝固原则就是采取工艺措施保证铸件结构上各部分之间没有温差或温差尽量小使各部分同时凝固。此外还可以采取去应力退火或自然时效等方法将残余应力消除。

铝合金压铸生产中出现气孔

在铝合金压铸生产中,人们常笼统地把产品的孔洞称之为气孔,那么这些气孔究竟是由于什么而产生的呢?下面我们来做简要分析:一、由于精炼除气质量不良产生气孔 在铝合金压铸生产中,熔化了的铝液浇注温度一般常在610oC至660oC,在此温度下,铝液中溶解有大量的气体(主要是氢气),氢气铝合金的溶解度与铝合金的温度密切相关,在660oC左右的液态铝液中约为0.69cmj/100g,而在660oC左右的固态铝合金中仅为0.036 cm3/100g,此时液态铝液中含氢量约为固态的19-20倍。所以当铝合金凝固时,便有大量的氢析出来以气泡的形态存在于铝压铸件中。 减少铝水中的含气量,防止大量的气体在铝合金凝固时析出面产生气孔,这就是铝合金熔炼过程中精炼除气的目的。如果在铝液中本来就减少了气体的含量,那么凝固时析出气体量就会减少,因而产生的气泡也就变少,并显着减少。因此,铝合金的精炼是非常重要的工艺手段,精炼质量好,气孔必然少,精炼质量差,气孔必然多。保证精炼质量的措施是先用良好的精炼剂,良好的精炼剂是在660oC 左右可以起反应产生气泡,所产生气泡不太剧烈,而是均匀不断的产生气泡,通过物理吸附作用,这些气泡与铝液充分接触,愈长愈好,一般要有6-8 分钟的冒泡时间。 当铝合金冷却到300oC时,氢在铝合金中的溶解度仅为0.001 cm3/100g以下,此时仅为液态时的1/700,这种凝固后氢气析出而产生的气孔是分散的,细小的针孔,这不影响气和加工表面,肉眼基本看不见。 而在铝液凝固时因氢气析出所产生产气泡比较大,多在铝液最后凝固的心部,虽然也分散,但这些气泡常常导致渗漏。严重时常导致工件报废。 二、由于排气不良产生气孔在铝合金压铸中,因模具的排气通道不畅,模具排气设计结构不良,压铸时型腔内的气体无法完全顺畅排出,造成在产品某些固定部位存在气孔。这种由模具型腔中气体成的气孔时大时小,气孔的内壁呈铝与空气氧化的氧化色,与氢气析出产生的气孔不同,氢气析出气孔内壁不如空气孔光滑,没有氧化色,而是灰亮的内壁。 对于因排气不良而产生的气孔,应改进模具的排气通道,及时清理模具排气通道上的残留铝皮是可以解决的。 三、由于压铸参数不当而产生的卷气的气孔 在压铸生产中压铸参数选择不当,铝水压铸充型速度过快,使型腔中气体不能完全及时平稳的挤出型腔,而被铝液的液流卷入铝液中,因铝合金表面快速冷却,被包在凝固的铝合金外壳中,无法排出形成了较大的气孔。这种气孔往往在工件表面之下,铝水进口比最后汇合处少,呈梨形或椭圆状,在最后凝固处多又大。 对于这种气孔应调整充型速度,使铝合金液流平稳推进,不产生高速卷气。 四、由于铝合金的收缩产生的气孔及缩松 铝合金同其它材料一样,在凝固时产生收缩,铝合金的浇注温度愈高,这种收缩就 愈大,单一的因体积收缩产生的气孔是存在于合金最后凝固部位。呈不规则形状,严重时呈网状。而往住在产品中,它与凝固时因氢气析出的气孔同时存在,在氢析出气孔或卷气孔的周围存在收缩气孔,在气泡周围有伸向外部的丝状或网状气孔。 对于这种气孔,应从浇注温度着手解决,在压铸工艺条件允许的情况下,尽量降低压铸时的铝水浇注温度。这样可以减少铸件的体积收缩,减少收缩气孔及缩松。 如果常在加部位出现这种气孔,可以考虑增加抽芯或冷铁,使其改变最后凝固部位,解决渗漏和加缺陷问题。 五、由于产品壁厚过大而引起的气孔产品的形状上常有壁厚差过大问题,往往又是不能改变产品的形状,在壁厚中心是铝水最后凝固的地方,也是最易产生气孔的部位,这种壁厚处的气孔是析出气孔和收缩气孔的混合体,不是一般措施所能防止的。 对产品的形状在设计时就应考虑减少壁厚不均匀,或过厚的问题,采取空心结构,在模具设

