2005年四川成都中考数学试卷及答案
- 格式:doc
- 大小:1.21 MB
- 文档页数:12
A BCDE FMC'D 'B'俯视图主(正)视图左视图成都市2006年高中阶段教育学校统一招生考试试卷(北师大版)A 卷(共100分)一、选择题:(每小题3分,共30分)1、2--的倒数是( )A 、2B 、12C 、12-D 、-22、2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球。
已知地球距离月球表面约为384000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为( )A 、3.84×410千米B 、3.84×510千米C 、3.84×610千米D 、38.4×410千米 3、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 、5个B 、6个C 、7个D 、8个4、下列运算正确的是( )A 、2224(2)2a a a -=B 、336()a a a -⋅=C 、236(2)8x x-=- D 、2()x x x -÷=-5、下列事件中,不可能事件是( )A 、掷一枚六个面分别刻有1~6数码的均匀正方体骰子。
向上一面的点数是“5”B 、任意选择某个电视频道,正在播放动画片C 、肥皂泡会破碎D 、在平面内,度量一个三角形的内角度数,其和为360° 6 、已知代数式1312a xy-与23b a b x y -+-是同类项,那么a 、b 的值分别是( )A 、21a b =⎧⎨=-⎩B 、21a b =⎧⎨=⎩C 、21a b =-⎧⎨=-⎩D 、21a b =-⎧⎨=⎩7、把一张长方形的纸片按如图所示的方式折叠,EM 、FM 为折痕,折叠后的C 点落在'B M 或'B M 的延长线上,那么∠EMF 的度数是( )A 、85°B 、90°C 、95°D 、100°8、如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D BC=2,那么sin ∠ACD =( )A 、3B 、23C 、5D 、29、为了了解汽车司机遵守交通法规的意识,小明的学习小成员协助交通警察在某路口统计的某个时段来往汽车的车(单位:千米/小时)情况如图所示。
2017年四川省成都市中考数学试卷(A卷)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃2.(3分)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.3.(3分)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×10114.(3分)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<15.(3分)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a67.(3分)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分8.(3分)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:9.(3分)已知x=3是分式方程﹣=2的解,那么实数k的值为()A.﹣1 B.0 C.1 D.210.(3分)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(﹣1)0=.12.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.13.(4分)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1y2.(填“>”或“<”).14.(4分)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为.三、解答题(本大题共6小题,共54分)15.(12分)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.16.(6分)化简求值:÷(1﹣),其中x=﹣1.17.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.20.(12分)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)如图,数轴上点A表示的实数是.22.(4分)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.23.(4分)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.24.(4分)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=.25.(4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.五、解答题(本大题共3小题,共30分)26.(8分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.27.(10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.28.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=4,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P 在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.2017年四川省成都市中考数学试卷(A卷)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•成都)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃【分析】此题主要用正负数来表示具有意义相反的两种量:若零上记为正,则零下就记为负,直接得出结论即可.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故选:B.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(3分)(2017•成都)如图所示的几何体是由4个大小相同的小立方体组成,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看一层三个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.(3分)(2017•成都)总投资647亿元的西成高铁预计2017年11月竣工,届时成都到西安只需3小时,上午游武侯区,晚上看大雁塔将成为现实,用科学记数法表示647亿元为()A.647×108B.6.47×109C.6.47×1010D.6.47×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:647亿=647 0000 0000=6.47×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•成都)二次根式中,x的取值范围是()A.x≥1 B.x>1 C.x≤1 D.x<1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:x﹣1≥0,∴x≥1,故选(A)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.5.(3分)(2017•成都)下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•成都)下列计算正确的是()A.a5+a5=a10B.a7÷a=a6C.a3•a2=a6 D.(﹣a3)2=﹣a6【分析】利用同底数幂的乘法和除法法则以及合并同类项的法则运算即可.【解答】解:A.a5+a5=2a5,所以此选项错误;B.a7÷a=a6,所以此选项正确;C.a3•a2=a5,所以此选项错误;D.(﹣a3)2=a6,所以此选项错误;故选B.【点评】本题主要考查了同底数幂的乘法、除法、幂的乘方及合并同类项等,关键是熟记,同底数幂的除法法则:底数不变,指数相减;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘.7.(3分)(2017•成都)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分)60708090100人数(人)7121083则得分的众数和中位数分别为()A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:70分的有12人,人数最多,故众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.