当前位置:文档之家› 高中物理-玻尔的原子模型达标练习

高中物理-玻尔的原子模型达标练习

高中物理-玻尔的原子模型达标练习
高中物理-玻尔的原子模型达标练习

高中物理-玻尔的原子模型达标练习

1.(多选)关于玻尔的原子模型,下述说法中正确的有( )

A.它彻底否定了卢瑟福的核式结构学说

B.它发展了卢瑟福的核式结构学说

C.它完全抛弃了经典的电磁理论

D.它引入了普朗克的量子理论

解析:玻尔的原子模型在核式结构模型的前提下提出轨道量子化、能量量子化及能级跃迁,故A错误,B正确;它的成功就在于引入了量子化理论,缺点是被过多的引入经典力学所困,故C错误,D正确.

答案:BD

2.(多选)氢原子的核外电子由离原子核较远的轨道跃迁到离核较近的轨道上时,下列说法中正确的是( )

A.核外电子受力变小

B.原子的能量减少

C.氢原子要吸收一定频率的光子

D.氢原子要放出一定频率的光子

解析:由玻尔理论知,当电子由离核较远的轨道跃迁到离核较近的轨道上时,要放出能量,故要放出一定频率的光子;电子的轨道半径减小了,由库仑定律知它与原子核之间的库仑力增大了.故A、C错误,B、D正确.

答案:BD

3.(多选)如图所示给出了氢原子的6种可能的跃迁,则它们发出的光( )

A.a的波长最长

B.d的波长最长

C.f比d的能量大

D.a频率最小

解析:能级差越大,对应的光子的能量越大,频率越大,波长越小.

答案:ACD

4.(多选)根据玻尔理论,氢原子能级图如图所示,下列说法正确的是( )

A.一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出6种频率不同的光子

B.一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出3种频率不同的光子

C.一个原处于n=4能级的氢原子回到n=1的状态过程中,最多放出6种频率不同的光子

D.一个原处于n=4能级的氢原子回到n=1的状态过程中,最多放出3种频率不同的光子

解析:由于处在激发态的氢原子会自动向低能级跃迁,所以一群原处于n=4能级的氢原子回到n=1的状态过程中,最多放出C24=6种频率不同的光子,故A正确,B错误;一个原处于n=4能级的氢原子回到n=1的状态过程中,只能是4→3→2→1或4→2→1或4→1三种路径中的一种路径,可知跃迁次数最多的路径为4→3→2→1,最多放出3种频率不同的光子,

故C错误,D正确.

答案:AD

5.如图所示为氢原子的能级示意图,一群氢原子处于n=3的激发态,在向较低能级跃迁的过程中向外发出光子,用这些光照射逸出功为2.49 eV的金属钠.下列说法正确的是( )

A.这群氢原子能发出3种不同频率的光,其中从n=3跃迁到n=2所发出的光波长最短B.这群氢原子能发出6种不同频率的光,其中从n=3跃迁到n=1所发出的光频率最小C.这群氢原子发出不同频率的光,只有一种频率的光可使金属钠发生光电效应

D.金属钠表面发出的光电子的最大初动能为9.60 eV

解析:一群氢原子处于n=3的激发态,可能发出C23=3种不同频率的光子,n=3和n=2间能级差最小,所以从n=3跃迁到n=2发出的光子频率最低,根据玻尔理论hν=E2-E1=hc

可知,光的波长最长,选项A错误.因为n=3和n=1间能级差最大,所以氢原子从n=3跃λ

迁到n=1发出的光子频率最高.故B错误.当入射光频率大于金属钠的极限频率时,金属钠能

发生光电效应,即入射光的能量大于钠的逸出功2.49 eV时就能产生光电效应.根据能级图可知,从n=3跃迁到n=2 所发出的光能量为E=-1.51 eV-(-3.4)eV=1.89 eV,可见,E<

2.49 eV,不能使金属钠的表面发生光电效应.从n=2跃迁到n=1所发出的光能量为E=-

3.4 eV-(-13.6)eV=10.2 eV,可见,E>2.49 eV,能使金属钠的表面发生光电效应.从n=3跃迁到n=1发出的光子频率最高,发出的光子能量为ΔE=13.60-1.51 eV=12.09 eV.根据光电效应方程E km=hν-W0得,最大初动能E km=12.09 eV-2.49 eV=9.60 eV.故C错误,D 正确,故选D.

答案:D

A级抓基础

1.如图所示为氢原子的能级图,当氢原子发生下列能级跃迁时,辐射光子波长最短的是( )

A.从n=6跃迁到n=4

B.从n=5跃迁到n=3

C.从n=4跃迁到n=2

D.从n=3跃迁到n=1

解析:原子在发生跃迁时,辐射的光子波长最短的,对应频率最大的,也就是能级差最大的跃迁,题中四种跃迁中,从n=3跃迁到n=1的能级差最大,故选项D正确,ABC错误;故选D.

答案:D

2.如图所示是某原子的能级图,a、b、c为原子跃迁所发出的三种波长的光. 在下列该原子光谱的各选项中,谱线从左向右的波长依次增大,则正确的是( )

解析:由ε=hν(ν为光的频率)得:波长λ=c

ν

,从第3能级跃迁到第1能级,能级差最大,知光的频率最大,波长最短;从第3能级跃迁到第2能级,能级差最小,知光的光子频率最小,波长最长,所以波长依次增大的顺序为a 、c 、b .故C 正确,A 、B 、D 错误.

答案:C

3.氦原子被电离一个核外电子,形成类氢结构的氦离子.已知基态的氦离子能量为E 1=-5

4.4 eV,氦离子能级的示意图如图所示.在具有下列能量的光子中,不能被基态氦离子吸收而发生跃迁的是( )

A .40.8 eV

B .43.2 eV

C .51.0 eV

D .54.4 eV

解析:要吸收光子发生跃迁需要满足一定的条件,即吸收的光子的能量必须是任两个能级的差值,40.8 eV 是第一能级和第二能级的差值,51.0 eV 是第一能级和第四能级的差值,54.4 eV 是电子电离需要吸收的能量,均满足条件,选项A 、C 、D 均可以,而B 项不满足条件,所以选B.

答案:B

4.(多选)氢原子在某三个相邻能级之间跃迁时,可发出三种不同波长的辐射光.已知其中的两个波长分别为λ1、λ2,且λ1>λ2,则另一个波长可能是( )

A .λ1+λ2

B .λ1-λ2

C.

λ1λ2

λ1+λ2

D.