气孔类别

本文从铝合金铸件气孔类别分析入手,指出铝合金铸件气孔可分为点状针孔、网状针孔、综合性针孔三类;氢是造成铝合金铸件针孔的主要原因,而氢的主要来源则是由于水蒸气分解所产生的。因此,铝合金在熔炼过程中造成水蒸气产生的原因,也就是直接影响针孔形成的主要因素。由于铝合金铸件气孔对铸件的品质尤其是对其力学性能产生不良的影响,作者在文中论述了铝合金铸件气孔形成的主要因素,并针对铝合金铸件气孔形成的主要因素提出了相应的预防措施,文章最后扼要总结了预防铝合金铸件针孔必须遵守的“防”、“排”、“溶”工艺原则。 引言: 在纯铝中加入一些金属或非金属元素所熔制的铝合金是一种新型的合金材料,由于其比重小,比强度高,具有良好的综合性能,因此被广泛用于航空工业、汽车制造业、动力仪表、工具及民用器具制造等方面。随着国民经济的发展以及经济一体化进程的推进,其生产量和耗用量大有超过钢铁之势。 加强对铝合金材料性能的研究,保证铝合金铸件具有优良品质,既是我们每一个科技工作者义不容辞的责任,也是同我们的日常生活息息相关的头等大事。本文结合作者铝合金铸件生产实践经验谈谈铝合金铸件气孔与预防问题。 1.气孔类别 由于铝合金具有严重的氧化和吸气倾向,熔炼过程中又直接与炉气或外界大气相接触,因此,如熔炼过程中控制稍许不当,铝合金就很容易吸收气体而形成气孔,最常见的是针孔。针孔(gas porosity/pin-hole),通常是指铸件中小于1mm的析出性气孔,多呈圆形,不均匀分布在铸件整个断面上,特别是在铸件的厚大断面和冷却速度较小的部位。根据铝合金析出性气孔的分布和形状特征,针孔又可以分为三类①,即: (1) 点状针孔:在低倍组织中针孔呈圆点状,针孔轮廓清晰且互不连续,能数出每平方厘米面积上针孔的数目,并能测得出其直径。这种针孔容易与缩孔、缩松等予以区别开来。 (2) 网状针孔:在低倍组织中针孔密集相连成网状,有少数较大的孔洞,不便清查单位面积上针孔的数目,也难以测出针孔的直径大小。 (3) 综合性气孔:它是点状针孔和网状针孔的中间型,从低倍组织上看,大针孔较多,但不是圆点状,而呈多角形。 铝合金生产实践证明,铝合金因吸气而形成气孔的主要气体成分是氢气,并且其出现无一定的规律可循,往往是一个炉次的全部或多数铸件均存在有针孔现象;材料也不例外,各种成分的铝合金都容易产生针孔。 2.针孔的形成 铝合金在熔炼和浇注时,能吸收大量的氢气,冷却时则因溶解度的下降而不断析出。有的资料介绍②,铝合金中溶解的较多的氢,其溶解度随合金液温度的升高而增大,随温度的下降而减少,由液态转变成固态时,氢在铝合金中的溶解度下降19倍。(氢在纯铝中的溶解度与温度的关系见图1③)。因此铝合金液在冷却的凝固过程中,氢的某一时刻,氢的含量超过了其溶解度即以气泡的形式析出。因过饱和的氢析出而形成的氢气泡,来不及上浮排出的,就在凝固过程中形成细小、分散

铸钢件缩孔和缩松的形成与预防

F 铸造 oundry 热加工 热处理/锻压/铸造2011年第15期 69 铸钢件缩孔和缩松的形成与预防 宁夏天地奔牛实业集团有限公司 (石嘴山753001) 王福京 缩孔和缩松从本质上来说,是因为型内的金属产生收缩而引起的,但是不同种类的金属,其形成缩孔和缩松的机理有所不同。 1.产生机理 从铸钢件角度来分析,钢液注满型腔后,由于型壁的传热作用,型内钢液形成自型壁表面至铸件壁厚中心温度逐渐升高的温度梯度。随着型壁传热作用不断地进行,型内钢液温度不断降低。当与型壁表面接触的钢液温度降至凝固温度时,铸件的表面就开始凝固,并形成一层固体状态的硬壳。如果这时浇注系统已经凝固,那么硬壳内处于液体状态的钢液就与外界隔绝。 当型内钢液温度进一步降低时,硬壳内的钢液一方面因温度降低而产生液态收缩,另一方面由于硬壳的传热作用,使与硬壳接触的钢液不断结晶凝固,从而出现凝固收缩。这两种收缩的出现,将使硬壳内钢液液面下降。 与此同时,处于固体状态的硬壳,也因温度的降低而产生固态收缩,对于铸钢件来说,由于液态收缩和凝固收缩的总和是大于固态收缩的,因此在重力作用下,硬壳内钢液液面将下降,并且与上部硬壳脱离接触。 随着型内钢液温度不断地降低和硬壳内钢液不断地凝固,硬壳越来越厚,而钢液越来越少。当铸件内最后的钢液凝固后,铸件上部的硬壳下面就会出现一个孔洞,这个孔洞即为缩孔。 虽然凝固后的铸件自高温状态冷却至室温时,还将产生固态收缩,从而使整个铸件和其内部缩孔的体积稍有减小,但并不会改变缩孔体积与铸件体积的比值。由于凝固层厚度的增加和钢液的减少是不断进行的,因而从理论上来说,缩孔的形状是漏斗状的。并且因残存的钢液凝固时不能得到补缩, 所以在产生缩孔的同时,往往也伴随着缩松的出现。用肉眼能直接观察到的缩孔为宏观缩孔,而借助于放大镜或将断面腐蚀以后才能发现的缩孔为微观缩孔。 一般情况下,宏观缩孔可以用补焊的手段来解决,而微观缩孔就无法处理了,一般都是成片出现的微小孔洞。 铸件在凝固后期,其最后凝固部分的残留钢液中,由于温度梯度小,这些残留钢液是按同时凝固的方式进行凝固的,凝固开始时,在整个钢液内出现许多细小的晶粒。随着温度降低和晶粒的长大,以及新的晶粒的产生,若早期结晶的晶粒之间留有液体,这些液体即可能被固态晶粒所包围而与液体分离或近似分离,最后凝固的部分出现许多被固态晶粒隔离而孤立的少量钢液;或者出现许多虽未被固态晶粒完全隔离,但与外界钢液的连接通道很小的钢液,由于此时钢液的粘度很大,外界钢液很难经过细小的通道给予补充,因此这些虽未被固态晶粒完全隔离的钢液也几乎处于孤立状态。当这些完全或不完全孤立的钢液进一步冷却、凝固收缩时,由于得不到钢液补充,便会在这些地方形成分散而微小的细孔即为缩松。 2.防止措施 以上分析阐述了缩孔、缩松的产生原因。只有把缩孔、缩松的产生原因弄清楚了,才能够有针对性地预防缩孔、缩松的产生,生产实践中,可以从以下几个方面采取措施。 (1)铸件结构 铸件壁厚应尽可能均匀;铸件 筋壁的连接不能太集中,应采用交叉或分散布置,以免形成太大的热节,从而引起该处型壁传热条件恶化;铸件的内角不能太小,在不影响铸件使用性能的情况下,宜采用90°以上的内角,从而改善内角