(3分)(2017•成都)如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9 B.2:5 C.2:3 D.:【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【解答】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:()2=,故选:A.【点评】本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.9.(3分)(2017•成都)已知x=3是分式方程﹣=2的解,那么实数k 的值为()A.﹣1 B.0 C.1 D.2【分析】将x=3代入原方程即可求出k的值.【解答】解:将x=3代入﹣=2,∴解得:k=2,故选(D)【点评】本题考查一元一次方程的解,解题的关键是将x=3代入原方程中,本题属于基础题型.10.(3分)(2017•成都)在平面直角坐标系xOy中,二次函数y=ax2+bx+c的图象如图所示,下列说法正确的是()A.abc<0,b2﹣4ac>0 B.abc>0,b2﹣4ac>0C.abc<0,b2﹣4ac<0 D.abc>0,b2﹣4ac<0【分析】首先根据图象中抛物线的开口方向、对称轴的位置、与y轴交点的位置来判断出a、b、c的位置,进而判断各结论是否正确.【解答】解:根据二次函数的图象知:抛物线开口向上,则a>0;抛物线的对称轴在y轴右侧,则x=﹣>0,即b<0;抛物线交y轴于负半轴,则c<0;∴abc>0,∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选B.【点评】本题考查了二次函数图象与系数的关系,由图象找出有关a,b,c的相关信息以及抛物线与x轴交点情况,是解题的关键.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2017•成都)(﹣1)0=1.【分析】直接利用零指数幂的性质求出答案.【解答】解:(﹣1)0=1.故答案为:1.【点评】此题主要考查了零指数幂的性质,正确把握定义是解题关键.12.(4分)(2017•成都)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【分析】直接用一个未知数表示出∠A,∠B,∠C的度数,再利用三角形内角和定理得出答案.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.【点评】此题主要考查了三角形内角和定理,正确表示出各角度数是解题关键.13.(4分)(2017•成都)如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1<y2.(填“>”或“<”).【分析】由图象可以知道,当x=2时,两个函数的函数值是相等的,再根据函数的增减性即可得到结论.【解答】解:由图象知,当x<2时,y2的图象在y1上右,∴y1<y2.故答案为:<.【点评】本题考查了两条直线相交与平行,正确的识别图象是解题的关键.14.(4分)(2017•成都)如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD 于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为15.【分析】根据角平分线的性质可知∠DAQ=∠BAQ,再由平行四边形的性质得出CD∥AB,BC=AD=3,∠BAQ=∠DQA,故可得出△AQD是等腰三角形,据此可得出DQ=AD,进而可得出结论.【解答】解:∵由题意可知,AQ是∠DAB的平分线,∴∠DAQ=∠BAQ.∵四边形ABCD是平行四边形,∴CD∥AB,BC=AD=3,∠BAQ=∠DQA,∴∠DAQ=∠DQA,∴△AQD是等腰三角形,∴DQ=AD=3.∵DQ=2QC,∴QC=DQ=,∴CD=DQ+CQ=3+=,∴平行四边形ABCD周长=2(DC+AD)=2×(+3)=15.故答案为:15.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.三、解答题(本大题共6小题,共54分)15.(12分)(2017•成都)(1)计算:|﹣1|﹣+2sin45°+()﹣2;(2)解不等式组:.【分析】(1)原式利用二次根式性质,特殊角的三角函数值,以及负整数指数幂法则计算即可得到结果.(2)分别求得两个不等式的解集,然后取其公共部分即可.【解答】解:(1)原式=﹣1﹣2+2×+4=﹣1﹣2++4=3;(2),①可化简为2x﹣7<3x﹣3,﹣x<4,x>﹣4,②可化简为2x≤1﹣3,则x≤﹣1.不等式的解集是﹣4<x≤﹣1.【点评】本题考查了解一元一次不等式组,实数的运算,负整数指数幂以及特殊角的三角函数值.熟练掌握运算法则是解本题的关键.16.(6分)(2017•成都)化简求值:÷(1﹣),其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知代入计算即可求出值.【解答】解:÷(1﹣)=•=,∵x=﹣1,∴原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(8分)(2017•成都)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有50人,估计该校1200名学生中“不了解”的人数是360人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.【分析】(1)用“非常了解”人数除以它所占的百分比即可得到调查的总人数;(2)用总人数乘以“不了解”人数所占的百分比即可得出答案;(3)先画树状图展示所有12个等可能的结果数,再找出恰好是一位男同学和一位女同学的结果数,然后根据概率公式求解.【解答】解:(1)4÷8%=50(人),1200×(1﹣40%﹣22%﹣8%)=360(人);故答案为:50,360;(2)画树状图,共有12根可能的结果,恰好抽到一男一女的结果有8个,∴P(恰好抽到一男一女的)==.【点评】本题考查了列表法与树状图法、扇形统计图、条形统计图;通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.18.(8分)(2017•成都)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.【分析】过B作BD⊥AC于点D,在直角△ABD中利用三角函数求得BD的长,然后在直角△BCD中利用三角函数求得BC的长.【解答】解:过B作BD⊥AC于点D.在Rt△ABD中,AD=AB•cos∠BAD=4cos60°=4×=2(千米),BD=AB•sin∠BAD=4×=2(千米),∵△BCD中,∠CBD=45°,∴△BCD是等腰直角三角形,∴CD=BD=2(千米),∴BC=BD=2(千米).答:B,C两地的距离是2千米.【点评】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.19.(10分)(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x 的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P 的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.(12分)(2017•成都)如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)如图2,先证明∠E=∠B=∠C,则H是EC的中点,设AE=x,EC=4x,则AC=3x,由OD是△ABC的中位线,得:OD=AC=,证明△AEF∽△ODF,列比例式可得结论;(3)如图2,设⊙O的半径为r,即OD=OB=r,证明DF=OD=r,则DE=DF+EF=r+1,BD=CD=DE=r+1,证明△BFD∽△EFA,列比例式为:,则=,求出r的值即可.【解答】证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)如图2,在⊙O中,∵∠E=∠B,∴由(1)可知:∠E=∠B=∠C,∴△EDC是等腰三角形,∵DH⊥AC,且点A是EH中点,设AE=x,EC=4x,则AC=3x,连接AD,则在⊙O中,∠ADB=90°,AD⊥BD,∵AB=AC,∴D是BC的中点,∴OD是△ABC的中位线,∴OD∥AC,OD=AC=×3x=,∵OD∥AC,∴∠E=∠ODF,在△AEF和△ODF中,∵∠E=∠ODF,∠OFD=∠AFE,∴△AEF∽△ODF,∴,∴==,∴=;(3)如图2,设⊙O的半径为r,即OD=OB=r,∵EF=EA,∴∠EFA=∠EAF,∵OD∥EC,∴∠FOD=∠EAF,则∠FOD=∠EAF=∠EFA=∠OFD,∴DF=OD=r,∴DE=DF+EF=r+1,∴BD=CD=DE=r+1,在⊙O中,∵∠BDE=∠EAB,∴∠BFD=∠EFA=∠EAB=∠BDE,∴BF=BD,△BDF是等腰三角形,∴BF=BD=r+1,∴AF=AB﹣BF=2OB﹣BF=2r﹣(1+r)=r﹣1,在△BFD和△EFA中,∵,∴△BFD∽△EFA,∴,∴=,解得:r1=,r2=(舍),综上所述,⊙O的半径为.