λ1λ2

λ1-λ2

解析:氢原子在能级间跃迁时,发出的光子的能量与能级差相等.如果这三个相邻能级分别为1、2、3能级E 3>E 2>E 1,且能级差满足E 3-E 1>E 2-E 1>E 3-E 2,根据h c λ

=E 高-E 低可得可以产生的光子波长由小到大分别为:hc

E 3-E 1、

hc

E 2-E 1、

hc

E 3-E 2

;这三种波长满足两种关系

1λ3=1λ1+1λ2和1λ3=1λ2-1

λ1

,变形可知C 、D 是正确的.

答案:CD

B 级 提能力

5.(多选)如图所示,当氢原子从n =4跃迁到n =2的能级和从n =3跃迁到n =1的能级时,分别辐射出光子a 和光子b ,则( )

A .由于放出光子,原子的能量增加

B .光子a 的能量小于光子b 的能量

C .光子a 的波长小于光子b 的波长

D .若光子a 能使某金属发生光电效应,则光子b 也一定能使该金属发生光电效应 解析:由于放出光子,原子的能量减小,故A 错误;氢原子从n =4的能级跃迁到n =2的能级的能级差小于从n =3的能级跃迁到n =1的能级时的能级差,根据

E m -E n =hν,知光子a 的能量小于光子b 的能量,故B 正确;a 光子的能量小于光子b 的能量,所以光子a 的频率小于光子b 的频率,所以b 的频率大,波长小,即光子a 的波长大于光子b 的波长,故C 错误;光子a 的频率小于光子b 的频率,所以光子a 能使某金属发生光电效应,则光子b 也能使某种金属发生光电效应,故D 正确.故选:BD.

答案:BD

6.氢原子从能级m 跃迁到能级n 时辐射红光的频率为ν1,从能级n 跃迁到能级k 时吸收紫光的频率为ν2,已知普朗克常量为h ,若氢原子从能级k 跃迁到能级m ,则( )

A .吸收光子的能量为hν1+hν2

B .辐射光子的能量为hν1+hν2

C .吸收光子的能量为hν2-hν1

D .辐射光子的能量为hν2-hν1

解析:画出可能的能级图(有两种情况),再结合能量守恒定律进行筛选.由题意可知能级m 高于n ,k 高于m (紫光频率高于红光),

从m →n 有E m -E n =hν1;① 从n →k ,E n -E k =-hν2.②

由以上两式,从k →m ,E k -E m =h (ν2-ν1)且ν2>ν1.由此判断只有D 是正确的.另外,此题可画出相应的能级图以帮助分析.

答案:D

7.已知氢原子的基态能量为E 1,激发态能量E 1n

2,其中n =2,3,….用h 表示普朗克常量,c 表示真空中的光速.能使氢原子从第一激发态电离的光子的最大波长为( )

A .-4hc 2E 1

B .-2hc E 1

C .-4hc E 1

D .-9hc

E 1

解析:第一激发态即第二能级,是能量最低的激发态,则有E 2=E 1

4,电离是氢原子从第一

激发态跃迁到最高能级0的过程,需要吸收的光子能量最小为0-E 2=-E 14,所以有-E 14=hc

λ,

解得λ=-4hc

E 1

,故C 正确.

答案:C

8.现有一群处于n =4能级上的氢原子,已知氢原子的基态能量E 1=-13.6 eV,氢原子处于基态时电子绕核运动的轨道半径为r ,静电力常量为k ,普朗克常量h =6.63×10-34

J ·s.

则:

(1)电子在n =4的轨道上运动的动能是多少? (2)这群氢原子发出的光谱共有几条谱线? (3)这群氢原子发出的光子的最大频率是多少?

解析:(1)电子在n =4的轨道上运动的半径为r ′=16r .

根据k e 2r ′2=m v 2r ′,得E k =12mv 2=k e 22r ′=k e 2

32r

.

(2)C 2

n =C 2

4=6.这群氢原子发光的光谱共有6条. (3)从n =4向n =1跃迁,发出的光子频率最大. 根据hν=E 1-E 4=E 1-E 1

16,

代入数据,得ν=3.1×1015

Hz.

答案:(1)ke 232r

(2)6 (3)3.1×1015

Hz

滑块—滑板模型

高三物理专题复习: 滑块—滑板模型 典型例题: 例1. 如图所示,在粗糙水平面上静止放一长L质量为1的木板B , 一质量为1的物块A以速度s m v /0.20=滑上长木板B 的左端,物 块与木板的摩擦因素μ1=0.1、木板与地面的摩擦因素为μ2=0.1, 已知重力加速度为10m 2,求:(假设板的 长度足够长) (1)物块A 、木板B 的加速度; (2)物块A 相对木板B 静止时A 运动的 位移; (3)物块A 不滑离木板B,木板B 至少多长? 考点: 本题考查牛顿第二定律及运动学规律 考查:木板运动情况分析,地面对木板的摩擦力、木板的加速 度计算,相对位移计算。 解析:(1)物块A 的摩擦力:N mg f A 11==μ A 的加速度:21/1s m m f a A -=-= 方向向左 木板B 受到地面的摩擦力:A g m M f f N 2)(2>=+=μ地 故木板B 静止,它的加速度02=a (2)物块A 的位移:m a v S 222 0=-= (3)木板长度:m S L 2=≥ 拓展1. 在例题1中,在木板的上表面贴上一层布,使得物块与木板的 摩擦因素 μ3=0.4,其余条件保持不变,(假设木板足够长)求: (1)物块A 与木块B 速度相同时,物块A 的速度多大? (2)通过计算,判断速度相同以后的

运动情况; (3)整个运动过程,物块A与木板B相互摩擦产生的摩擦热 多大? 考点:牛顿第二定律、运动学、功能关系 考查:木板与地的摩擦力计算、是否共速运动的判断方法、相对 位移和摩擦热的计算。 解析:对于物块A:N mg f A 44==μ 1分 加速度:,方向向左。24/0.4s m g m f a A A -=-=-=μ 1分 对 于木板:N g m f 2)M 2=+=(地μ 1分 加 速度:,方向向右。地2A /0.2s m M f f a C =-= 1分 物块A 相对木板B 静止时,有:121-t a v t a C B = 解得运动时间: ,s t .3/11= s m t a v v B B A /3/21=== 1分 (2)假设共速后一起做运动,22/1)()(s m m M g m M a -=++-= μ 物 块A的静摩擦力:A A f N ma f <==1' 1分 所以假设成立,共速后一起做匀减速直线运动。 1分 (3)共速前A的位移: m a v v S A A A 942202=-= 木板B的位 移:m a v S B B B 9 122==

