当前位置:文档之家› 电力系统小干扰稳定性分析

电力系统小干扰稳定性分析

论电力系统稳定性

论电力系统稳定性 发表时间:2018-10-19T09:07:14.800Z 来源:《电力设备》2018年第17期作者:姚彦枝 [导读] 摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。 摘要:随着电力工业的迅速发展,我国发电机、变压器单机容量不断增大,电力系统正朝着“大机组、超高压、大电网”的方向发展。在当今电力作为推动社会飞速发展的主动力时代,电力网是否稳定对社会的生产、生活、发展起着决定性的影响。因此,研究电力系统在各种条件下的稳定性问题对社会的发展具有特别重要的意义。 关键词:电力系统;稳定性;措施 1电力系统稳定性的作用及要求 1.1电力系统稳定性的作用 (1)对于企业的调配与服务有优化作用。之所以说电力系统稳定性的提供对企业的调配与服务功能有一定程度的优化作用,是因为相关人员在电力系统应用中,可以根据具体运行情况来开展工作,根据不同类型的电力设备特点,来实现设备利用的最优化,为电力企业工作效率的提升做好准备。相关人员可以全面掌握设备的利用情况,以此来对设备进行合理而科学的配置,实现设备的高效率运行,从而还能降低企业成本的使用率。对于传统电力技术而言,稳定性技术式是一个大胆创新,相关人员在实际作业中可以利用该技术实现对电力设备的协调配置。 (2)有利于促进电力企业的高效发展。电力系统稳定性对电力企业的经济效益具有促进作业。众所周知,电对于人们的生活是何等重要,可以说生活处处都需要电。一旦电力系统稳定性受到冲击,便会发生大面积停电的安全事故,这种现状会导致电力系统的运行受到干扰,对企业的生产,人们的生活都起到了很大的影响。电力系统稳定性技术则可以在这种情况下,对相关干扰进行及时排除,保障用户的正常用电。 1.2电力系统稳定性的要求 电力系统稳定性要求电网结构与设备的选用必须科学合理,供电可靠性必须相对较高,工作人员的技术也必须相对过硬,以此来保证电力系统的正常运行,其中,工作人员的技术具有关键作用,他们必须在实际操作前,做好相关准备,采取有效措施来应对突发故障。 2确保电力系统稳定性的措施 目前,我国电力系统已步入大电网、大机组、超高压、远距离输电时代,随着电力系统的发展及其互联,电力系统稳定问题也将越来越突出。有关电力系统稳定问题的研究已成为国内外电力界的热门课题之一。因此,在当前,研究电力系统稳定问题的机理、以及提高电力系统稳定性的控制措施,具有重要的意义。 2.1对送电系统的控制 改善发电机励磁调节系统的特性:由电力系统功率极限的简单表达式可知,减小发电机的电抗,可以提高电力系统功率极限和输送能力。 改善原动机的调节特性:我们根据发电机功角变化对于再热式轮机可以采用快速调节轮机汽门与带有微机控制和带有功角检测仪的高速系统来消除故障后发电机输入以及输出功率之间的不平衡,交替关、开快速汽门,以缩短振荡时间,提高暂态稳定。 快速操作汽阀(快关):当系统受到较大干扰时,输出的电磁功率突变,这时,如果原动机的调节装置非常的准确、灵敏和快速,使得原动机自身的功率能跟上相应的变化的电磁功率,则能极大让系统稳定性得以提高[2]。 切机:提高系统暂态稳定的基本措施包括减小原发电机大轴不平衡功率。方法有两个一个是减少原发动机的输入功率,第二个是增大发电机发出的电磁功率,当系统有充足的备用电机时,我们同时切除故障线,同时切除部门联锁发电机,这样就能有效的增大系统稳定性。 2.2采用附加装置提高电力系统的稳定性 在输电线路串联电容:利用电容器容抗和输电线路感抗性质相反的特点,在输电线路中串联电容补偿线路中的电感来提高超高压远距离输电的功率极限,从而起到提高系统稳定的作用。 在输电线路中并联电抗:改善远距离输电系统稳定性的重要措施之一就是将电抗并联到输电线路中。因为随着输电线路长度的增加,产生的电抗就会越大,随之容抗也会变大,而增加的电容则会给线路带来大量的无功,当线路负荷较轻情况下,线路中大量的无功会造成线路末端电压过高。为改善这种情况,我们将电抗器并联到输电线路上来吸收由长距离线路所产生的大电容造成的无功功率,这样,可以减小发电机的运行功角,提高发电机的电势从而提高长距离输电系统的稳定性。 将变压器中性点改为小阻抗接地:电力系统发生接地短路情况时产生的暂态稳定和变压器中性点接地情况有着重要的联系。为了提高中性点直接接地系统的稳定性,我们利用电流流过阻抗会消耗有功功率原理将系统中变压器的中性点改为经小阻抗接地,这样系统短路时产生的零序电流经过变压器中性点小阻抗后消耗有功这就增加了发电机的输出电磁功率,减小了发电机转轴上存在的不平衡功率,进而提高了系统的暂态稳定。 2.3非线性控制技术在暂态稳定控制中的应用 为提高电力系统运行的稳定性,除应对电网进行合理的规划、建设、采取紧急措施之外,最主要的就是对相关部件采取有效的控制手段。根据电力系统采用模型的不同可选取不同的方法。通常对非线性系统进行控制的方法有: Lyapunov直接法:在假设非线性控制系统的原点为平衡点,寻找一个正定Lyapunov函数,,且,在此基础上求出反馈控制规律,使得,这就是正定函数的思想,当时闭环系统才会逐渐的趋向稳定。由此可见,要想使受干扰后的系统动态过程以较快的速度趋向平衡点则需要V越负越大。自适应、滑膜等控制设计都可以用Lyapunov直接法。 变结构控制方法:20世纪70年代中期科学研究者们开始研究变结构控制方法,该方法不但能有很好的全局渐进稳定性,而且它有很强的鲁棒性,能抗外部干扰和参数的摄动。该方法的基本思想是:预先选定一个超平面,利用切换函数和高速开关将电力系统的相轨迹按照一定的规律驱动到超平面上,我们将该运动定义为滑动模态,其基本思想是,利用高速开关和切换函数将系统的相轨迹按一定的趋近律驱动到一个预先选定的超平面S(X)=0(称滑行面或切换面)上,超平面上的系统运动称为滑动模态(Slidingmode),且系统的滑动模态