【点评】本题是圆的综合题,考查了等腰三角形的性质和判定、切线的性质和判定、三角形的中位线、三角形相似的性质和判定、圆周角定理,第三问设圆的半径为r,根据等边对等角表示其它边长,利用比例列方程解决问题.四、填空题(本大题共5小题,每小题4分,共20分)21.(4分)(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解答】解:由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.【点评】此题主要考查了实数与数轴,正确得出﹣1到A的距离是解题关键.22.(4分)(2017•成都)已知x1,x2是关于x的一元二次方程x2﹣5x+a=0的两个实数根,且x12﹣x22=10,则a=.【分析】由x12﹣x22=0得x1+x2=0或x1﹣x2=0;当x1+x2=0时,运用两根关系可以得到﹣2m﹣1=0或方程有两个相等的实根,据此即可求得m的值.【解答】解:由两根关系,得根x1+x2=5,x1•x2=a,由x12﹣x22=10得(x1+x2)(x1﹣x2)=10,若x1+x2=5,即x1﹣x2=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1•x2=25﹣4a=4,∴a=,故答案为:.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a ≠0)的两根时,x1+x2=﹣,x1x2=.23.(4分)(2017•成都)已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则=.【分析】直接利用圆的面积求法结合正方形的性质得出P1,P2的值即可得出答案.【解答】解:设⊙O的半径为1,则AD=,故S=π,圆O阴影部分面积为:π×2+×﹣π=2,则P1=,P2=,故=.故答案为:.【点评】此题主要考查了几何概率,正确得出各部分面积是解题关键.24.(4分)(2017•成都)在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=的图象上.若AB=2,则k=﹣.【分析】设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),由AB=2可得出b=a+2,再根据反比例函数图象上点的坐标特征即可得出关于k、a、b的方程组,解之即可得出k值.【解答】解:设点A(a,﹣a+1),B(b,﹣b+1)(a<b),则A′(,),B′(,),∵AB=2,∴b﹣a=2,即b=a+2.∵点A′,B′均在反比例函数y=的图象上,∴,解得:k=﹣.故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k、a、b的方程组是解题的关键.25.(4分)(2017•成都)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【分析】作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,首先证明△AKC′≌△GFM,可得GF=AK,由AN=4.5cm,A′N=1.5cm,C′K∥A′N,推出=,可得=,推出C′K=1cm,在Rt△AC′K中,根据AK=,求出AK即可解决问题.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.【点评】本题考查翻折变换、正方形的性质、矩形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.五、解答题(本大题共3小题,共30分)26.(8分)(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)891011.513y1(分钟)1820222528(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2=x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2﹣9x+80,根据二次函数的性质,即可得出最短时间.【解答】解:(1)设y1=kx+b,将(8,18),(9,20),代入得:,解得:,故y1关于x的函数表达式为:y1=2x+2;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2﹣11x+78=x2﹣9x+80,∴当x=9时,y有最小值,y min==39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点评】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.27.(10分)(2017•成都)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD=AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,。
2005年四川省基础教育课程改革实验区初中毕业生学业考试(成都地区使用)数学全卷分为A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷尾选择题,第Ⅱ卷为其他类型的题。
A卷(共100分)第Ⅰ卷(选择题,共24分)注意事项:1.第Ⅰ卷共2页,答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题分,共分)、如果某天中午的气温是℃,到傍晚下降了℃,那么傍晚的气温是()(A)℃(B)℃(C)℃(D)℃、据中央电视台报道,今年“五一”黄金周期间,我国交通运输旅客达23000000013422-3-32412人次,用科学记数法表示为(A ) (B ) (C ) (D )3、如图, 、 相交于点,,那么下列结论错误的是( )(A ) 与 互为余角 (B ) 与 互为余角 (C ) 与 互为补角 (D ) 与 是对顶角4、用两个全等的直角三角形一定能拼出的图形是 ( )(A )等腰梯形 (B )直角梯形 (C )菱形 (D )矩形5、右图是由一些相同的小正方体搭成的几何体的三视图,那么搭成这个几何体的小正方体的个数为 ( )(A ) 个 (B ) 个 (C ) 个 (D ) 个6、在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为 ( )(A )12个 (B )9个 (C )7个 (D )6个7、把多项式(1)(-1)(-1)m m m ++提取公因式(-1)m 后,余下的部分是 ( )(A )1m + (B )2m (C )2 (D )2m +8、农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚,如下图所BA俯视图左视图主视图72310⨯82.310⨯92.310⨯90.2310⨯AB CD O OE AB⊥AOC ∠COE∠BOD ∠COE ∠COE∠BOE∠AOC ∠BOD∠3469的蔬菜大棚需要塑料薄膜的面积是 ( ) (A )264m π (B )272m π (C )278m π (D )280m π二、填空题(每小题3分,共24分),将答案直接写在该题目的横线上9、计算44(45)x x ---= .10、不等式 321x +≤-的解集是 .11、右图是一个正方体的展开图,如果正方体相对的面上标注的值相等,那么x = ,y = .12、方程290x -=的解是 .13、右图是一组数据的折线统计图,这组数据的极差是 ,平均数是 .14、按下面的要求,分别举出一个生活中的例子:①随机事件: ;②不可能事件: ;③必然事件: .15、如图,点D 在以AC 为直径的⊙O 上,4m\如果BDC∠=20︒,那么ACB∠= .16、右图图象反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家.其中t表示时间(分钟),s表示小明离家的距离(千米),那么小明在体育馆锻炼和在新华书店买书共用去的时间是分钟.三、(共18分)17、解答下列各题:(每小题6分)(1)计算:2212sin45--+︒.2.51.5(2)先化简再求值:5332(3)(1)x x x x +÷-+,其中12x =-.