高考物理最新模拟题精选训练(功能关系问题)专题03 滑块-滑板中的功能关系(含解析)

专题03 滑块-滑板中的功能关系 1.(2017北京朝阳期中)某滑雪场中游客用手推着坐在滑雪车上的小朋友一起娱乐,当加速到一定速度时游客松开手,使小朋友连同滑雪车一起以速度v0冲上足够长的斜坡滑道。为了研究方便,可以建立图示的简化模型,已知斜坡滑道与水平面夹角为θ,滑雪车与滑道间的动摩擦因数为μ,当地重力加速度为g,小朋友与滑雪车始终无相对运动。 (1)求小朋友与滑雪车沿斜坡滑道上滑的最大距离s; (2)若要小朋友与滑雪车滑至最高点时能够沿滑道返回,请分析说明μ与θ之间应满足的关系(设滑雪车与滑道间的最大静摩擦力与滑动摩擦力相等); (3)假定小朋友与滑雪车以1500J的初动能从斜坡底端O点沿斜坡向上运动,当它第一次经过斜坡上的A点时,动能减少了900J,机械能减少了300J。为了计算小朋友与滑雪车返回斜坡底端时的动能,小明同学推断:在上滑过程中,小朋友与滑雪车动能的减少与机械能的减少成正比。请你分析论证小明的推断是否正确并求出小朋友与滑雪车返回斜坡底端时的动能。 【参考答案】.(1) (2) μ

(2)若要小朋友与滑雪车滑到最高点速度减为0时还能够沿滑道返回,必须使重力的下滑分力大于最大静摩擦力。即:mg sinθ>μmg cosθ 可得:μ

高中物理滑块滑板模型

高中物理滑块滑板模型 1. 在水平地面上,有一质量为M=4kg、长为L=3m的木板,在水平向右F=12N的拉力作用下,从静 止开始经t=2s速度达到υ=2m/s,此时将质量为m=3kg的铁块(看成质点)轻轻地放在木板的最右端,如图所示.不计铁块与木板间的摩擦.若保持水平拉力不变,请通过计算说明小铁块能否离开 木板?若能,进一步求出经过多长时间离开木板? 解答:设木板加速运动的加速度大小为a1, 由v=a1t得,a1=1m/s2. 设木板与地面间的动摩擦因数为μ,由牛顿第二定律得, F-μMg=Ma1 代入数据解得μ=0.2. 放上铁块后,木板所受的摩擦力f2=μ(M+m)g=14N>F,木板将做匀减速运动. 设加速度为a2,此时有: f2-F=Ma2 代入数据解得a2=0.5m/s2. 设木板匀减速运动的位移为x,由匀变速运动的公式可得, x=v2/2 a2=4m 铁块静止不动,x>L,故铁块将从木板上掉下. 设经t′时间离开木板,由 L=vt′- 1/2a2t′2 代入时间解得t′=2s(t′=6s舍去). 答:铁块能从木板上离开,经过2s离开木板. 2. 如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6N的水平力作用下由静止开始向右运 动.已知木板A、B长度均为l=1m,木板A的质量M A=3kg,小滑块及木板B的质量均为m=1kg,小滑块与木板A、B间的动摩擦因数均为μ1=0.4,木板A、B与地面间的动摩擦因数均为μ2=0.1,重力加速度g=10m/s2.求:(1)小滑块在木板A上运动的时间; (2)木板B获得的最大速度. 解答:解:(1)小滑块对木板A的摩擦力 木板A与B整体收到地面的最大静摩擦力 ,小滑块滑上木板A后,木板A保持静止① 设小滑块滑动的加速度为② ③ 解得:④

高中物理总复习之知识讲解 原子的核式结构模型、玻尔的氢原子理论 (基础)

物理总复习:原子的核式结构模型、玻尔的氢原子理论 【考纲要求】 1、知道卢瑟福的原子核式结构学说及α粒子散射实验现象 2、知道玻尔理论的要点及氢原子光谱、氢原子能级结构、能级公式 3、会进行简单的原子跃迁方面的计算 【知识网络】 【考点梳理】 考点一、原子的核式结构 要点诠释: 1、α粒子散射实验 (1)为什么用α粒子的散射现象可以研究原子的结构:原子的结构非常紧密,一般的方 法无法探测它。α粒子是从放射性物质(如铀和镭)中发射出来的高速运动的粒子,带 有两个单位的正电荷,质量为氢原子质量的4倍、电子质量的7300倍。 (2)实验装置:放射源、金箔、荧光屏、放大镜和转动圆盘组成。荧光屏、放大镜能围 绕金箔在圆周上转动,从而观察到穿过金箔偏转角度不同的α粒子。 (3)实验现象:大部分α粒子穿过金属箔沿直线运动;只有极少数α粒子明显地受到 排斥力作用而发生大角度散射。绝大多数α粒子穿过金箔后仍能沿原来方向前进,少数α 粒子发生了较大的偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,偏转 角几乎达到180°。 (4)实验分析:①电子不可能使α粒子大角度散射;②汤姆孙原子结构与实验现象不符; ③少数α粒子大角度偏转,甚至反弹,说明受到大质量大电量物质的作用。④绝大多数 α粒子基本没有受到力的作用,说明原子中绝大部分是空的。 记住原子和原子核尺度:原子1010-m ,原子核1510-m

2、原子的核式结构 卢瑟福对α粒子散射实验结果进行了分析,于1911年提出了原子的核式结构学说:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎所有的质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转。原子核所带的单位正电荷数等于核外的电子数。 原子的半径大约是1010-m ,原子核的大小约为1510-m ~1410-m 。 【例题】卢瑟福通过对α粒子散射实验结果的分析,提出( ) A.原子的核式结构模型. B.原子核内有中子存在. C.电子是原子的组成部分. D.原子核是由质子和中子组成的. 【解析】英国物理学家卢瑟福的α粒子散射实验的结果是绝大多数α粒子穿过金箔后基本上仍沿原方向前进,但有少数α粒子发生较大的偏转。α粒子散射实验只发现原子核可以再分,但并不涉及原子核内的结构。查德威克在用α粒子轰击铍核的实验中发现了中子,卢瑟福用α粒子轰击氮核时发现了质子。 【答案】AC 考点二、玻尔的氢原子模型 要点诠释: 1、玻尔的三条假说 (1)轨道量子化:原子核外电子的可能轨道是某些分立的数值; (2)能量状态量子化:原子只能处于与轨道量子化对应的不连续的能量状态中,在这些状态中,原子是稳定的,不辐射能量; (3)跃迁假说:原子从一种定态向另一种定态跃迁时,吸收(或辐射)一定频率的光子,光子能量21E h E E ν==-。 2、氢原子能级 (1)氢原子在各个能量状态下的能量值,叫做它的能级。最低的能级状态,即电子在离原子核最近的轨道上运动的状态叫做基态,处于基态的原子最稳定,其他能级叫激发态。 (2)氢原子各定态的能量值,为电子绕核运动的动能E k 和电势能E p 的代数和。由1 2 n E E n =和E 1=-13.6 eV 可知,氢原子各定态的能量值均为负值。因此,不能根据氢原子的能级公式12n E E n =得出氢原子各定态能量与n 2成反比的错误结论。 (3)氢原子的能级图:

滑块—滑板模型

高三物理专题复习:滑块一滑板模型 典型例题 例1. 如图所示,在粗糙水平面上静止放一长L质量为M=1kg的木板B, —质量为 m=1Kg的物块A以速度v0=2.0m/s滑上长木板B的左端,物块与木板的摩擦因素卩 1=0.1、木板与地面的摩擦因素为卩2=0.1,已知重力加速度为g=10m/s , 求:(假设板的长度足够长) (1)物块A、木板B的加速度; (2)物块A相对木板B静止时A运动的位移;人 ---------- _B (3)物块A不滑离木板B,木板B至少多长? "TT/TTTTTTTTT/TTTTTTTT1 考点:本题考查牛顿第二定律及运动学规律 考查:木板运动情况分析,地面对木板的摩擦力、木板的加速度计算,相对位移计算。 解析:(1)物块A的摩擦力:f A二fmg =1N A的加速度:aj - - -1m/ s 方向向左 m 木板B受到地面的摩擦力:f地二」2(M - m)g =2N - f A 故木板B静止,它的加速度a2=0 2 (2)物块A的位移:s二二^=2m 2a (3)木板长度:L亠S = 2m 拓展1. 在例题1中,在木板的上表面贴上一层布,使得物块与木板的摩擦因素卩 3=0.4,其余条件保持不变,(假设木板足够长)求: (1)物块A与木块B速度相同时,物块A的速度多大? (2)通过计算,判断AB速度相同以后的运动 情况; A _____________________ B (3)整个运动过程,物块A与木板B相互摩

高三物理专题复习:滑块一滑板模型 擦产生的摩擦热多大? 考点:牛顿第二定律、运动学、功能关系

解析:对于物块 A : f A = %mg =4N 1分 -0 解析:(1)A 、B 动量守恒,有: mv 0 = (M - m )v mv 0 解得:"Lf" (2)由动能定理得: 1 2 1 2 对 A: -叫 mgS A mv mv 0 加速度: aA - - - J 4g -4.0m/ s ,方向向左。 1 分 m 对于木板:1 『地二 ”2( m M )^ = 2N 1 分 加速度:a C =2.0m / si 方向向右。 物块A 相对木板B 静止时,有:a B h = v 2 - a C l 解得运动时间:鮎=1/3.s , V A = VB = aBb = 2 / 3m / s (2)假设AB 共速后一起做运动, a 二」2 (M ― - -1m/s 2 (M m) 物块A 的静摩擦力: 二 ma = 1N :: f A 所以假设成立,AB 共速后一起做匀减速直线运动。 2 2 (3)共速前A 的位移:S A =V A V ° 木板B 的位移:S B V B 1 m 2a B 9 4 所以: J 3 mg(S A - S B ) J 3 拓展2: 在例题1中,若地面光滑,其他条件保持不变,求: (1) 物块A 与木板B 相对静止时,A 的速度和位移多大? (2) 若物块A 不能滑离木板 B,木板的长度至少多大? 物块A 与木板B 摩擦产生的热量多大? 动量守恒定律、动能定理、能量守恒定律 相对位移与物块、木板位移的关系,优 (3) 考点: 考查: 物块、木板的位移计算,木板长度的计算, 选公式列式计算。 对B: 1 2 -叫mgS B Mv A …f 地 M

高中物理选修3-5课时作业5:18.4 波尔的原子模型

18.4 玻尔的原子模型 A 组(反馈练) 1.α根据玻尔理论,某原子的电子从能量为E 的轨道跃迁到能量为'E 的轨道,辐射出波长为λ的光,以h 表示普朗克常量,c 表示真空中的光速,则'E 等于( ) A .E h c λ - B .E h c λ + C .c E h λ - D .c E h λ + 2.用光子能量为E 的光束照射容器中的氢气,氢原子吸收光子后,能发射频率为123123v v v v v v <<、、的三种光子,且。入射光束中光子的能量应是( ) A .3hv B .12()h v v + C .23()h v v + D .123()h v v v ++ 3.氢原子辐射出一个光子后,根据玻尔理论,下列判断正确的是( ) A .电子绕核旋转的轨道半径增大 B .电子的动能减少 C .氢原子的电势能增大 D .氢原子的能级减小 4.氢原子的基态能量为1E ,下列四个能级图,正确代表氢原子的是( ) 5.若氢原子从能级A 跃迁到能级B 时,吸收频率为1v 的光子,若从能级A 跃迁到能级C 时,释放频率为2v 的光子。已知21v v >,而氢原子从能级C 跃迁到能级B 时,则( ) A .释放频率为21v v -的光子 B .释放频率为21v v +的光子 C .吸收频率为21v v -的光子 D .吸收频率为21v v +的光子 6.图为氢原子n=1、2、3、4的各个能级示意图。处于n=4能量状态的氢原子,当它向较低能级发生跃迁时,发出的光子能量可能为( ) A .2.55 eV B .13.6 eV C .12.75 eV D .0.85 eV