励磁控制与电力系统的小干扰稳定性-中国励磁专业网

励磁控制与电力系统的小干扰稳定性 中国电力科学研究院朱方 2006年7月 1. 励磁控制系统的任务 励磁控制系统最基本和最重要的任务是维持发电机端(或指定控制点)电压为给定值。 我国国家标准规定,自动电压调节器应保证同步发电机端电压静差率小于1%。这就要求励磁控制系统的开环增益(稳态增益)不小于100p.u(对水轮发电机),或200p.u(对汽轮发电机)。 主要原因有3个: 第一,保证电力系统运行设备的安全。 发电机运行规程规定大型同步发电机运行电压正常变化范围为 5%,最高电压不得高于额定值的110%。 第二,保证发电机运行的经济性。 规程规定,大型发电机运行电压不能低于额定值的90%,当发电机电压低于95%时,发电机应限负荷运行,其他电力设备也有这个问题。 第三,提高维持发电机电压能力的要求和提高电力系统稳定的要求在许多方面是一致的。 励磁控制系统的重要任务 1)励磁控制系统的重要任务是提高电力系统的稳定性。 2)电力系统稳定可分为功角(机电)稳定、电压稳定和频率稳定等。3)功角稳定包括静态稳定、动态稳定和暂态稳定。 4)励磁控制系统对静态稳定、动态稳定和暂态稳定的改善,都有显著的作用,而且也是改善电力系统稳定的措施中,最为简单、经济而有效的措施。 同步发电机励磁控制系统对提高静稳定的作用