(3)化简:2222221121a a aa a a a ---÷+--+.四、(每小题8分,共16分)18、在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形,解决下面的问题: (1)图中的格点△'''A B C 是由格点△ABC 通过哪些变换方法得到的?(2)如果以直线a 、b 为坐标轴建立平面直角坐标系后,点A 的坐标为(3,4)-,请写出格点DEF ∆各顶点的坐标,并求出DEF ∆的面积.19、为了制定某市中学七、八、九年级男生校服的生产计划,有关部门准备对这三个年级抽取180名男生的身高作调查.现有三种调查方案:①测量该市少年体育训练学校中这三个年级的180名男子篮球、排球队员的身高;②查阅外地有关这三个年级180名男生身高的统计资料;③在该市城区和郊县中任选六所中学,在六所学校的这三个年级中分别用抽签的方法选出10名男生,然后测量他们的身高.(1)为了达到估计该市中学七、八、九年级男生身高分布的目的,你认为采取哪种调查方案比较合理,并说明理由;(2)下表中的数据就是使用了某种合理的调查方法获得的:某市中学七、八、九年级男生身高情况抽样调查统计表(3)如果该市中学七、八、九年级的男生共有15万人,那么身高在160㎝-170㎝范围内的男生人数估计有多少万人?五、(每小题9分,共18分)20、如图,一次函数y ax b=+的图像与反比例函数kyx=的图像交于A、B两点,与x轴交于点C,已知OA=,1tan2AOC∠=,点B 的坐标为1(,)2m.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值围.21、已知:如图,△ABC是等边三角形,过AB边上的点D作DG∥BC,,连接AE、CD.交AC于点G,在GD的延长线上取点E,使DE DB(1)求证:△AGE≌△DAC;(2)过点E作EF∥DC,交BC与点F,请你连接AF,并判断△AEF是怎样的三角形,试证明你的结论.ACB 卷 (共50分)一、 填空题:(每小题3,共15分)将答案直接写在该题目中的横线上22.已知点(23,2)A a b +-和点(8,32)B a b +关于x 轴对称, 那么a b +=23.如图,小亮在操场上距离旗杆AB 的 C 处,用测角仪 测得旗杆 的仰角为30。
2004年成都市中考数学试卷. (含成都市初三毕业会考)A 卷(共100分)一、 选择题:(每小题4分,共60分) 1、下列算式结果是-3的是( ) A 、(-3)-1B 、(-3)C 、-(-3)D 、-∣-3∣2、下列各式正确的是( )A 、()a b c a b c -+=-+B 、221(1)x x -=-C 、2()()a ab ac bc a b a c -+-=-+D 、23()(0)x x x x -÷=≠3、不等式组231x x >-⎧⎨-⎩≤8-2x的最小整数解是( )A 、-1B 、0C 、2D 、34、如图,如果A B C D 的对角线AC 、BD 相交于点O ,那么图中的全等三角形共有( )A 、1对B 、2对C 、3对D 、4对 5、函数11y x =-+中,自变量x 的取值范围是( )A 、1x ≠-B 、0x ≥C 、1x -≤D 、x ≥-16、为了充分利用我国丰富的水力资源,国家计划在四川省境内长江上游修建一系列大型水力发电站,预计这些水力发电站的总发电量相当于10个三峡电站的发电量。
已知三峡电站的年发电量将达到84700000000千瓦时,那么四川省境内的这些大型水力发电站的年发电总量用科学计数法表示为( )千瓦时 A 、8.47⨯109 B 、8.47⨯1011 C 、8.47⨯1010 D 、8.47⨯10127、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan B A D ∠′等于( ) A 、1 B2D、8、下列说法中,错误的是( )A 、 一组对边平行且相等的四边形是平行四边形B 、 两条对角线互相垂直且平分的四边形是菱形C 、 四个角都相等的四边形是矩形D 、邻边相等四边形是正方形 9、如果用换元法解分式方程2214301x x xx +-+=+,并设y =21x x +,那么原方程可化为( )A 、y 2+3y-4=0B 、y 2-3y+4=0C 、y 2+4y-3=0D 、y 2-4y+3=0 10、已知相交两圆的半径分别是5和8,那么这两圆的圆心距d 的取值范围是( ) A 、d >3 B 、13d < C 、13d 3<< D 、d =3或d =1311、如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是 AC 的中点, 那么∠DAC 的度数是( )BDCm ∠CAB = 32.0︒B 、C 、30ºD 、32º汽车由重庆驶往相距400千米的成都。
成都市2005届高中毕业班摸底测试参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中恰好发生k 次的概率:P n (k )=C n k P k (1-P )n -k球的表面积公式:S =4πR 2(其中R 表示球的半径) 球的体积公式:V 球=43πR 3(其中R 表示球的半径)一、选择题:本大题共计14小题,每小题5分,共70分 1. 条件p :|x |=x ,条件q :x 2≥-x ,则p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 函数y =x 2+2x (x <-1)的反函数是A .y =x +1-1(x <-1)B .y =x +1-1(x >-1)C .y =-x +1-1(x <-1)D .y =-x +1-1(x >-1) 3. 如果向量a →和b →满足|a →|=1,|b →|=2,且a →⊥(a →-b →),那么a →和b →的夹角大小为A .30ºB .45ºC .75ºD .135º 4. 将椭圆9x 2+16y 2-18x -64y -71=0按向量a →平移,使中心与原点重合,则a →的坐标为A .(1,2)B .(-1,-2)C .(-1,2)D .(1,-2)5. 若θ是第三象限的角,且sin 4θ+cos 4θ=59,那么sin 2θ的值为A .23B .-23C .223D .-2236. 与函数y =2+2x-2的图象关于直线y =x 对称的曲线经过点 A .(2,3)B .(2,2)C .(3,2)D .(3,3)7. 在同一个坐标系中,为了得到y =3sin (2x +π4)的图象,只需将y =3cos 2x 的图象A .向左平移π4B .向右平移π4C .向左平移π8D .向右平移π88. 已知M (2,-3),N (-3,-2),直线l 过点A (1,1)且与线段MN 相交,则直线l 的斜率k的取值范围是 A .k ≥34或k ≤-4B .-4≤k ≤34C .34≤k ≤4 D .-34≤k ≤49. 如图,A 是平面BCD 外一点,E 、F 、G 分别是BD 、DC 、CA的中点,设过这三点的平面为α,则在图中的6条直线AB 、AC 、AG .AD 、BC 、CD 、DB 中,与平面α平行的直线有 A .0条 B .1条 C .2条D .3条10.甲乙丙三个单位分别需要招聘工作人员2人、1人、1人,现从10名应聘人员中招聘4人到甲乙丙三个单位,那么不同的招聘方法共有 A .1260种B .2025种C .2520种D .5040种11.(x 3+1x2)n 的展开式中,第6项系数最大,则不含x 的项为A .210B .10C .462D .25212.若θ时第三象限的角,那么sin (cos θ)cos (sin θ)的值A .大于零B .小于零C .等于零D .不能确定正负或零13.过椭圆4x 2+2y 2=1的一个焦点F 1的直线交椭圆于A 、B 两点,则A 、B 与椭圆的另一个焦点F 2构成的△ABF 2的周长为 A .2B .4C . 2D .2 214.若f (x )=(12)x ,a 、b ∈R +,A =f (a +b 2),G =f (ab ),H =f (2aba +b),则A 、G 、H 的大小关系为A .A ≤G ≤HB .A ≤H ≤GC .H ≤G ≤AD .G ≤H ≤A二、填空题:本大题共4个小题,每小题5分,共计20分15.若0<a <b <1,则log a b ,log b a ,log b ba 之间的大小关系是_____________.16.已知m 、l 是异面直线,给出下列命题:①一定存在平面α过m 且与l 平行; ②一定存在平面α与m 、l 都垂直; ③一定存在平面α过m 且与l 垂直;④一定存在平面α与m 、l 的距离都相等. 其中不正确...的命题的序号是_____________(把你认为不正确的命题的序号都填上) 17.考察下列命题:①若n ∈N +,点(n ,a n )在同一直线上,则{a n }是等差数列; ②若数列{a n }的通项可写成关于n 的一次式,则{a n }是等差数列; ③若数列{a n }的前n 项和可写成关于n 的二次式,则{a n }是等差数列;④若m 、n ∈N +,且n <m ,总有a n +a m -n =a 1+a m ,则项数为m 的数列是等差数列. 