高中物理滑板滑块专题练习

滑板滑块专题练习 1、如图所示,倾角α=30°的足够长光滑斜面固定在水平面上,斜面上放一长L=1.8 m、质量M =3 kg的薄木板, 木板的最上端叠放一质量m=1 kg的小物块,物块与木板间的动摩擦因数μ=.对木板施加沿斜面向上的恒力F,使木板沿斜面由静止开始做匀加速直线运动.设物块与木板间最大静摩擦力等于滑动摩擦力,取重力加速度g=10 m/s2. (1)为使物块不滑离木板,求力F应满足的条件; (2)若F=37.5 N,物块能否滑离木板?若不能,请说明理由;若能,求出物块滑离木板所用的时间及滑离木板后沿斜面上升的最大距离. 2、如图甲所示,有一块木板静止在足够长的粗糙水平面上,木板质量为M=4kg,长为L=1.4m;木块右端放的一小滑块,小滑块质量为m=1kg,可视为质点.现用水平恒力F作用在木板M右端,恒力F取不同数值时,小滑块和木板的加速度分别对应不同数值,两者的a﹣F图象如图乙所示,取g=10m/s2.求: (1)小滑块与木板之间的滑动摩擦因数,以及木板与地面的滑动摩擦因数. (2)若水平恒力F=27.8N,且始终作用在木板M上,当小滑块m从木板上滑落时,经历的时间为多长. 3、如图所示一足够长的光滑斜面倾角为37°,斜面AB与水平面BC平滑连接。质量m=1 kg可视为质点的物体置于水平面上的D点,D点距B点d=7 m,物体与水平面间的动摩擦因数为0.4。现使物体受到一水平向左的恒力F=6.5 N作用,经时间t=2 s后撤去该力,物体经过B点时的速率不变,重力加速度g取10 m/s2, sin 37°=0.6,求:

(1)撤去拉力F后,物体经过多长时间经过B点? (2)物体最后停下的位置距B点多远? 4、如图(a)所示,在足够长的光滑水平面上,放置一长为L=1m、质量为m1=0.5kg的木板A,一质量为m2=1kg的物体B以初速度v0滑上木板A上表面的同时对木板A施加一个水平向右的力F,A与B之间的动摩擦因数为μ=0.2, g=10m/s2,物体B在木板A上运动的路程s与力F的关系如图(b)所示.求v0、F1、F2. 5、如图所示,质量为M的长木板,静止放置在粗糙水平地面上,有一个质量为m、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v﹣t图象分别如图中的折线acd和bcd所示,a、b、c、d点的坐标为a(0,10)、b(0,0)、c(4,4)、d(12,0).根据v﹣t图象,求: (1)物块冲上木板做匀减速直线运动的加速度大小a1,木板开始做匀加速直线运动的加速度大小为a2,达相同速度后一起匀减速直线运动的加速度大小为a3; (2)物块质量m与长木板质量M之比; (3)物块相对长木板滑行的距离△s. 6、质量为 10kg的物体在F=200N的水平推力作用下,从粗糙斜面的底端由静止开始沿斜面运动,斜面固定不动,与水平地面的夹角θ=37°.力F作用2秒钟后撤去,物体在斜面上继续上滑了1.25秒钟后,速度减为零.求:物体与斜面间的动摩擦因数μ和物体的总位移S.(已知 sin37°=0.6,cos37°=0.8,g=10m/s2)

高中物理选修3-5教学设计 2.3 玻尔的原子模型 教案

2.3 玻尔的原子模型 知识与技能 (1)了解玻尔原子理论的主要内容; (2)了解能级、能量量子化以及基态、激发态的概念。 过程与方法:通过玻尔理论的学习,进一步了解氢光谱的产生。 情感、态度与价值观:培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 教学重点:玻尔原子理论的基本假设。 教学难点:玻尔理论对氢光谱的解释。 教学方法:教师启发、引导,学生讨论、交流。 课时安排 2课时 教学过程 引入新课: 1、α粒子散射实验的现象是什么? 2、原子核式结构学说的内容是什么? 3、卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 新课教学: 1、玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的) (2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量)(本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可 能轨道半径和电子在各条轨道上运动时的能量(包括动能和势能)公式:轨道半径: 12r n r n =

人教版高中物理-滑块--滑板模型专题

《滑块—滑板模型专题练习》 1.如图所示,一质量M =50kg、长L=3m的平板车静止在光滑水平地面上,平板车上表面距地面的高度h=1.8m。一质量m=10kg可视为质点的滑块,以v0=7.5m/s的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.5,取g =10m/s2。 (1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小; (2)计算说明滑块能否从平板车的右端滑出。 2.如图,A为一石墨块,B为静止于水平面的足够长的木板,已知A的质量m A和B的质量m B均为2kg,A、B之间的动摩擦因数μ1 = 0.05,B与水平面之间的动摩擦因数μ2=0.1 。t=0时,电动机通过水平细绳拉木板B,使B做初速度为零,加速度a B=1m/s2的匀加速直线运动。最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g=10m/s2。求: (1)当t1=1.0s时,将石墨块A轻放在木板B上,此时A的加速度a A大小; (2)当A放到木板上后,保持B的加速度仍为a B=1m/s2,此时木板B所受拉力F的大小;(3)当B做初速度为零,加速度a B=1m/s2的匀加速直线运动,t1=1.0s时,将石墨块A轻放在木板B上,则t2=2.0s时,石墨块A在木板B上留下了多长的划痕? 3.如图,一块质量为M = 2kg、长L = 1m的匀质木板放在足够长的光滑水平桌面上,初始时速度为零.板的最左端放置一个质量m = 1kg的小物块,小物块与木板间的动摩擦因数为μ = 0.2,小物块上连接一根足够长的水平轻质细绳,细绳跨过位于桌面边缘的定滑轮(细绳与滑轮间的摩擦不计,木板与滑轮之间距离足够长,g = 10m/s2)。 ⑴若木板被固定,某人以恒力F= 4N向下拉绳,则小木块滑离木板所需要的时间是多少? ⑵若木板不固定,某人仍以恒力F= 4N向下拉绳,则小木块滑离木板所需要的时间是多少? 4、一个小圆盘静止在桌布上,桌布位于一方桌的水平桌面的中央。桌布的一边与桌的AB 边重合,如图所示。已知盘与桌布间的动摩擦因数为μ 1 ,盘与桌面间的动摩擦因数为μ 2 。现突然以恒定加速度a将桌布沿桌面抽离 桌面,加速度方向水平且与AB边垂直。若圆盘 恰好未从桌面掉下,求加速度a的大小 (重力加速度为g)。 F M m A B a

氢原子能级模型分类解析

氢原子能级模型分类解析 原子物理学是高考的必考内容,而氢原子的能级是考查重点,本文想结合高考题对氢原子能级试题进行分类解析。 1.发光种类 例1如图所示为氢原子的能级图,用光子能量为13.07 eV的光照射一群处于基态的氢原子,可能观测到氢原子发射的不同波长有多少种? ( ) A.15 B.10 C.4 D.1 解析由于照射光子能量为13.07 eV=E s—E1,用该频率的光子照射一群处于基态的氢原子,氢原子会跃迁到n=5的激发态,氢原子从n=5的能态向低能态跃迁可发出10种不同波长的光。答案选B。 2.光子总数 例2现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假定处在量子数为n的激发态的氢原 子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的。( ) A.22OO B.2000 C.1200 D.2400 解析量子数为4的氢原子总数为1200个,共分成3部分。其中第一部分400个氢原子直接跃迁到基态,发出400个光子;第二部分400个氢原子先跃迁到量子数为2的激发态,发出400个光子,接着再跃迁到基态,发出400个光子,共发出800个光子;第三部分400个氢原子先跃迁到量子数为3的激发态,发出400个光子,其中200个再