设Ut =1.0,Us =1.0,发电机并网后运行人员不再手动去调整励磁,则无电压调节器时的静稳极限、有能维持E ’恒定的调压器时的极限、有能维持发电机端电压恒定的调压器时的静稳极限分别为:0.4、1.0和1.43。 维持发电机电压水平的要求与提高电力系统静态稳定极限的要求是一致的,是兼容的。当励磁控制系统能够维持发电机电压为恒定值时,不论是快速励磁系统,还是常规励磁系统,静态稳定极限都可以达到线路极限。 以某省电网外送断面为例,计算励磁控制对静态稳定的影响。 该省发电机原采用Eq ’恒定模型计算,后进行了励磁模型的参数实测,对励磁性能不达标的机组进行整改,全面提高了励磁控制的技术性能。该省电网外送电力的主要通道共三回500kV 线路。发电机采用Eq ’恒定和Eq ”、Ed ”变化(使用实测励磁模型参数)两种模型,外送断面的静稳极限如下。 恒定的静稳极限增加418 MW ,提高了12.1% 。 同步发电机励磁控制系统对提高暂态稳定的作用 1、提高励磁系统强励倍数可以提高电力系统暂态稳定。 Eq d s q X U E Pe δsin ∑ ?=' ' sin 'E d s X U E Pe δ∑?=t U s t X U U Pe δsin ∑ ?=?????++=+++=+++=∑∑L T T e L T T d d L T T d d X X X X X X X X X X X X X X 2121''21

电力系统稳定与控制

电力系统稳定与控制 廖欢悦电自101 2 电力系统的功能是将能量从一种自然存在的形式转换为电的形式,并将它输送到各个用户。电能的优点是输送和控制相对容易,效率和可靠性高。为了可靠供电,一个大规模电力系统必须保持完整并能承受各种干扰。因此系统的设计和运行应使系统能承受更多可能的故障而不损失负荷(连接到故障元件的负荷除外),能在最不利的可能故障情况些不知产生不可靠的广泛的连锁反应式的停电。 由此,电力系统控制所要实现的目的: 1.运行成本的控制:系统应该以最为经济的方式供电; 2.系统安全稳定运行的控制:系统能够根据不断变化的负荷变化及发电资源变化情况调整功率 分配情况; 3.供电质量的控制:必须满足包括频率、电压以及供电可靠性在内的一系列基本要求;一.电力系统的稳定性设计与基本准则 首先,一个正确设计和运行的电力系统: 1.系统必须能适应不断变化的负荷有功和无功功率需求。与其他形式的能量不同,电能不能方便地以足够数量储存。因而,必须保持适当的有功和无功的旋转备用。 2.系统应以最低成本供电并具有最小的生态影响 3.考虑到如下因素,系统供电质量必须满足一定的最低标准: a)频率的不变性 b)电压的不变性 c)可靠性水平 对于一个大的互联电力系统,以最低成本保证其稳定性运行的设计是一个非常复杂的问题。通过解决这一问题能得到的经济效益是巨大的。从控制理论的观点来看,电力系统具有非常高阶的多变量过程,运行于不断变化的环境。由于系统的高维数和复杂性,对系统作简化假定并采用恰当详细详细的系统描述来分析特定的问题是非常重要的。 二、电力系统安全性及三道防线可靠性-安全性-稳定性 电力系统可靠性:是在所有可能的运行方式、故障下,供给所有用电点符合质量标准和所需数量的电力的能力。是保证供电的综合特性(安全性和充裕性)。可靠性是通过设备投入、合理结构及全面质量管理保证的。 电力系统安全性:是指电力系统在运行中承受故障扰动的能力。通过两个特征表征(1)电力系统能承受住故障扰动引起的暂态过程并过渡到一个可接受的运行工况,不发生稳定破坏、系统崩溃或连锁反应;(2)在新的运行工况下,各种运行条件得到满足,设备不过负荷、母线电压、系统频率在允许范围内。 电力系统充裕性:是指电力系统在静态条件下,并且系统元件负载不超出定额、电压与频率在允许范围内,考虑元件计划和非计划停运情况下,供给用户要求的总的电力和电量的能力。 电力系统稳定性:是电力系统受到事故扰动(例如功率或阻抗变化)后保持稳定运行的能力。包括功角稳定性、电压稳定性、频率稳定性。 正常运行状态下,通过调度手段让电力系统保持必要的安全稳定裕度以抵御可能遭遇的干扰。要实现预防性控制,首先应掌握当前电力系统运行状态的实时数据和必要的信息,并及时分析电网在发生各种可能故障时的稳定状况,如存在问题,则应提示调度人员立即调整运行方式,例如重新分配电厂有功、无功出力,限制某些用电负荷,改变联络线的送电潮流等,以改善系统的稳定状况。 目前电网运行方式主要靠调度运行方式人员预先安排,一般只能兼顾几种极端运行方式,且往往以牺牲经济性来确保安全性。调度员按照预先的安排和运行经验监视和调整电网的运行状态,但他并不清楚当前实际电网的安全裕度,也就无法通过预防性控制来增强电网抗扰动的能力。因此,实现电力系统在线安全稳定分析和决策,得出当前电网的稳定状况、存在问题、以及相应的处理措