其中正确的命题的序号是_____________(把你认为正确的命题的序号都填上)18.已知集合P ={θ|cos θ<sin θ,0≤θ≤2π},Q ={θ|tan θ<sin θ},则P ∩Q =___________________.三、解答题:本大题共5个小题,共计60分.19.甲乙两名射手在同一条件下进行射击,分布列如下表:射手甲 射手乙用击中环数的期望与方差分析比较两名射手的射击水平.(12分)20.如图,在单位正方体ABCD -A 1B 1C 1D 1中,M 是A 1B 上的点,A 1M =13A 1B ,N 是B 1D 1上的点,B 1N =13B 1D 1.(12分)(1)求证:MN 是异面直线A 1B 与B 1D 1的公垂线; (2)求线段MN 的长.21.设数列{a n}的前n 项和为S n ,已知S n +1=4a n +2(n ∈N *),a 1=1,b n =a n +1-2a n .(12分) (1)求b n ;(2)若d n =a n2n ,求证:数列{d n }是等差数列.22.已知:如图,设OA 、OB 是过抛物线y 2=2px 顶点O 的两条弦,且OA →·OB→=0,求以OA 、OB 为直径的两圆的另一个交点P 的轨迹.(13分)23.已知函数f (x )=log 3(x 2-2mx +2m 2+9m 2-3)的定义域为R(1)求实数m 的取值集合M ;(2)求证:对m ∈M 所确定的所有函数f (x )中,其函数值最小的一个是2,并求使函数值等于2的m 的值和x 的值.A 1成都市2005届高中毕业班摸底测试数学(理科)参考答案一、ADBBC CDACC ABDA二、15.log b b a <log a b <log b a 16.②③ 17.①② 18.(π2,π)三、19.E ξ甲=8×0.2+9×0.6+10×0.2=9……2分 D ξ甲=(8-9)2×0.2+(9-9)2×0.6+(10-9)2×0.2=0.4 ……4分 E ξ乙=8×0.4+9×0.2+10×0.4=9……6分 D ξ乙=(8-9)2×0.4+(9-9)2×0.2+(10-9)2×0.4=0.8 ……8分 由此可知,E ξ甲=E ξ乙=9,D ξ甲<D ξ乙,从而两名射手射击的环数平均值都是9环,但乙射手射击环数的集中度(稳定性)不如甲射手. ……10分20.(1)证明:建立如图所示空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),B (1,0,0) ∵A 1M =13A 1B ,B 1N =13B 1D 1,∴M (13,0,23),N (23,13,1)∴A 1B →=(1,0,-1),B 1D 1→=(-1,1,0),MN →=(13,13,13) MN →·A 1B →=1×13+0×13+(-1)×13=0 MN →·B 1D 1→=-1×13+1×13+0×13=0 ∴MN ⊥A 1B ,MN ⊥B 1D 1,又MN 与A 1B 和B 1D 1都相交 故MN 是异面直线A 1B 与B 1D 1的公垂线. ……10分 (2)|MN |=(13)2+(13)2+(13)2=33 ∴MN 的长为33……12分 21.(1)a 1=1,S n +1=4a n +2(n ∈N *)∴S n +2=4a n +1+2z∴a n +2=S n +2-S n +1=4a n +1-4a n ∴a n +2-2a n +1=2(a n +1-2a n ) ……4分 又b n =a n +1-2a n ,∴b n +1=2b n . ∴数列{b n }是以2为公比的等比数列.……6分而b 1=a 2-2a 1,a 1=1,S 2=a 1+a 2=4a 1+2=6 ⇒ a 2=5 ∴b 1=3 故b n =3·2n -1.……8分(2)∵d n =a n2n ,∴d n +1-d n =a n +12n +1+a n 2n =a n +1-2a n 2n +1=b n 2n +1=3·2n -12n +1=34(常数) 所以,{d n }是等差数列.……12分22.设直线OA 的斜率为k ,显然k 存在且不等于0则OA 的方程为y =kx由⎩⎨⎧y =kx y 2=2px解得A (2p k 2,2pk )……4分又由,知OA ⊥OB ,所以OB 的方程为y =-1kx由⎩⎪⎨⎪⎧y =-1k xy 2=2px 解得B (2pk 2,-2pk ) ……4分从而OA 的中点为A '(p k 2,pk ),OB 的中点为B '(pk 2,-pk )……6分所以,以OA 、OB 为直径的圆的方程分别为 x 2+y 2-2px k 2-2pyk =0 ……①x 2+y 2-2pk 2x +2pky =0 ……② ……10分∵P (x ,y )是异于O 点的两圆交点,所以x ≠0,y ≠0 由①-②并化简得y =(k -1k )x ……③将③代入①,并化简得x (k 2+1k 2-1)=2p ……④由③④消去k ,有x 2+y 2-2px =0∴点P 的轨迹为以(p ,0)为圆心,p 为半径的圆(除去原点). ……13分23.(1)由题意,有x 2-2mx +2m 2+9m 2-3>0对任意的x ∈R 恒成立所以△=4m 2-4(2m 2+9m 2-3)<0即-m 2-9m 2-3<0∴(m 2-32)2+27m 2-3>0由于分子恒大于0,只需m 2-3>0即可 所以m <-3或m > 3 ∴M ={m |m <-3或m >3}……4分(2)x 2-2mx +2m 2+9m 2-3=(x -m )2+m 2+9m 2-3≥m 2+9m 2-3当且仅当x =m 时等号成立.所以,题设对数函数的真数的最小值为m 2+9m 2-3……7分又因为以3为底的对数函数为增函数 ∴f (x )≥log 3(m 2+9m 2-3)∴当且仅当x =m (m ∈M )时,f (x )有最小值为log 3(m 2+9m 2-3) ……10分又当m ∈M 时,m 2-3>0 ∴m 2+9m 2-3=m 2-3+9m 2-3+3≥2(m 2-3)·9m 2-3+3=9当且仅当m 2-3=9m 2-3,即m =±6时,log 3(m 2+9m 2-3)有最小值log 3(6+96-3)=log 39=2∴当x =m =±6时,其函数有最小值2.限于篇幅,其它解法不再一一列出,请评卷老师根据考生答题情况酌情给分.。
四川省二OO 五年中等学校统一招生考试试卷(含成都市初三毕业会考)物理全卷A 卷和B 卷,A 卷90分,B 卷满分20分;考试时间90分钟A 卷(共90分)第I 卷(选择题,共28分)一、选择题:(每小题2分,共28分)1、下列四组数据,是郑老师从全班同学的作业题答案中挑选出来的,其中正确的是A 、一支新铅笔的长度:0.715dmB 、一本新华字典的厚度:3.5μmC 、一枚壹元硬币的厚度:1.9mmD 、一张纸的厚度:10nm2、物理教科书上有下列两则信息,如图1和图2所示根据上述两则信息,可以判断下列说法中正确的是A 、人凭听觉能发现飞行的蜜蜂和飞行的蝴蝶B 、狗凭听觉能发现飞行的蜜蜂和飞行的蝴蝶C 、猫凭听觉能发现飞行的蝴蝶,不能发现飞行的蜜蜂D 、人凭听觉能发现飞行的蜜蜂,不能发现飞行的蝴蝶3、人造卫星绕地球沿椭圆轨道运行,如图3所示,近地点为离地球中心最近的点,远地点为离地球中心最远的点。
下列说法正确的是A 、在近地点时,卫星势能最大B 、在远地点时,卫星动能最大C 、卫星从近地点向远地点运动的过程中,势能转化为动能D 、卫星从过地点向近地点运动的过程中,势能转化为动能4、下列现象中能说明存在大气压的是A 、潜水员潜入水下越深,所受水的压强越大B 、盖在杯口的纸片能托住倒过来的一满杯水而不洒出C 、水从高处流下,形成瀑布D 、在三峡大坝旁修建大型船闸5、下列说法中错误..的是 A 、电动机是一种电源 B 、用电器是用电来工作的设备C 、平常说的电线也叫导线D 、验电器可用来检验物体是否带电6、在一个由电源、开关、导线和两个小灯泡组成的电路中,用电压表测量时发现,两灯泡两端电压相等,观察发现两灯泡的亮度不同。
则两个小灯泡的连接A 、一定是并联B 、一定是串联C 、可能是串联,也可能是并联 D、无法判定图2 昆虫飞行时它们的翅膀的翅都要振动,蝴蝶每秒振翅五六次,蜜蜂每秒振翅三四百次人狗猫7、电磁继电器的作用之一是通过控制低压电路的通断间接地控制高压电路的通断。
2005年四川省成都市中考化学试卷(课改实验区)2005年四川省成都市中考化学试卷(课改实验区)第I卷(选择题共36分)可能用到的相对原子质量:H—1 C—12 O—16 Fe—56一、选择题(本题包括12个小题,每小题3分,共36分。
每小题只有一个选项符合题意。
)1. 下列变化中,属于化学变化的是()A. 氢气球升到高空后破裂B. 双氧水杀菌消毒C. 铂金加工成首饰D. 木炭除去冰箱中臭味2. 人们在生活和生产中为了防止事故发生,常需要采取一些安全措施,下列措施不当的是()A. 严禁旅客携带易燃、易爆物品乘车B. 人居社区配置消防设备和设置消防通道C. 夜晚发现煤气泄漏立即开灯检查D. 加油站、面粉厂附近严禁烟火3. 日常生活中不少人喜欢喝纯净水,市售的纯净水有些就是蒸馏水。