浅淡压铸件气孔的成因和解决办法

浅淡压铸件气孔的成因和解决办法 铝压铸是将铝液快速高压充填到模具型腔的铸造。铝液充填压铸模型腔的时间极短,一般为百分之几秒或千分 之几秒。压铸过程中形成的气孔有光滑的表面,形状多为圆形或椭圆形,其多存在于铸件的表面或皮下针孔,也可 能在铸件内部。气孔的来源主要为压铸过程中卷入的气体或铝液析气。 1、压铸过程中卷气 1)、压铸机压铸现在基本上采取三级压射,在第一级压射时,压射冲头以较慢的速度推进(通常在0。3m/s以 内),这有利于将压室中的气体挤出;第二级压射则是按压铸件的结构、壁厚选择适当的流速,内浇口速度极快 (一般冲头速度为1~6m/s,薄壁件、高气密性件、镁合金件有可能达到8m/s以上的速度),将铝液把型腔基本充 满。这一级是压铸件产生气孔的关键,速度越高越易产生涡流而形成气孔。 这一过程里,控制压铸件气孔主要通过控制一、二级压射速度和一、二级切换点来实现。一、二级速度尽量低 一点(但太低会影响铸件成型或表面质量,要根据实际情况而定);二级压射的起点可选择在不允许有铸件气孔的

部位之后,不同的铸件我们可选择不同的起点。同时随着压铸机射出速度、增压建压时间、提速时间等工作性能的 不断提高和完善,铸件气孔将会越来越少。 2)、一套好的压铸模应具备良好的浇注系统、排溢系统。在压铸过程中要尽量使多股浇道,铝液流与铸件方向 保持一致,尽量不互相碰撞而产生涡流及因充填混乱造成卷气;另外使多股浇道充填型腔要注意做到同时填充,不 能让一股或几股铝液先到最后端死角后再返回产生涡流。压铸模上的集渣包和排气道分布要合理。 3)、压铸模具的温度对铸件的质量和气孔也有着关键的影响。当模温过高时,脱模剂在高温下挥发不能形成致 密的皮膜,易造成粘膜;而模温过低,则脱模剂形成的皮膜有未挥发的水分,使脱模效果差,导致铸件气孔。通常 模具预热温度为150℃~180℃,工作保持温度为220℃~280℃。 4)、涂料产生的气体 a、首先是涂料的性能:挥发点太高,发气量大对铸件气孔有直接影响。 b、从喷涂工艺上看:喷涂使用量过多,喷涂时间过长,易造成气体挥发量大,还会使模具表面温度过低,模具 表面水气一时无法蒸发,合模后型腔产生大量气体。