风电水电互补电力系统稳定性分析与计算

风电——水电互补电力系统稳定性分析与计算 摘要 本文介绍了含风力发电的风电一水电互补电力系统如何处理风力发电参数,进行稳定性分析与计算的方法,并结合新疆阿勒泰地区布尔津风电一水电互补电力系统计算实例验证其方法的正确性及可行性。 引言 近年来,由于当代科学技术的发展,加之能源短缺和环境保护等方面的影响,人类正在致力于寻找可再生的,取之不尽,用之不竭又是洁净的绿色能源,而水能与风能是绿色能源中最有发展潜力和前景的品种。同时水能与风能又都容易转化为能源的更高级形式一电能,其经济效益显著。 由于风力资源的随机性和季节性使风力发电的出力不平稳,风力发电不具备有功调节和无功调节的能力。风电的缺点也就是无风就无电,影响到风电的连续及稳定性。为了解决风电的连续性和稳定性问题就需要有一个互补系统。 在我国西北、华北、东北等内陆风区,风资源的季节分布特色大多为冬春季风大、夏秋季风小,与水能资源夏秋季丰水、冬春季枯水的季节分布正好形成互补特性,这是构建风能一水能互补系统的基础条件。如果在上述地区内,以带有蓄水调节水库的水电站为依托,在风资源丰富的地点建设适当容量的风电场,两者以电网连接实现季节性能量互补,以水库做为能源调剂手段,就能够实现风能与水能这两种最佳绿色能源的联姻,充分发挥绿色能源的优势,以风一水联手供电取代传统的水一火联合供电,这将是人类能源利用形式的历史性突破。由于阿勒泰地区的风资源和水资源具有极强的互补性,更由于阿勒泰地区具有较大的水电装机容量,而且其中有三个电站带有库容可观的调节水库,因此在该地区突破传统限制,在风电装机大大超出电网容量10%的条件下建设水电一风电互补系统,在技术上和经济上都是可行的。在我国类似阿勒泰那样资源条件的地区还有很多,都可以构建水电一风电互补系统解决供电问题,这将是对现有禁区的重要突破,有可能为阿勒泰及有类似条件地区的电源建设找到一条最为多快好省的途径。 1问题的提出 在电力系统中,传统的发电方式为水力发电和火力发电,一般均为同步电机。目前,风力发电这一新成员加入电网,一般都采用电容励磁感应异步发电机。使其分析计算复杂化。风电的加入使电网的稳定性受到影响。对风力发电机如何给定运行条件,如何建立数学模型、如何确定参数,是进行含风力发电的风电一水电互补电力系统静态和暂态及动态稳定性分析和计算的关键。本文介绍了含风力发电的风电一水电互补电力系统如何处理风力发电参数,进行稳定计算的方法。 2风力发电机的处理 电力系统是由发电厂、输电网络及电力负荷三大部分组成的能量生产、传输和使用系统。在过去的几十年间,同步发电机(水轮发电机或汽轮发电机)、输电网络及负荷的稳定计算已经成熟。只有风力发电技术在国内外都属于研究阶段,建立适合潮流计算、暂稳、动稳和静稳