有关这类纯净水的下列说法正确的是()A. 它可以通过自来水加热产生的水蒸气冷却而获得B. 它清洁、纯净,长期饮用对健康有益而无害C. 它含有人体所需的矿物质和多种微量元素D. 它是纯天然饮品,不含任何化学物质4. 对人类的生存环境不会造成危害的是()A. 生活污水的任意排放B. 废旧电池的随意丢弃C. 绿色植物光合作用放出的气体D. 化肥和杀虫剂的滥施滥用5. 生活生产中的下列做法,合理的是()A. 炒菜时,应尽早加入加碘食盐B. 在铁桶中配制农药波尔多液C. 将熟石灰与氯化铵混合施用D. 炒菜最好选用铁锅,而不是铝锅6. 下列物质的用途或用法与其理由说明相一致的是()A. 通常情况下输电电缆用铝制成,是因为铝是导电性最好的金属B. 贴身衣物常选择棉制品,是因为棉制品的弹性比合成纤维好C. 饮具锅铲常用塑料做手柄,是因为塑料耐高温D. 目前掀起的化肥施用保持低水平的运动,是因为化肥带来的环境问题越来越多7. 用乙醇汽油(在汽油中加入10%乙醇)代替车用汽油,是目前缓和石油紧张的有效办法。
用乙醇汽油代替汽油,不具有的优点是()A. 改善空气质量B. 有效抑制温室效应(1)喝酸牛奶后,胃容物的pH_________(选填“增大”或“减小”)(2)“别把含乳饮料当作牛奶喝”,是因为含乳饮料中________等营养素的含量比牛奶和酸牛奶低。
2005年高中阶段学校招生考试数学参考答案及评分意见基础卷(共72分)一、选择题(共30分,每小题3分)1、D2、A3、B4、B5、C6、B7、C8、C9、A 10、D 二、填空题(共12分,每小题3分)11、答案不唯一,只要正确就可给满分。
如:甲校跳远运动员比乙校多等; 12、32; 13、2π; 14、-2 三、解答题(共30分) 15、解:原式=)2(4)2()2)(2(2----+a a aa a a (3分) =2422---+a a a (5分) =1 (7分)16、答案不唯一,只要写出一个正确结论,可记2分,如:连结DE ,那么DE=BF 等;证明过程正确记5分。
(这5分仍可仿分步记分办法给分) 17、解:(1)y=(0.5-0.3)x-(0.3-0.2)(200-x) (3分) 即y=0.3x-20 (0≤x ≤200,且x 为整数) (4分)(2)依题意,应有 (0.3x-20)×30≥1000 (6分) 解得x ≥17797,应取x ≥178答:小丁每天至少应卖出报纸178份,才能保证月收入不低于1000元。
(8分) 18、解:(1)100,60+10t (2分) (2)作OH ⊥PQ 于点H. (3分)Rt △OHP 中,∠OHP=90º,∠OPH=90º-25º-(90º-70º)=45º(4分)OP=200(千米).∴OH=PH=Opsin45º=1002≈141(千米)(5分)设经过t20千米/时.则PH=20t=2,∴t=22(小时) (6分)此时,受台风侵袭地区的圆半径应为60+10×52≈131(千米) (7分) ≈141(千米)而台风中心从P移动到H时使受侵袭地区半径为131千米<141千米,所以城市O不会受到侵袭 (8分)拓展卷(共48分)四、填空题(共12分,每小题3分)19、(按非课改要求命制)9;19、(按课改要求命制)②、③、④(每填正确1个记1分)20、2+4n或许(n-1);21、(按非课改要求命制)1; 21、(按课改要求命制)上;22、(按非课改要求命制)①、③、④(每填正确1个记1分)22、(按课改要求命制)答案不唯一,每填正确1条记1分。
二00五年四川省基础教育课程改革实验区初中毕业生学业考试数学试题参考解答及评分意见说明:一、本解答给出了一种或几种解法供参考,如果考生的解法与本解不同,可比照评分意见制定相应的评分细则.二、对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答案未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半,如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分数. 一、选择题:每小题5分,共15分. 1.B; 2.C; 3.D; 4.A; 5.C. 二、填空题:每小题3分,满分30分.6.111.5510⨯; 7.9a ;8.(21)(21)x x +-; 9.1x ≥.10.1x -≤;11.60120或;12.70分-79分,11;13.630;14.144; 15.(1)5a c =-(填其变式也正确),(2)5. 三、第16题15分,每17题~第19题每题5分,共30分.16.(每小题5分,共15分)(1)解:原式33= ···································································· (4分) 3=. ································································································· (5分)(2)解:原式211m m m =-+-+ ········································································· (4分) 2m =. ······························································································ (5分) (3)解:方程两边都乘以(1)(1)x x +-,得4(1)1x x -=+. ····························· (2分) 解得53x =. ····························································································· (4分) 经检验53x =是原方程的根.∴原方程的解是53x =. ·········································································· (5分)17.解:由题意可知,3AC BD ==. ····························································· (1分)在603tan 60ABABC ACB AC AC∠===Rt △中,,,, ··············· (3分)tan 60AB AC ∴= 33=························································································· (4分) 5.2≈(米)答:树高AB 约为5.2米. ··································································· (5分)18.解:正方体的左面、右面标注的代数式分别为232x x -、, ······························ (2分)由题意,232x x =-. ················································································ (3分) 解得 1212x x ==,. ··············································································· (5分) 19.解:(1)可支配收入的主要来源是工薪收入; ················································· (2分) (2)可支配收入中同比增长最快的是财产性收入; ································· (3分) (3)评分说明:给出的结论合理就可得分.以下结论供参考: ①消费支出最多的是食品类支出.②消费支出中同比增长最快的是交通和通讯支出,增长达0032.2. ③衣着(或家庭设备用品及服务、食品、杂项商品和服务等)类支出增长迅速(或增幅显著、增长迅猛等).④医疗保健类支出增长平稳.⑤教育文化娱乐服务消费与上年基本持平. ⑥居住消费大幅下降.········································································ (5分)四、每小题7分,共21分.20.解:(1)32.5; ······························· (3分) (2)(画图) ····························· (6分) (3)(41)-,. ··························· (7分)21.