跃迁到基态,发出200个光子,另外200个先跃迁到量子数为2的激发态,发出200个光子,接着再跃迁到基态,发出200个光子,共发出1000个光子。三部分在此过程中发出的光子总数是2200个。选项A正确。 3.光子能量 例3 图中画出了氢原子的4个能级,并注明了相应的能量E 处在n=4的能级的一群氢原子向低能级跃迁时,能够发出若干种不同频率的光波。已知金属钾的逸出功为2.22eV。在这些光波中。能够从金属钾的表面打出光电子的总共有 ( ) A.二种 B.三种 C.四种 D.五种 解析处在n=4的能级的一群氢原子向低能级跃迁时,能够发出六种不同频率的光波。相应的光子能量分别为:E4-E3=0.66 eV,E4-E2=2.55 eV,E4-E1=12.75 eV,E3-E2=1.89 eV,E3-E1=12.09 eV,E2- E1=10.20 eV,已知金属钾的逸出功为2.22 eV。在这些光子中,能够从金属钾的表面打出光电子的总共有四种。答案选C。 4.电离能 例4氢原子的能级图如图所示。欲使一处于基态的氢原子释放出一个电子而变成氢离子。该氢原子需要吸收的能量至少是 ( )

滑板-滑块模型专题

(滑板-滑块模型专题)2015.11 1、(2011天津第2题).如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静 止地向右做匀减速直线运动,运动过程中B 受到的摩擦力 A .方向向左,大小不变 B .方向向左,逐渐减小 C .方向向右,大小不变 D .方向向右,逐渐减小 2、如图所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦。现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为 ( ) A .物块先向左运动,再向右运动 B .物块向右运动,速度逐渐增大,直到做匀速运动 C .木板向右运动,速度逐渐变小,直到做匀速运动 D .木板和物块的速度都逐渐变小,直到为零 3、(新课标理综第21题).如图,在光滑水平面上有一质量为m 1的足够长的木板,其上叠放一质量为m 2的木块。假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。现给木块施加一随时间t 增大的水平力F=kt (k 是常数),木板和木块加速度的大小分别为a 1和a 2,下列反映a 1和a 2变化的图线中正确的是() 4、如图所示,A 、B 两物块的质量分别为 2 m 和 m, 静止叠放在水平地面上. A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为0.5μ. 最大静摩擦力等于滑动摩擦力,重力加速度为 g. 现对 A 施加一水平拉力 F,则( ) A 当 F < 2 μmg 时,A 、 B 都相对地面静止 B 当 F =5μmg /2 时, A 的加速度为μg /3 C 当 F > 3 μmg 时,A 相对 B 滑动 D 无论 F 为何值,B 的加速度不会超过0.5μg 5.一质量为M=4kg 的木板静止在光滑的水平面上,一个质量为m=1kg 的滑块(可以视为质点)以某一初速度V 0=5m/s 从木板左端滑上木板,二者之间的摩擦因数为μ=0.4,经过一段时间的 相互作用,木块恰好不从木板上滑落,求木板长度为多少? 6. 如图所示,质量M=0.2kg 的长木板静止在水平面上,长木板与水平面间的动摩擦因数μ2=0.1.现有一质量m=0.2kg 的滑块以v 0=1.2m/s 的速度滑上长板的左端,小滑块与长木板间的动摩擦因数μ1=0.4.滑块最终没有滑离长木板,求滑块在开始滑上长木板到最后静止下来的 过程中,滑块滑行的距离是多少?(以地面为参考系,g=10m/s 2 )? 7.如图所示,m 1=40kg 的木板在无摩擦的地板上,木板上又放m 2=10kg 的石块,石块与木板间的动摩擦因素μ=0.6。试问: (1)当水平力F=50N 时,石块与木板间有无相对滑动? (2)当水平力F=100N 时,石块与木板间有无相对滑动?(g=10m/s 2 )此时m 2的加速度为 多大? 8. 如图所示,质量为M=4kg 的木板放置在光滑的水平面上,其左端放置着一质量为 m=2kg

(完整word版)选修3-5玻尔的原子模型习题(含答案)

18.4玻尔的原子模型课后作业 1.氢原子从基态跃迁到激发态时,下列论述中正确的是(B) A.动能变大,势能变小,总能量变小 B.动能变小,势能变大,总能量变大 C.动能变大,势能变大,总能量变大 D.动能变小,势能变小,总能量变小 2.下列叙述中,哪些符合玻尔理论(ABC) A.电子可能轨道的分布是不连续的 B.电子从一条轨道跃迁到另一个轨道上时,原子将辐射或吸收一定的能量 C.电子的可能轨道上绕核做加速运动,不向外辐射能量 D.电子没有确定的轨道,只存在电子云 3.大量原子从n=5的激发态向低能态跃迁时,产生的光谱线数是( B )A.4条B.10条C.6条D.8条 4.对玻尔理论的评论和议论,正确的是(BC) A.玻尔理论的成功,说明经典电磁理论不适用于原子系统,也说明了电磁理 论不适用于电子运动 B.玻尔理论成功地解释了氢原子光谱的规律,为量子力学的建立奠定了基础 C.玻尔理论的成功之处是引入量子观念 D.玻尔理论的成功之处,是它保留了经典理论中的一些观点,如电子轨道的 概念 5.氢原核外电子分别在第1、2条轨道上运动时,其有关物理量的关系是(BC )A.半径r1>r2 B.电子转动角速度ω1>ω2 C.电子转动向心加速度a1>a2 D.总能量E1>E2 6.已知氢原子基态能量为-13.6eV,下列说法中正确的有( D ) A.用波长为600nm的光照射时,可使稳定的氢原子电离 B.用光子能量为10.2eV的光照射时,可能使处于基态的氢原子电离 C.氢原子可能向外辐射出11eV的光子 D.氢原子可能吸收能量为 1.89eV的光子 7.氢原子从能级A跃迁到能级B,吸收频率v1的光子,从能级A跃迁到能级C 释放频率v2的光子,若v2>v1则当它从能级C跃迁到能级B将(D)A.放出频率为v2-v1的光子 B.放出频率为v2+ v1的光子 C.吸收频率为v2- v1的光子 D.吸收频率为v2+v1的光子 8.已知氢原子的基态能量是E1=-13.6eV,第二能级E2=-3.4eV.如果氢原子吸收 ______eV的能量,立即可由基态跃迁到第二能级.如果氢原子再获得 1.89eV的能量,它还可由第二能级跃迁到第三能级,因此氢原子第三能级E3=_____eV. 10.2 -1.51 1

高中物理选修3-5玻尔的原子模型教案课程设计

第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.4 玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可

高中物理-滑块滑板模型新选.