电力系统小干扰稳定性分析

电力系统小干扰稳定性分析 【摘要】本文主要研究电力系统小干扰稳定性分析。阐述了电力系统小干扰稳定性对电力系统的重大意义,对电力系统小干扰稳定性的分析方法进行了总结归纳,并对各种方法的主要原理和适应性进行了详细分析,希望能够为电力系统小干扰稳定性的分析工作提供帮助。 【关键词】电力系统;小干扰稳定性 不同地区之间的电力系统的多重互联能够大大提高输电的经济性,但是这种互联电网会把很多动态问题诱发出来,系统更加复杂化,降低了稳定性。电力系统的安全运行需要满足一定的基本条件要求,例如电压、频率和小干扰等都需要有着相当的稳定性,并且这种稳定性应该是动态的,这些稳定性随着现代社会对电网的依赖越来越大而逐渐被人们重视起来。从上个世纪70年代开始,小干扰稳定性的失去就已经造成了很多严重的事故,对相关国家造成了严重的经济损失。为了保证电力系统的稳定性,保证其安全稳定运行,有必要对电力系统的小干扰稳定性进行分析,保障电力系统的安全运行。 一、电力系统小干扰稳定性分析方法 1.数值仿真法。使用一组微分方程来描述电力系统,根据电力系统扰动的特定性结合相关的数值计算方法计算系统变量及其完整的时间响应[1]。小干扰稳定性问题的本质是不能被时域响应最大程度的体现出来,造成系统稳定性下降的原因即便使用模拟仿真也不能够很好的找出来,也就无从找寻改进措施。 2.线性模型基础上的分析方法。这种方法是利用线性模型研究小干扰稳定性,使用微分方程和积分方程描述系统动态行为的变化,在稳态运行点现化,获得线性模型[2]。目前主流的电力系统小干扰稳定性分析方法就是基于线性模型的,目前来看主要有特征性分析方法和领域分析两种,前一种以状态空间模型为描述基础,后一种是基于函数矩阵的方法。 二、特征分析法 目前大多数电力系统分析软件都是暂态稳定仿真进行操作的,但是实际中相当多的限制条件约束了这种应用。相关结果受到选择的扰动或者时域响应观测量的很大影响,选择不合理时系统中的一些关键模式将不能被扰动触发,并且如果选择不合理,进行响应的观察时很多震荡模式中不明显的响应可能就是若阻尼模式[3]。因此,进行各种不同震荡模式阻尼特性分析时,单纯使用有关系系统变量时域可能会影响观测结果的准确性。同时为了有关系统震荡性质清晰的表现出来,需要对这些系统共动态过程进行长时间的仿真计算,计算量巨大。 特征分析方法把整个电力系统模拟成为线性模型,利用状态空间法,把电力系统的线性模型转换成为普通的线性系统表示。

电力系统小干扰稳定分析

第7章电力系统小干扰稳定分析 电力系统在运行过程中无时不遭受到一些小的干扰,例如负荷的随机变化及随后的发电机组调节;因风吹引起架空线路线间距离变化从而导致线路等值电抗的变化,等等。这些现象随时都在发生。和第6章所述的大干扰不同,小干扰的发生一般不会引起系统结构的变化。电力系统小干扰稳定分析研究遭受小干扰后电力系统的稳定性。 系统在小干扰作用下所产生的振荡如果能够被抑制,以至于在相当长的时间以后,系统状态的偏移足够小,则系统是稳定的。相反,如果振荡的幅值不断增大或无限地维持下去,则系统是不稳定的。遭受小干扰后的系统是否稳定与很多因素有关,主要包括:初始运行状态,输电系统中各元件联系的紧密程度,以及各种控制装置的特性等等。由于电力系统运行过程中难以避免小干扰的存在,一个小干扰不稳定的系统在实际中难以正常运行。换言之,正常运行的电力系统首先应该是小干扰稳定的。因此,进行电力系统的小干扰稳定分析,判断系统在指定运行方式下是否稳定,也是电力系统分析中最基本和最重要的任务。 虽然我们可以用第6章介绍的方法分析系统在遭受小干扰后的动态响应,进而判断系统的稳定性,然而利用这种方法进行电力系统的小干扰稳定分析,除了计算速度慢之外,最大的缺点是当得出系统不稳定的结论后,不能对系统不稳定的现象和原因进行深入的分析。李雅普诺夫线性化方法为分析遭受小干扰后系统的稳定性提供了更为有力的工具。借助于线性系统特征分析的丰富成果,李雅普诺夫线性化方法在电力系统小干扰稳定分析中获得了广泛的应用。 下面我们首先介绍电力系统小干扰稳定分析的数学基础。 李雅普诺夫线性化方法与非线性系统的局部稳定性有关。从直观上来理解,非线性系统在小范围内运动时应当与它的线性化近似具有相似的特性。 将式(6-290)所描述的非线性系统在原点泰勒展开,得 式中:()()0e e x x x f x x f x A x x ?=?=?+??==????如果()h x ?在邻域内是x ?的高阶无穷小量,则往往可以用线性系统 的稳定性来研究式(6-288)所描述的非线性系统在点e x 的稳定性[1]:

电力系统稳定性分析研究

电力系统稳定性分析研究 摘要:电力系统地域分布非常辽阔,是一个结构极为复杂的大系统,它由发电厂、变电站、输配电网络和用户组成,电力系统具有的非线性、时变性以及参数的不确定等特性,并含有大量未建模动态部分,是一个巨维数的典型动态动力学系统。稳定的电力系统是保证电力系统安全和经济运行的有效手段,对保证经济发展和国民安全以及人民生活有重大的意义,随着科学技术不断提高,各类自动化技术也在电力系统中广泛的应用,电力系统的稳定性也越来越受到电力工作者们的重视。本文从电力系统稳定的重要性出发,首先分析了电力系统运行的基本状态,然后解释了稳定性的基本概念,最后提出了有关于电力系统稳定性的解决办法。 关键词:电力系统静态稳定暂态稳定 1、电力系统稳定性的重要性 我国经济发展速度越来越快,对电力的需求也越来越大,电力建设是各行各业发展的基础,是国民经济增长的基础,是我国向现代化前进的命脉。近年来我国电力消耗越来越高,预计到“十二五”时期,我国电力需求会逐年上升10%,在加上我国电力系统的大规模化和系统结构的复杂化,电力系统的不确定性也增加了发生电力事故的概率,给人民生活、工业生产以及国民安全带来较大的损失。所以要维持我国经济的高速发展,必须要建立现代化的电力系统,其首要问题就是保证电力系统稳定正常安全的运行。 电力系统所具有复杂的非线性特征,其不确定的动态行为使得电力系统会出现混沌振荡、频率崩溃和电压崩溃,这三种现象就是电网系统不稳定的典型特征,这也是电网事故三大主要原因。1966年美国两大电网西北西南电网合并互联时,就曾发生过振荡现象,在一分钟内发生了六次混沌振荡,从而导致两大电网解列。1996年5月28日11时57分我国华北电网发生了一起较为罕见的系统振荡事故,振荡持续了1分46秒,造成地处张家口地区的两座火力发电厂的停电,即沙岭子电厂(4*300MW),下花园电厂(2*100+200MW)全停,最后导致该区域大部分地区停电,这就是严重的“5.28”华北电网事故。由此可见,电力工作者们必须在工程和技术上非常重视和关注电力系统的稳定性。 2、电力系统运行的基本状态 电力系统应有充足的静态稳定容量,分有功和无功两种,而且在正常负荷的波动下,能够有效的调节有功和无功间的潮流,并且不发生振荡,这样就可以保持电力系统正常运行的稳定性。若系统任意一元件发生故障,如发电机或变压器等,不应导致主系统发生频率崩溃或电压崩溃等非同步运行的情况。 若电力系统的总功率与总负荷随时相等,那么我们可以称该电力系统正常运行。用数学公式表示为:; ,式中P为有功功率,Q为无功功率,g为功率,l为负荷,△P、Q分别代表有功、无功的损耗。 电力运行的状态主要包括以下四种。(1)正常状态:电力系统可以在电压和频率上满足各用户的用电需求。(2)警戒状态:电力系统在正常运行状态下受到振荡等一些因素的干扰,并且将干扰带来的影响积累起来,当干扰的影响积累足够多时,电力系统进入警戒状态。(3)紧急状态:当干扰的影响积累足够多时,各运行水平偏离正常值,电力系统已经不能在电压和频率上满足各用户的用电需