解:120AD BC ADC ∠=∥,,60.DCE ∴∠= 1230CA DCB ∠∴∠=∠=又平分,. ·············· (2分)30CAD AD DC ∴∠=∴=,. ·································································· (3分)120AB DC BAD ADC =∴∠=∠=,,90BAC ∴∠=. ························································································· (4分) 在230ABC ∠=Rt △中,,2AB BC ∴=. ···························································································· (5分)E 为BC 的中点,BE EC AD ∴==.·················································· (6分)∴四边形ABED 为平行四边形.DCE ∴△与四边形ABED 面积的比为1:2. ············································ (7分)22.解:由题意,列出所有可能的结果(也可列表):B E由此可知,共能组成6对:小娟与小明,小娟与小强,小敏与小明,小敏与小强,小华与小明,小华与小强. ········································································································ (5分)恰好选出小敏和小强参赛的概率是16. ····································································· (7分) 五、每小题8分,共16分.23.(1)材料加热时,设15y ax =+,由题意,有60515a =+,解得9a =. ························································ (2分) ∴材料加热时,y 与x 的函数关系式为:915(05)y x x =+≤≤. ············· (3分) 停止加热时,设k y x=, 由题意,有605k=,解得300k =. ····························································· (5分) ∴停止加热进行操作时y 与x 的函数关系式为:300(520)y x x=≤≤. ·········· (6分)(2)把15y =代入300y x=,得20x =.答:从开始加热到停止操作,共经历了20分钟. ········24.(1)证明:如图,12PD PO =∴∠=∠,.CD 是O 的切线, .CD OD ∴⊥ ··························· (2分)3190.290CDP ∴∠+∠=∠+∠=又,3CDP ∴∠=∠, ······················ (3分) .PC PD ∴= ····························· (4分) (2)解:CD KO ∥,有3POK ∠=∠, ··················································· (5分) 由(1)得,CP PD PO CPD KPO ==∠=∠,又.CPD OPK ∴△≌△. ····································································· (7分) 5CD OK ∴==.在COD OC =Rt △中, ······························ (8分) 六、本题共8分. 25.解:(1)4FG =,设E 到CD 上的时间为1t ,1441t ∴==(秒). 设E 到AB 上的时间为2t ,291BC FGt +∴==(秒). ······ (1分) (2)①当04x <≤时,设EF 交CD 于K ,小娟 小敏 小华小明 小强 小明 小强 小明小强 女: 男: B43x CKFCK FGE ∴=△∽△,, 34CK x ∴=.2133248y x x x ∴==. ······················ (2分)②当45x <≤时,14362FGE y S ==⨯⨯=△. ···················· (3分)③当5x <≤9时,236(5)8y x =--. ·································· (4分)22348636(5)80.9x x x y x x x ⎧⎪⎪<⎪∴=⎨⎪--<⎪⎪>⎩, 0≤≤, 4≤5, 5≤9 ······························ (5分) (3)列表并画图.(正确画出大致图象就可得分) ··················································· (6分)点89P x ⎛⎫ ⎪⎝⎭,在函数图象上,23889x ∴=. 解得1299x x ==-(舍去).899P ⎛⎫∴ ⎪ ⎪⎝⎭,.G G8tan POB∴∠==························································· (7分) 3015.POB PAB∴=∴∠=.······················································ (8分)。
2005年四川省基础教育课程改革实验区初中毕业生学业考试(成都地区使用)数学全卷分为A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷尾选择题,第Ⅱ卷为其他类型的题。
A卷(共100分)第Ⅰ卷(选择题,共24分)注意事项:1.第Ⅰ卷共2页,答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求。
每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,选择题的答案不能答在试卷上。
请注意机读答题卡的横竖格式。
一、选择题:(每小题分,共分)、如果某天中午的气温是℃,到傍晚下降了℃,那么傍晚的气温是()(A)℃(B)℃(C)℃(D)℃、据中央电视台报道,今年“五一”黄金周期间,我国交通运输旅客达人次,用科学记数法表示为(A)(B)(C)(D)3、如图,、相交于点,,那么下列结论错误的是()(A)与互为余角(B)与互为余角(C)与互为补角(D)与是对顶角4、用两个全等的直角三角形一定能拼出的图形是()(A)等腰梯形(B)直角梯形(C)菱形(D)矩形5、右图是由一些相同的小正方体搭成的几何体的三视图,那么搭成这个几何体的小正方体的个数为()(A)个(B)个(C)个(D)个6、在一个不透明的口袋中装有若干个只有颜色不同的球,如果口袋BA俯视图左视图主视图23000000013422-3-3241272310⨯82.310⨯92.310⨯90.2310⨯AB CD OOE AB⊥AOC∠COE∠BOD∠COE∠COE∠BOE∠AOC∠BOD∠3469中装有4个红球,且摸出红球的概率为13,那么袋中共有球的个数为( )(A )12个 (B )9个 (C )7个 (D )6个7、把多项式(1)(-1)(-1)m m m ++提取公因式(-1)m 后,余下的部分是 ( )(A )1m + (B )2m (C )2 (D )2m +8、农村常搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚,如下图所示,如果不考虑塑料薄膜接头重合及埋在土里的部分,那么搭建一个这样的蔬菜大棚需要塑料薄膜的面积是 ( ) (A )264m π (B )272m π (C )278m π (D )280m π 二、填空题(每小题3分,共24分),将答案直接写在该题目的横线上9、计算44(45)x x ---= . 10、不等式 321x +≤-的解集是 .11、右图是一个正方体的展开图,如果正方体相对的面上标注的值相等,那么x = ,y = .12、方程290x -=的解是 .13、右图是一组数据的折线统计图,这组数据的极差是 ,平均数是 .14、按下面的要求,分别举出一个生活中的例子:①随机事件: ;②不可能事件: ; ③必然事件: .15、如图,点D 在以AC 为直径的⊙O 上,如果BDC ∠=20︒,那么ACB ∠= .16、右图图象反映的过程是:小明从家跑 步到体育馆,在那里锻炼 了一阵后又走到新华 书店去买书,然后散步走回家.