铸铁件氮气孔产生的原因分析及特征

铸铁件氮气孔产生的原因分析及特征 特征:枝晶间裂隙状氮气孔 这种缺陷呈裂隙状多角形或断续裂纹状,跟其它的气孔类缺陷大不相同,从外观上看没有明显的气体痕迹,但能明显看到粗大的树枝晶,跟缩孔、缩松缺陷有点类似,所以在有些较厚大件上,经常被误认为是缩孔、缩松。值得一提的是,这种气孔在铸件断面上呈大面积分布,有的也分布在较大的平面处,在铸件最后凝固如冒口附近,热节中心最为密集,这类气孔常发生在同一炉或同一浇包浇注的全部或大部分铸件中。由于是在凝固过程晚期形成的,因而气孔孔洞形状不是圆球形的,而改变为多角形或枝晶间裂隙状的,这说明气泡生成及长大时,其周边被固体的枝晶壁所包围,而不能形成圆球形的气孔。 来源:液态金属所吸收的氮来自多种途径,主要有两大类,一是浇注前金属液本身所含的氮;二是树脂砂中所含的氮。 对于冲天炉熔炼的灰铸铁,炉料中的废钢是氮的重要来源,碱性电弧炉废钢,其含氮量可达 60ppm~140ppm,废钢多于35%,就有可能产生氮气孔,树脂砂中所含的氮来源于树脂及固化剂、再生砂中积累的氮、型砂中的含氮附加物及涂料中的氮沥青焦炭含氮量高,作为增碳剂使用时容易产生氮气孑L,必须引起高度重视。而电极电墨作为增碳剂,则由于其含氮量低而不容易发生氮气孑L。此外,在熔炼过程中即使加入含氮量高的增碳剂,如沥青焦炭,也只有在刚加入铁液时含氮量急剧增加,当铁液保温十多分钟后,含氮量逐渐恢复到加增碳剂前的水平。 机理: 用树脂砂生产铸铁件更容易产生氮气孔,这是因为当铁液浇人铸型后,含N的树脂受热分解出NH3,NH3又在金属液表面离解,NH3一[N]+3/2H2,[N]原子相当一部分进入铸型金属界面尚处于熔融

铝合金铸件气孔标准修订稿

铝合金铸件气孔标准 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

铝合金铸件气孔、针孔检验标准 一. 适用范围 本标准规定了铸件气孔、针孔允许存在的范围、大小、数量等技术要求。本标准规定了铸造铝合金低倍针孔度的分级原则和评级方法。本标准适用于铝合金的砂型铸造。适用于评定铸件外表面及需要加工面经加工后的表面气孔、针孔。 二. 引用标准 GB1173-86铸造铝合金技术条件 GB9438-88铝合金铸件技术条件 GB10851-89铸造铝合金针孔 三. 气孔、针孔等孔洞类特征 1. 位于铸件内部而不延伸到铸件外部的气眼。 (1)气孔、针孔内壁光滑,大小不等的圆形孔眼,单个或成组无规则的分布在铸件的各个部位。 (2)气渣孔其特征同气孔、针孔相似,但伴随有渣子。 2. 表面或近表面的孔眼,大部分暴露或与外表面相连。 (1)表面或皮下气孔大小不等的单个或成组的孔眼,位于铸件表面或近表面的部位,其内壁光滑。

(2)表面针孔铸件表面上细小的孔洞,呈现在较大的区域上。 四. 具体条件 1. 砂型、金属型铸件的非加工表面和加工表面,在清整干净后允许存在下列孔洞: (1) 单个孔洞的最大直径不大于3mm,深度不超过壁厚1/3,在安装边上不超过壁厚的1/4,且不大于1.5mm,在上述缺陷的同一截面的反面对称部位不得有类似的缺陷。 (2)成组孔洞最大直径不大于2mm,深度不超过壁厚的1/3,且不大于 1.5mm。 (3) 上述缺陷的数量及边距应符合表一规定 表一 非加工表面或加工表面总面积小于1000cm2 单个孔洞成组孔洞 在 10cm×10cm 单位面积上 孔洞数不多 于4个 孔洞边 距不小 于10mm 一个铸件的非加 工表面或加工面 上孔洞总数不多 于6个,孔洞边 缘距铸件或距内 孔边缘的距离不 小于孔洞最大直 径的2倍 以 3cm×3cm 单位面积 为一组, 其孔洞数 不多于3 个 在一个铸 件上组的 数量不多 于2组 孔洞边缘 距铸件边 缘或距内 孔边缘的 距离不小 于孔洞最 大直径的 2倍 2.液压、气压件的加工表面上,铸件以3级针孔作为验收基础,要求2级针孔占受检面积的25%以上,局部允许4级针孔,但一般不得超过受检面积的