高中物理滑块滑板模型 1.在水平地面上,有一质量为M=4kg、长为L=3m的木板,在水平向右F=12N的拉力作 用下,从静止开始经t=2s速度达到υ=2m/s,此时将质量为m=3kg的铁块(看成质点)轻轻地放在木板的最右端,如图所示.不计铁块与木板间的摩擦.若保持水平拉力不变,请通过计算说明小铁块能否离开木板若能,进一步求出经过多长时间离开木 板 解答:设木板加速运动的加速度大小为a1, 由v=a1t得,a1=1m/s2. 设木板与地面间的动摩擦因数为μ,由牛顿第二定律得, F-μMg=Ma1 代入数据解得μ=. 放上铁块后,木板所受的摩擦力f2=μ(M+m)g=14N>F,木板将做匀减速运动. 设加速度为a2,此时有: f2-F=Ma2 代入数据解得a2=0.5m/s2. 设木板匀减速运动的位移为x,由匀变速运动的公式可得, x=v2/2 a2=4m 铁块静止不动,x>L,故铁块将从木板上掉下. 设经t′时间离开木板,由 L=vt′- 1/2a2t′2 代入时间解得t′=2s(t′=6s舍去). 答:铁块能从木板上离开,经过2s离开木板. 2. 如图所示,两木板A、B并排放在地面上,A左端放一小滑块,滑块在F=6N的水平力作用下由静止开始向右运动.已知木板A、B长度均为l=1m,木板A的质量M A=3kg,小滑块及木板B的质量均为m=1kg,小滑块与木板A、B间的动摩擦因数均为μ1=,木板A、B与地面间的动摩擦因数均为μ2=,重力加速度g=10m/s2.求:(1)小滑块在木板A上运动的时间; (2)木板B获得的最大速度. 解答:解:(1)小滑块对木板A的摩擦力 木板A与B整体收到地面的最大静摩擦力

高2018届高三第二轮专题复习物理--滑块和滑板问题小练习

第四讲 滑块和滑板小练习1 学号 m 、2m 的A 、B 两个物体,A 、B 间的最大静摩擦力 以同 一加速度运动,则拉力 F 的最大值为( ) B . 2 卩 mg D . 4 卩 mg 面之间的动摩擦因数为扌最大静摩擦力可认为等于滑动摩擦力?若将水平力作用在 好要相对B 滑动,此时A 的加速度为a 1;若将水平力作用在 B 上,使B 刚好要相对A 滑动,此 时B 的加速度为a 2,贝U a 1与a 2的比为( ) A . 1 : 1 B . 2 : 3 C . 1 : 3 D . 3 : 2 3. (多选)如图2所示,A 、B 两物块的质量分别为 2m 和m ,静止叠放在水平地面上. A 、B 间的 1 动摩擦因数为 U, B 与地面间的动摩擦因数为 2 U 最大静摩擦力等于滑动摩擦力,重力加速度为 g. 1 D .无论F 为何值,B 的加速度不会超过2 Ug 4. 如图甲所示,静止在光滑水平面上的长木板 B (长木 板足够长)的左端放着小物块 A.某时刻,A 受到水平向右的外力 F 作用,F 随时间t 的变化规律如图乙所示,即 F = kt ,其中k 为已知常 数.若物体之间的滑动摩擦力 F f 的大小等于最大静摩擦力,且 A 、 B 的质量相等,则下列图中 可以定性地描述长木板 B 运动的vt 图象的是( ). 5?如图甲所示,在水平地面上有一长木板 之间的最大静摩擦力都和滑动摩擦力相等. 图乙所示,重力加速度 g 取10 m/s 2,则下列说法中正确的是 ( A . A 的质量为0.5 kg B. B 的质量为1.5 kg 1. 为 班级 --------------- 姓名 如图所示,光滑水平面上放置质量分别为 卩mg 现用水平拉力 F 拉B ,使A 、B A .卩 mg C . 3 U mg 2. 如图所示,物块 A 放在木板B 上,A 、 B 的质量均为m , A 、B 之间的动摩擦因数为 A 上,使A 刚 现对A 施加一水平拉力 F ,则( A .当 B .当 C .当 ) F<2卩mg 寸,A 、B 都相对地面静止 5 1 F = 2卩mg 寸,A 的加速度为3^g F>3卩mg 寸,A 相对B 滑动 A F B ,其上叠放木块 A ,假定木板与地面之间、 用 一水平力F 作用于B , A 、B 的加速度与 ) 木块和木板 F 的关系如 A D

高考物理中的传送带模型和滑块木板模型

传送带模型 1.模型特征 (1)水平传送带模型 项目图示滑块可能的运动情况 情景1(1)可能一直加速 (2)可能先加速后匀速 情景2(1)v0>v时,可能一直减速,也可能先减速再匀速 (2)v0v返回时速度为v,当v0

分析传送带问题的关键 是判断摩擦力的方向。要注意抓住两个关键时刻:一是初始时刻,根据物体速度v物和传送带速度v传的关系确定摩擦力的方向,二是当v物=v传时,判断物体能否及传送带保持相对静止。 1.(多选)如图,一质量为m的小物体以一定的速率v0滑到水平传送带上左端的A点,当传送带始终静止时,已知物体能滑过右端的B点,经过的时间为t0,则下列判断正确的是( ). A.若传送带逆时针方向运行且保持速率不变,则物 体也能滑过B点,且用时为t0 B.若传送带逆时针方向运行且保持速率不变,则物 体可能先向右做匀减速运动直到速度减为零,然后向左加速,因此不能滑过B点 C.若传送带顺时针方向运行,当其运行速率(保持不变)v=v0时,物体将一直做匀速运动滑过B点,用时一定小于t0 D.若传送带顺时针方向运行,当其运行速率(保持不变)v>v0时,物体一定向右一直做匀加速运动滑过B点,用时一定小于t0