其中t 表示时间 (分钟),s 表示小明离家的距离(千米),那么小明在体育馆锻炼和在新华书店买书共用去的时间是 分钟.4m\2.51.5三、(共18分) 17、解答下列各题:(每小题6分)(1)计算:2212sin 45--+︒.(2)先化简再求值:5332(3)(1)x x x x +÷-+,其中12x =-.(3)化简:2222221121a a a a a a a ---÷+--+. 四、(每小题8分,共16分)18、在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.根据图形,解决下面的问题:(1)图中的格点△'''A B C 是由格点△ABC 通过哪些变换方法得到的?(2)如果以直线a 、b 为坐标轴建立平面直 角坐标系后,点A 的坐标为(3,4)-,请写出 格点DEF ∆各顶点的坐标,并求出DEF ∆ 的面积.19、为了制定某市中学七、八、九年级男生校服的生产计划,有关部门准备对这三个年级抽取180名男生的身高作调查.现有三种调查方案:①测量该市少年体育训练学校中这三个年级的180名男子篮球、排球队员的身高;②查阅外地有关这三个年级180名男生身高的统计资料;③在该市城区和郊县中任选六所中学,在六所学校的这三个年级中分别用抽签的方法选出10名男生,然后测量他们的身高.(1)为了达到估计该市中学七、八、九年级男生身高分布的目的,你认为采取哪种调查方案比较合理,并说明理由;(2)下表中的数据就是使用了某种合理的调查方法获得的:某市中学七、八、九年级男生身高情况抽样调查统计表(3)如果该市中学七、八、九年级的男生共有15万人,那么身高在160㎝-170㎝范围内的男生人数估计有多少万人?五、(每小题9分,共18分)20、如图,一次函数y ax b=+的图像与反比例函数kyx=的图像交于A、B两点,与x轴交于点C,已知OA=1tan2AOC∠=,点B 的坐标为1(,)2m.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值围.21、已知:如图,△ABC 是等边三角形,过AB 边上的点D 作DG ∥BC ,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE 、CD . (1)求证:△AGE ≌△DAC ;(2)过点E 作EF ∥DC ,交BC 与点F ,请你连接 AF ,并判断△AEF 是怎样的三角形,试证明你的结论.B 卷 (共50分)一、 填空题:(每小题3,共15分)将答案直接写在该题目中的横线上22.已知点(23,2)A a b +-和点(8,32)B a b +关于x 轴对称, 那么a b +=23.如图,小亮在操场上距离旗杆AB 的 C 处,用测角仪测得旗杆 的仰角为30。
已知9BC =米,测角仪的高CD为1.2米,那旗杆AB 的高为 米。
(结果保留根号) 24.已知二次函数22224y x kx k =++-的图与x 轴的一个交 点 (2,0)A -,那么该二次函数图像的顶点坐标为 。
25.如图,AD 是⊙O 的直径,AB AC =,120BAC ∠=︒,根据以上条件写出三个正确的结论: ( OA OB OC ==除外① ;② ; ③ 。
ECA DA CDA26.如右图,四边形ABCD 为正方形,曲 线DEFGHIJ 叫做“正方形ABCD 的渐开线”其中 DE 、EF 、FG 、GH 、HI 、IJ 的圆心依次按A 、B 、C 、D 循环。
当渐开线延伸开时,形成了扇形1234S S S S 、、、和一系列的扇环56S S 、 。
当1AB =时,它 们的面积123459,,,4,644S S S S S πππππ===== , 那么扇环的面积8S =二、 解答题:(每题7分,共14分)27.某校九年级1、2班联合举行毕业晚会,组织者为了使晚会气氛热烈、有趣,策划时计划整场晚会以转盘游戏的方式进行:每个节目开始时,两班各派一人先进行转盘游戏,胜者获得一件奖品,负者表演一个节目。
1班的文娱委员利用分别标有数字1、2、3和4、5、6、7的两个转盘(如图)设计了一种游戏方案:两人同时各转动一个转盘一次,将转到的数字相加,和为偶数时,1班代表获胜,否则2班代表获胜。
你认为该方案对双方是否公平?为什么?28.如果关于x 的方程22124x mx x +=--的解也是不等 式组1222(3)8xx x x -⎧-⎪⎨⎪-≤-⎩> 的一个解,求m 的取值范围。
⌒⌒⌒⌒⌒⌒IHG三、(共10分) 29.如图,已知 ⊙O 是ABC ∆的外接圆,AB 是⊙O 的直径,D 是AB 延长线上的一点,AE DC ⊥交DC 的延长线于点E ,且 AC 平分EAB ∠。
(1)求证:DE 是⊙O 的切线;(2)若246,5AB AE ==,求BD 和BC 的长。
四(共11分)30.已知抛物线2(0)y ax bx c a =++≠与x 轴交于不同的两点1(,0)A x和2(,0)B x ,与y 轴正半轴交于点C ,如果 12,x x 是方程 260x x --= 的两个根1(x <2)x ,且ABC ∆的面积为152。
(1)求此抛物线的解析式;(2)求直线AC 和BC 的方程;(3)如果P 是线段AC 上的一个动点(不与点A C 、重合),过点 P 作直线y m =(m 为常数),与直线 BC 交于Q 点,则在x 轴上是否存在点R ,使得以PQ 为一腰的 PQR ∆为等腰直角三角形?若存在 求出点RDEA参考答案 A 卷一、选择题:1.C 2.B 3.C 4.D 5.B 6.A 7.D 8.A 二、填空题:9、1; 10、2x ≤-; 11、4,10; 12、3x =±; 13、31,46,5; 14、略;15、70°; 16、50. 三、17.解答下列各题:(1)解:原式4122=-⨯⨯=- 0=(2)解:原式22(3)(21)x x x =+-++ 22321x x x =+--- 22x =-+ 当12x =-时,原式12()232=-⨯-+= (3)解:原式222(1)1(1)(1)(2)a a a a a a a --=-⋅++-- 211(1)a a a a -=-++ 2(1)(1)a a a a --=+1a=四、18、解:(1)方法较多,如:先向右平移5小格,使点C 移到点C ',再以C '为中心,顺时针方向旋转90°得到△A B C '''.(2)D (0,2)-,E (4,4)--,F (2,3)-,如图,显然格点G 在DE 上,则DEF DGF CFE S S S =+∆∆∆ 114141422=⨯⨯+⨯⨯= 19、解:(1)第③种方案比较合理.方案③采用了随机抽样的方法,随机样本比较具有代表性,可以被用来估计总体,因此第③种方案比较合理. (2)表格中频数从上往下依次为18,42,84,30,6.画出的频数分布直方图如右图所示.(3)某市中学七、八、九年级身高在160㎝-170㎝范围内的男生人数估计有84157180⨯=(万人). 五、20、解:(1)过点A 作AD x ⊥轴于点D ,在Rt ODA ∆中,1tan 2AD AOC DO∠==, 2AD DO ∴= 由勾股定理,得:222225AO AD DO AD ==+=0AD > 1,2AD DO ∴== ∴点(2,1)A -点A 在反比例函数ky x=的图象上, 12k∴=- 解得 2k =- ∴反比例函数的解析式为 2y x=-将1(,)2B m 代入2y x=-中,得 4m =- 1(,4)2B ∴-把1(2,1),(,4)2A B --分别代入y ax b =+中,得12,14.2a b a b =-+⎧⎪⎨-=+⎪⎩ 解得 2, 3.a b =-=- ∴一次函数的解析式为 23y x =-- (2)由图象可知,当20x -<<或12x >时一次函数的值小于反比例函数的值.21、证明:(1)ABC ∆ 是等边三角形,,60AB AC BC BAC ABC ACB ∴==∠=∠=∠=︒EG ∥BC ,60ADG ABC ∴∠=∠=︒,60AGD ACB ∠=∠=︒ADG ∴∆是等边三角形. AD DG AG ∴== DE DB ∴= EG AB ∴= GE AC ∴=∴在AGE ∆和DAC ∆中, EG AB CA ==60,AGE DAC AG DA ∴∠=∠=︒= AGE DAC ∴∆≅∆(2)如图,连接AF ,则AEF ∆是等边三角形 EG ∥BC ,EF ∥DC ,∴四边形EFCD是平行四边形,EF DC DEF DCF∴=∠=∠,AGE DAC∆≅∆,AE CD AED ACD∴=∠=∠,60 EF CD AE AED DEF ACD DCB ==∠+∠=∠+∠=︒AEF∴∆是等边三角形.B卷一、填空题:22、2;23、 1.2;24、(-1,-2);25、①60120,BDC BOC∠=︒∠=︒或②四边形ABOC是菱形,③Rt△ABD≌Rt △ACD;26、12π二、解答题:27、解:该方案对双方是公平的.理由如下:之和为偶数的有6种,和为奇数的也有6种.所以1班代表获胜的概率为1612P=,2班代表获胜的概率为2612P=,即12P P=,所以该游戏方案对双方是公平的.28.解:解方程22124x mx x+=--,得2x m=--。