缩松原因分析

铸件缺陷分析 1 多肉类铸件缺陷 多肉类缺陷主要有飞翅(飞边,披峰),毛刺,抬型(抬箱)等. 飞翅与毛刺区别:飞翅主要产生的分型面等活动块结合处,通常垂直于铸件表面.又称飞边或披峰.毛刺指铸件表面形状不规则刺状突起.常出现在型,芯开裂处. 飞翅与毛刺的形成原因:飞翅形成主要是压射前机器的锁模力调整不佳导致分型面等活动块的配合不严;模具及滑块损坏,闭锁组件失效.毛刺形成主要是紧实度不均匀,浇注温度过高等致使开裂产生. 飞翅与毛刺的防止方法:飞翅是检查合模力或增压情况,调整压射增压机构,使压射增压峰值降低;检查模具滑块损坏程度并修整.毛刺的防止方法是浇注温度不宜过高,加大起模斜度等. 飞翅与毛刺的补救措施:轻微的用滚筒或喷丸清理,较厚的用铲,磨,冲切等方法去除. 抬型与飞翅区别:抬型是铸件在分型面部位高度增大,并伴有厚大飞翅;单纯飞翅厚度较薄,铸件分型面部位高度不增加. 2 孔洞类铸件缺陷 孔洞类缺陷主要有:气孔,针孔,缩孔,缩松和疏松. 针孔属于气孔的一种.气孔主要是指出现在铸件内部或表层,截面呈圆形,椭圆形,腰圆形,梨形或针头状,孤立存在或成群分布的孔洞.

气孔形成原因:炉料潮湿,锈蚀,油污,气候潮湿;浇注系统不合理;压室充满度不够;排气不畅;模具型腔位置太深;涂料成分不当或过多;金属液除渣不良等. 气孔的防止方法:坩锅等要充分预热和烘干;直浇道的喷嘴截面 积应尽可能比内浇口截面积大;提高压室充满度;深腔处开设排 气塞;重熔料的加入比例要适当;加强除渣,除气;充型速度不宜 过高,浇注位置与浇注系统的设置应保证金属液平稳在充满型腔;适当提高浇注温度和铸型温度,合理设置排气塞和溢流槽等. 气孔的补救措施:超出验收标准时报废;单独大气孔焊补;成群小气孔可用浸渗处理方法填补,质量要求高的可采用热等静压处理法消除气孔. 缩松属于缩孔的一种,指细小的分散缩孔. 缩孔与气孔及缩松,疏松的区别:缩孔形状不规则,表面粗糙,产 生在铸件热节和最后凝固部位,常伴有粗大树枝晶;气孔形状规则,表面光滑,分布在铸件表面或遍布整个铸件或某个局部,断口不呈海绵状;缩松与疏松断口呈海绵状,常产生在铸件厚大部位,不遍布整个铸件,缩松与疏松无严格分界,只是程度差别. 缩孔,缩松,疏松产生的原因:凝固时间过长;浇注温度不当,过高易产生缩孔,过低易产生缩松和疏松;凝固温度间隔过宽,易产生缩松和疏松;合金杂质过多;浇注系统设置不当;铸件结构不合理,壁厚变化突然;内浇道问题;合金杂质过多;模温问题. 缩孔,缩松,疏松的防止方法:改进铸型工艺设计;改进铸件结构

铸件气孔

铸件气孔的种类与防止方法 【摘要】气孔,也称气眼,是铸造生产中最常见的缺陷之一。产生于铸件内部、表面或近表面,呈大小不等的圆形、长形及不规则形,有单个的,也有聚集成片的,孔壁光滑,颜色为白色,有时覆一层氧化皮。在长期实践中我们根据形状与生成原因不同一般称之为气孔、气泡、针孔、气疏松和气缩孔。 【关键词】铸件,气孔,浇注,凝固,铸造工艺 引言 在铸件的废品中,气孔占有很大的比例。据统计由于气孔导致的铸件废品占铸件废品总数的1/3左右,减少和消除气孔缺陷对提高铸件质量是十分迫切的问题。 1 气孔生成的原因 气孔由气体而生成,生成气孔的气体主要是CO、CO2及H2、O2、N2等。气体主要来自三个方面,即来自金属、造型材料和大气。气体在金属中熔解度随温度下降而急剧减少。例如纯铁中氮的溶解度,每一百克金属中1100℃时为20.5cm3,750℃时只有0.3cm3。氢气的溶解度,每一百克金属中,1000℃时为5.5cm3,而在300℃时只有0.16cm3。当钢从液态变为固态时,由于溶解度的原因,气体向铸件较高温度方面扩散,扩散至壁较厚、凝固较迟的部位,来不及排放,随着铸件凝固的进行被包容于塑性状态的金属中而生成气体。所生产的气体是封闭圆形或椭圆形,不于外界相通,孔壁有金属光泽。型砂中的水分,粘结剂中所含的挥发物,都会因受热而变为气体。以水为例,当其受到高温金属加热时,首先变为水蒸气,其次,当温度继续升高时水蒸气还要分解。水变为水蒸气时体积要膨胀,水蒸气分解为氢和氧时还要膨胀。如这种膨胀受到阻碍则产生压力,此压力在砂型透气不良的情况下,能冲破金属表面凝固膜而穿入铸件内部生成气孔。在穿入过程中,气体一面运动,一面膨胀,所以形成一个细颈而后扩大的形状,使整个气孔像一个梨形,细颈方面指向气体来源方向。在铸件表面或皮下往往只有一个微孔不容易看出来,只有热处理后或切削加工过程中才能完全发现。因为气体与高温金属发生氧化作用,所以孔壁常呈暗蓝色或黑褐色。金属在浇注系统中和型腔中的流动过程,由于流动不稳定,将气体卷入而生成气体[1]。 铁液中的Al量也是引起铸件气孔的一大原因[2]。目前铸铁生产多采用高Si/C比成分,因此需要加入较多的硅铁和大量的孕育量,随着硅铁的加入增多了铁液的含Al量,促使铁液吸氢: 2Al +3H 2O→Al 2 O 3 +6(H) 球铁生产中残余镁的质量分数一般应控制在0.03%~0.06%,高了就要产生气孔,也是这个道理: Mg+ H 2 O→MgO+2(H) 2 气孔的形状特征 气孔是出现在铸件内部或表层,形状一般为圆形或近似于圆形的团球状孔洞;其他形状有泪滴形、梨形、蠕虫状、针状、晶间裂隙状等气孔;气孔孔壁比较光滑而发亮,具有金属光泽,颜色有时发蓝、有时发暗。灰铸铁气孔表面还覆盖着一薄层片状石墨或碳膜。当用扫描电镜观察灰铸铁的气孔孔壁时,其孔壁表面呈现凸凹不平的图像,但起伏较缩松、缩孔的内壁平滑;气孔的大小变化很大,有的直径很小,1mm左右,犹如针尖,有的很大可达几毫米。气孔常出现在铸件的表面、内部或皮下。有些气孔呈弥散状分布在铸件的皮下,待机械