2.如图甲所示,绷紧的水平传送带始终以恒定速率v1运行。初速度大小为v2的小物块从及传送带等高的光滑水平地面上的A处滑上传送带。若从小物块滑上传送带开始计时,小物块在传送带上运 动的v-t图象(以地面为参考系)如图乙所 示。已知v2>v1,则( ) A.t2时刻,小物块离A处的距离达到最大 B.t2时刻,小物块相对传送带滑动的距离达到最大 C.0~t2时间内,小物块受到的摩擦力方向先向右后向左 D.0~t3时间内,小物块始终受到大小不变的摩擦力作用 3.如图所示,水平传送带以速度v1匀速运动,小物体P、Q由通过定滑轮且不可伸长的轻绳相连,t=0时刻P在传送带左端具有速度v2,P及定滑轮间的绳水平,t=t0时刻P离开传送带。不计定滑轮质量和摩擦,绳足够长。正确描述小物体P速度随时间变化的图象可能是( ) 4.物块m在静止的传送带上匀速下滑时,传送带突然转动,传送带转动的方向如图中箭头所示。则传送带转动后( ) A.物块将减速下滑 B.物块仍匀速下滑 C.物块受到的摩擦力变小 D.物块受到的摩擦力变大 5.如图为粮袋的传送装置,已知AB间长度为L,传送带及水 平方向的夹角为θ,工作时其运行速度为v,粮袋及传送带 间的动摩擦因数为μ,正常工作时工人在A点将粮袋放到运 行中的传送带上,关于粮袋从A到B的运动,以下说法正确 的是(设最大静摩擦力等于滑动摩擦力) ( ). A.粮袋到达B点的速度及v比较,可能大,也可能相等或小

高中物理 传送带模型 滑块木板模型

传送带模型 1.水平传送带模型 12 ①水平传送带问题:求解的关键在于正确分析出物体所受摩擦力.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻. ②倾斜传送带问题:求解的关键在于正确分析物体与传送带的相对运动情况,从而判断其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变. 小结: 分析处理传送带问题时需要特别注意两点:一是对物体在初态时(静止释放或有初速度的释放)所受滑动摩擦力的方向的分析;二是对物体与传送带共速时摩擦力的有无及方向的分析. 对于传送带问题,一定要全面掌握上面提到的几类传送带模型,尤其注意要根据具体情况适时进行讨论,看一看受力与速度有没有转折点、突变点,做好运动过程的划分及相应动力学分析.

3.传送带问题的解题思路模板 [分析物体运动过程] 例1:(多选)如图所示,足够长的传送带与水平面夹角为θ,在传送带上某位置轻轻放置一小木块,小木块与传送带间动摩擦因素为μ,小木块速度随时间变化关系如图所示,v 0、t 0已知,则( ) A .传送带一定逆时针转动 B .0 0tan cos v gt μθθ =+ C .传送带的速度大于v 0 D .t 0后滑块的加速度为0 2sin v g t θ- [求相互运动时间,相互运动的位移] 例2:如图所示,水平传送带两端相距x =8 m ,工件与传送带间的动摩擦因数μ=0.6,工件滑上A 端时速度v A =10 m/s ,设工件到达B 端时的速度为v B 。(取g =10 m/s 2) (1)若传送带静止不动,求v B ; (2)若传送带顺时针转动,工件还能到达B 端吗? 若不能,说明理由;若能,求到达B 点的速度v B ; (3)若传送带以v =13 m/s 逆时针匀速转动,求v B 及工件由A 到B 所用的时间。 例3:某煤矿运输部有一新采购的水平浅色足够长传送带以4.0 m /s 的恒定速度运动,若使该传送带改做加速度大小为3.0 m/s 2的匀减速运动,并且在传送带开始做匀减速运动的同时,将一煤块(可视为质点)无初速度放在传送带上.已知煤块与传送带间的动摩擦因数为0.10,重力加速度取10 m/s 2,求煤块在浅色传送带上能留下的痕迹长度和相对于传送带运动的位移大小?(计算结果保留两位有效数字)

动量和能量中的滑板滑块模型专题(新、选)

动量和能量中的滑块—滑板模型 一、三个观点及其概要 ——— 解决力学问题的三把金钥匙 二、思维切入点 1、五大定律和两大定理是该模型试题所用知识的思维切入点。该模型试题一般主要是考查学生对上述五大定律和两大定理的综合理解和掌握,因此,学生在熟悉这些定律和定理的内容、研究对象、表达式、适用条件等基础上,根据试题中的已知量或隐含已知量选择解决问题的最佳途径和最简捷的定律,以达到事半功倍的效果。 2、由于滑块和木板之间依靠摩擦力互相带动,因此,当滑块和木板之间的摩擦力未知时,根据动能定理、动量定理或能量守恒求摩擦力的大小是该模型试题的首选思维切入点。 3、滑块和木板之间摩擦生热的多少和滑块相对地面的位移无关,大小等于滑动摩擦力与滑块相对摩擦面所通过总路程之乘积是分析该模型试题的巧妙思维切入点。若能先求出由于摩擦生热而损失的能量,就可以应用能量守恒求解其它相关物理量。 4、确定是滑块带动木板运动还是木板带动滑块运动是分析该模型运动过程的关键切入点之一.当(没有动力的)滑块带动木板运动时,滑块和木板之间有相对运动,滑块依靠滑动摩...擦力.. 带动木板运动;当木板带动滑块运动时,木板和滑块之间可以相对静止,若木板作变速运动,木板依靠静摩擦力....带动滑块运动。 三、专题训练 1.如图所示,右端带有竖直挡板的木板B ,质量为M ,长L =1.0m ,静止在光滑水平面上.一个质量为m 的小木块(可视为质点)A ,以水平速度0 4.0m /s v 滑上B 的左端,而后与其右端挡板碰撞,最后恰好滑到木板B 的左端.已知M =3m ,并设A 与挡板碰撞时无机械能损失,碰撞时间可忽略(g 取2 10m /s ).求: (1)A 、B 最后的速度; (2)木块A 与木板B 间的动摩擦因数. 2.如图所示,光滑水平地面上停着一辆平板车,其质量为2m ,长为L ,车右端(A 点)有一块静止的质量为m 的小金属块.金属块与车间有 思想观点 规律 研究对象 动力学观点 牛顿运动(第一第二第三)定律及运动学公式 单个物体或整体 动量观点 动量守恒定律 系统 动量定理 单个物体 能量观点 动能定理 单个物体 机械能守恒定律能量守恒定律 单个(包含地球)或系统

相关主题
文本预览
相关文档 最新文档