缩松与缩孔相关知识

铸件缩孔、缩松产生的原因 1、铸件结构方面的原因 由于铸件断面过厚,造成补缩不良形成缩孔。铸件壁厚不均匀,在壁厚部分热节处产生缩孔或缩松。 由于铸孔直径太小形成铸孔的砂芯被高温金属液加热后,长期处于高温状态,降低了铸孔表面金属的凝固速度,同时,砂芯为气体或大气压提供了通道,导致了孔壁产生缩孔和缩松。 铸件的凹角圆角半径太小,使尖角处型砂传热能力降低,凹角处凝固速度下降,同时由于尖角处型砂受热作用强,发气压力大,析出的气体可向未凝固的金属液渗入,导致铸件产生气缩孔。 2、熔炼方面的原因 液体金属的含气量太高,导致在铸件冷却过程中以气泡形式析出,阻止邻近的液体金属向该处流动进行补缩,产生缩孔或缩松。 当灰铸铁碳当量太低时,将使铁水凝固时共晶石墨析出量减少,降低了石墨化膨胀的作用,使凝固收缩增加,同时也降低铁水的流动性。认而降低铁水的自补缩能力,使铸件容易产生缩孔或缩松。 当铁水含磷量或含硫量偏高时,磷是扩大凝固温度范围的元素,同时形成大量的低熔点磷共晶,凝固时减少了补缩能力。硫是阻碍石墨化的元素,硫还能降低铁水的流动性。同时,铁水氧化严重,也降低液体金属的流动性,使铸件产生缩孔或缩松。 孕育铸铁或球墨铸铁在浇注前用硅铁等孕育剂进行孕育处理时,如果孕育不良,将导致铁水凝固时析出大量的渗碳体,从而使凝固收缩增加,产生缩孔或缩松。 3、工艺设计的原因 (1)浇注系统设计不合理浇注系统设计与铸件的凝固原则相矛盾时,可能会导致铸件产生缩孔或缩松。主要表现为浇注位置不合适,不利于顺序凝固,内浇口的位置及尺寸不正确。对于灰铸铁和球墨铸铁,如果将内浇口开在铸件厚壁处,同时内浇口尺寸较厚,浇注后,内浇口则长时间处于液体状态。在铁水凝固发生石墨化膨胀的作用下,铁水会经内浇口倒流回直浇道,从而使铸件产生缩孔和缩松。 (2)冒口设计不合理冒口位置、数量、尺寸及冒口颈尺寸未能促进铸件顺序凝固,都可能导致铸件产生缩孔和缩松。如果在暗冒口顶部未放置出气冒口,或冷铁使用不当,也会导致铸件产生缩孔和缩松。 (3)型砂、芯砂方面的原因型砂(芯砂)的耐火度及高温强度太低,热变形量太大。当在金属液的静压力或石墨化膨胀力的作用下,型壁或芯壁会产生移动。使铸件实际需要的补缩量增加或在膨胀部位出现新的热节,导致铸件产生缩孔和缩松。这种现象对大中型铸件是很敏感的。另外,如果型砂中水分含量太高,将使型壁表面的干燥层厚度减少和水分凝聚区的水分增加,范围扩大,从而使型壁的移动能力增加,导致缩孔及缩松的产生。 (4)浇注方面的原因浇注温度太高,使液态金属的液态收缩量增加;太低时,又会降低冒口的补缩能力,特别是采用底注式浇注系统时更明显,铸件往

压铸件气孔的成因和解决办法

压铸件气孔的成因和解决办法 铝压铸是将铝液快速高压充填到模具型腔的铸造。铝液充填压铸模型腔的时间极短,一般为百分之几秒或千分之几秒。压铸过程中形成的气孔有光滑的表面,形状多为圆形或椭圆形,其多存在于铸件的表面或皮下针孔,也可能在铸件内部。气孔的来源主要为压铸过程中卷入的气体或铝液析气。 一、压铸过程中卷气。 1、压铸机压铸现在基本上采取三级压射,在第一级压射时,压射冲头以较慢的速度推进(通常在0.3m/s以内),这有利于将压室中的气体挤出;第二级压射则是按压铸件的结构、壁厚选择适当的流速,内浇口速度极快(一般冲头速度为1~6m/s,薄壁件、高气密性件、镁合金件有可能达到8m/s以上的速度),将铝液把型腔基本充满。这一级是压铸件产生气孔的关键,速度越高越易产生涡流而形成气孔。这一过程里,控制压铸件气孔主要通过控制一、二级压射速度和一、二级切换点来实现。一、二级速度尽量低一点(但太低会影响铸件成型或表面质量,要根据实际情况而定);二级压射的起点可选择在不允许有铸件气孔的部位之后,不同的铸件我们可选择不同的起点。同时随着压铸机射出速度、增压建压时间、提速时间等工作性能的不断提高和完善,铸件气孔将会越来越少。 2、一套好的压铸模应具备良好的浇注系统、排溢系统。在压铸过程中要尽量使多股浇道,铝液流与铸件方向保持一致,尽量不互相碰撞而产生涡流及因充填混乱造成卷气;另外使多股浇道充填型腔要注意做到同时填充,不能让一股或几股铝液先到最后端死角后再返回产生涡流。压铸模上的集渣包和排气道分布要合理。 3、压铸模具的温度对铸件的质量和气孔也有着关键的影响。当模温过高时,脱模剂在高温下挥发不能形成致密的皮膜,易造成粘膜;而模温过低,则脱模剂形成的皮膜有未挥发的水分,使脱模效果差,导致铸件气孔。通常模具预热温度为150℃~180℃,工作保持温度为220℃~280℃。 4、涂料产生的气体 a、首先是涂料的性能:挥发点太高,发气量大对铸件气孔有直接影响。 b、从喷涂工艺上看:喷涂使用量过多,喷涂时间过长,易造成气体挥发量大,还会使模具表面温度过低,模具表面水气一时无法蒸发,合模后型腔产生大量气体。生产过程中我们要选择性能好的涂料,挥发点要低,产生气体量要小。 5、最后由于压铸的特点是以很快的速度充填型腔,铝液在模具内快速凝固形成产品,所以铸件内部一定会有因铝液卷气产生的气孔。但铸件表层也会因快速凝固形成细晶粒的致密层,这些细晶粒具有较高的机械性能,只要铸件的加工余量尽量小一点,铸件的物理性能也可以得到保证。过大的加工余量就会把表面致密层加工掉,从而引起内部气孔暴露,铸件的物理性能降低。 下面举例说说我们生产的铝不粘锅的工艺: 1、产品名称:铝不粘锅,铸件轮廓尺寸为Φ250×180的圆锅,壁厚2.5mm。 2、材料:ADC12。 3、压铸机:650T。 4、产品要求:表面质量要求光滑,需在430℃高温下进行特氟隆处理,如果铸件有气孔,表面会鼓包,因此铸件不能有气孔、缩松、夹杂。

如何解决压铸件及其他铸造件的缩孔缩松问题

压铸件及其它铸造件存在缩孔缩松问题是一个普遍的现象,有没有彻底解决这个问题的方法?答案应该是有的,但它会是什么呢? 1、压铸件缩孔缩松现象存在的原因 压铸件缩孔缩松现象产生的原因只有一个,那就是由于金属熔体充型后,由液相转变成固相时必然存在的相变收缩。由于压铸件的凝固特点是从外向内冷却,当铸件壁厚较大时,内部必然产生缩孔缩松问题。 所以,就压铸件来说,特别是就厚大的压铸件来说,存在缩孔缩松问题是必然的,是不可以解决的。 2、解决压铸件缩孔缩松缺陷的唯一途径 压铸件缩孔缩松问题,不能从压铸工艺本身得到彻底解决,要彻底解决这个问题,只能超越该工艺,或者说是从系统外寻求解决的办法。 这个办法又是什么呢? 从工艺原理上说,解决铸件缩孔缩松缺陷,只能按照通过补缩的工艺思想进行。铸件凝固过程的相变收缩,是一种自然的物理的现象,我们不能逆这种自然现象的规律,而只能遵循它的规律,解决这个问题。 3、补缩的两种途径 对铸件的补缩,有两种途径,一是自然的补缩,一是强制的补缩。

要实现自然的补缩,我们的铸造工艺系统中,就要有能实现“顺序凝固”的工艺措施。很多人直觉地以为,采用低压铸造方法就能解决铸件的缩孔缩松缺陷,但事实并不是这么回事。运用低压铸造工艺,并不等于就能解决铸件的缩孔缩松缺陷,如果低压铸造工艺系统没有设有补缩的工艺措施,那么,这种低压铸造手段生产出来的毛坯,也是可能百分之一百存在缩孔缩松缺陷的。 由于压铸工艺本身的特点,要设立自然的”顺序凝固”的工艺措施是比较困难的,也是比较复杂的。最根本的原因还可能是,”顺序凝固”的工艺措施,总要求铸件有比较长的凝固时间,这一点,与压铸工艺本身有点矛盾。 强制凝固补缩的最大特点是凝固时间短,一般只及”顺序凝固”的四分之一或更短,所以,在压铸工艺系统的基础上,增设强制的补缩工艺措施,是与压铸工艺特点相适应的,能很好解决压铸件的缩孔缩松问题。 4、强制补缩的两种程度:挤压补缩和锻压补缩 实现铸件的强制补缩可以达到有两种程度。一种是基本的可以消除铸件缩孔缩松缺陷的程度,一种是能使毛坯内部达到破碎晶粒或锻态组织的程度。如果要用不同的词来表述这两种不同程度话,那么,前者我们可以用”挤压补缩”来表达,后者,我们可以用”锻压补缩”来表达。 要充分注意的一个认识,分清的一个概念是,补缩都是一种直接的手段,它不能间接完成。工艺上,我们可以有一个工艺参数来表达,这就是”补缩压强”。

铝合金铸造出现气孔的原因分析与解决办法

铝合金铸造出现气孔的原因分析与解决办法 核心提示:简单来说,气孔分两类,一类是析出性气孔,即铝液在凝固过程中因气体溶解度的变化而析出,老大在这方面说的很详细;另一类就是卷入性气孔,与铝液无关,主要是铝液填充过程中因紊流包卷在产品中的空气及涂料或型腔内未干的水分。卷入性气孔主要与浇排系统的合理性密切相关,只有涂料和水,纯属操作不当。至于说在喷丸后出现,应该主要与高速转换点的位置关联密切。 问题1:材料ACD12铝合金压铸件在机加工或喷砂后出现较多气孔的问题,这一技术上问题困扰着我们 回复:1 设备抽真空设备是什么设备啊? 压铸件的气孔问题好像还没有办法解决只能通过调节压铸参数,模温和修改相关的模具温度使气孔在一个合理的等级范围 2 一.人的因素: 1.脱模剂是否噴得太多? 因脱模济发气量大,用量过多时,浇注前未燃尽,使挥发气体被包在铸件表层。所以在同一条件下,某些工人操作时会产生较多的气孔的原因之一。选用发气量小的脱模济,用量薄而均匀,燃净后合模。 2未经常清理溢流槽和排气道? 3开模是否过早? 是否对模具进行了预热?各部位是否慢慢均匀升温,使型腔、型芯表面温度为150℃~200℃。 4刚开始模温低时生产的产品有无隔离? 5如果无预热装置时是否使用铝合金料慢速推入型腔预热或用其它方法加热? 6是否取干净的铝液,有无将氧化层注入压室? 7倒料时,是否将勺子靠近压室注入口,避免飞溅、氧化或卷入空气降温等。 8金属液一倒入压室,是否即进行压射,温度有无降低了?。

9冷却与开模,是否根据不同的产品选择开模时间? 10有无因怕铝液飞出(飞水),不敢采用正常压铸压力?更不敢偿试适当增加比压。?11操作员有无严格遵守压铸工艺? 12有无采用定量浇注?如何确定浇注量? 二.机(设备、模具、工装)的因素: 主要是指模具质量、设备性能。 1压铸模具设计是否合理,会否导致有气孔?压铸模具方面的原因: 1.浇口位置的选择和导流形状是否不当,导致金属液进入型腔产生正面撞击和产生旋涡。(降低压射速度,避免涡流包气) 2.浇道形状有无设计不良? 3.内浇口速度有无太高,产生湍流? 4.排气是否不畅? 5.模具型腔位置是否太深? 6.机械加工余量是否太大?穿透了表面致密层,露出皮下气孔?压铸件的机械切削加工余量应取得小一些,一般在0.5mm左右,既可减轻铸件重量、减少切削加工量以降低成本,又可避免皮下气孔露出。余量最好不要大于0.5mm,这样加工出来的面基本看不到气孔的,因为有硬质层的保护。 2排气孔是否被堵死,气排不出来? 3冲头润滑剂是否太多,或被烧焦?这也是产生气体的来源之一。 4浇口位置和导流形状,有无金属液先封闭分型面上的排溢系统? 5内浇口位置是否不合理,通过内浇口后的金属立即撞击型壁、产生涡流,气体被卷入金属流中 ? 6排气道位置不对,造成排气条件不良? 5溢气道面积是否够大,是否被阻塞,位置是否位於最后充填的地方? 模具排气部位是否经常清理?避免因脱模剂堵塞而失去排气作用。 6模温是否太低? 7流道转弯是否圆滑?适当加大内浇口? 8有无在深腔处开设排气塞,或采用镶拼形式增加排气? 9有无因压铸设计不合理,形成有难以排气的部位?

相关主题
文本预览
相关文档 最新文档