小干扰稳定的鲁棒性能指标及分析

小干扰稳定的鲁棒性能指标及分析 莫逆,杨素,刘锋,梅生伟 (清华大学 电力系统及发电设备安全控制和仿真国家重点实验室 北京100084) 摘 要:本文借助鲁棒性能分析方法,通过选取恰当的扰动和评价输出信号,构成电力系统小干扰稳定的鲁棒分析模型,提出采用系统从扰动输入到评价输出信号的2/H H ∞范数组合作为小干扰稳定的评价指标,全面反映 系统抑制振荡的能力。为验证该指标的正确性,本文选取4机2区域系统作为测试系统,与现有指标进行了对比研究,测试结果表明:本文提出的2/H H ∞组合物理意义清晰,直观有效,能全面反映系统的小干扰稳定性,显示出应用上的优越性。系统测试还表明:该指标可有效地应用于系统小干扰稳定性能的评估、控制器安装位置选择,以及指导控制器参数调整等方面。 关键词:小干扰稳定;低频振荡;2/H H ∞组合指标 0 引言 随着现代电力系统规模日益增大,低频振荡 问题时有发生,严重威胁电网的安全稳定,因此,电力系统的小干扰稳定研究一直是各国学者长期关注的问题。目前小干扰稳定研究最主要的指标是线性化系统状态矩阵的特征值和阻尼比。系统的特征值与系统的各种振荡模式对应,特征值实部的符号决定了系统的小干扰稳定性,而阻尼比则体现了某个振荡模式下的系统阻尼能力[1,4]。为了保证整个系统稳定性,研究小干扰稳定需要考虑所有振荡模式的阻尼,同时也必须考虑控制模式以及其他特征值。通常的控制设计方案只以振荡模式阻尼比为控制目标,有可能在改善一个模式的阻尼时引起其他模式的性能恶化。因此,如何实现多阻尼控制策略之间的相互协调在理论和工程两方面都是一个具有重要意义的课题。 鲁棒性分析方法中的2/H H ∞指标是从控制系统中提出,本质是定量描述系统输入输出增益,换句话说,是衡量系统对输入的抑制能力。其中,H ∞指标表示系统对最坏输入的抑制能力,而2H 指标则描述系统对全部频段输入的平均抑制能力[2,3] 。借鉴这一观点,本文提出采用2/H H ∞组合指标综合评价系统的小干扰稳定性能。 1 小干扰稳定的鲁棒性分析模型 电力系统的机电动态特性可以用微分代数方程进行统一描述。本文发电机采用三阶模型, 则其微分方程的具体形式为: 0m e ''''d0q f q d d d (1) (1)()M p p D T e v e x x i δ ωωωω?=-?=---??=---? (1-1) 其接口方程为: ''q a q q d l d d a d q l q 0()0()v r i e x x i v r i x x i ?=+-+-?=+--? (1-2) 其中: δ为发电机转子角度,ω为角速度标幺值, 0ω为角速度额定值,m p 为机械功率,' q e 为q 轴暂态电动势,D 为阻尼系数,' d0T 为d 轴暂态时间常数,M 为惯量时间常数,f v 为励磁电动势, d x 为d 轴电抗,' d x 为d 轴暂态电抗,q x 为q 轴电抗,a r 和l x 分别为定子电阻和漏抗,d i 和q i 分别为定子电流的d 轴和q 轴分量,d v 和q v 分别为定子电压的d 轴和q 轴分量。 为了消去代数变量,还必须考虑输电网络模型。建立系统状态方程,通过节点收缩得到系统的ODE 形式,并在平衡点处线性化,得到相对坐标下的小干扰稳定分析的状态方程模型[4]: ?=?x A x (1-3) 在系统(1-3)中添加干扰输入和评价输出信号, 即可得电力系统小干扰稳定的鲁棒分析模型[3]: ?=?+=?+1111x A x B w z C x D w (1-4) 其中,w 为干扰输入,z 为评价输出信号,1B 为干扰的输入增益矩阵,1C 为评价输出信号中状态变量的系数矩阵,11D 为评价输出信号中扰动的直接输出增益矩阵。 2 2/H H ∞组合指标 设系统从扰动输入w 到评价输出信号z 的 传递函数矩阵为()s zw T ,即: ()()()s s s =zw z T w (2-1) 根据Parseval 定理,可以推得传递函数矩阵 ()s zw T 的2H 范数2()s zw T 的物理意义为w 为脉冲输入时,评价输出信号z 的总的能量[2]。()s zw T 的H ∞范数等于系统的频率响应的最大奇异值的上界,它恰好等于系统的评价输出信号能量与扰动输入能量的比的上界,即:

小干扰稳定计算

第五章 小干扰稳定计算 一、实验目的 理解电力系统分析中小干扰稳定计算的相关概念,掌握PSASP 小干扰稳定计算的过程。学会根据特性值判断系统的小干扰稳定性。复习PSASP 潮流计算、暂态稳定计算。 二、预习要求 复习《电力系统分析》中有关小干扰稳定计算的内容,了解有关小干扰稳定计算的功能,掌握系统小干扰稳定性的判断方法。 三、实验内容 (一)PSASP 小干扰稳定计算概述 电力系统小干扰稳定是指系统受到小干扰后,不发生自发振荡或非周期性失步,自动恢复到起始运行状态的能力。系统小干扰稳定性取决于系统的固有特性,与扰动的大小无关。 从理论上来说,电力系统的小干扰稳定性相当于一般动力学系统在李亚普诺夫意义下的渐近稳定性。当前,用于研究复杂电力系统小干扰稳定的方法主要是基于李雅普诺夫一次近似法的小干扰法。该方法的基本原理如下: 系统的状态方程为:X A X ??= 其中A 为n ×n 维系数矩阵,称为该系统的状态矩阵。对于由状态方程描述的线性系统,其小干扰稳定性由状态矩阵的所有特征值决定。如果所有的特征值实部都为负,则系统在该运行点是稳定的;只要有一个实部为正的特征值,则系统在该运行点是不稳定的;如果状态矩阵A 不具有正实部特征值但具有实部为零的特征值,则系统在该运行点处于临界稳定的情况。因此,分析系统在某运行点的小干扰稳定性问题,可以归结为求解状态矩阵A 的全部特征值的问题。 PSASP 小干扰稳定计算程序还提供了一些相应的分析手段,使之更加实用方便。其中包括: ? 特征值分布及其单线图上显示的模态图; ? 特征值和特征向量报表;

?线性系统频域响应曲线,包括幅频特性、相频特性、乃奎斯特(Nyquist)曲线; ?线性系统时域响应曲线。 PSASP小干扰稳定的过程如下图所示: 线性化 时域频域响应 用基于稀疏性 的方法求解系 统特征值 QR法求特性值 系统状态矩阵A 系统增广矩阵J 系统元件线性化 网络线性化 初值计算 公用数据及模型库 潮流结果 (二)数据准备 以WEPRI-7节点系统为例,其系统图如下: PSASP程序中给出了WEPRI-7节点系统的基础数据,为方便起见,就用暂态稳定计算中参数导入的方法将基础数据库(Basic、G1-CTRL)、公用参数库、单线图、地理位置接线图等数据图形导入目标数据目录(C:\XGRJS\)。

浅谈风力发电对电力系统小干扰稳定性的影响

浅谈风力发电对电力系统小干扰稳定性的影响 发表时间:2018-05-30T10:18:39.223Z 来源:《电力设备》2018年第1期作者:王辉[导读] 摘要:电力系统小干扰稳定性,是电力传输安全性分析的重要分支,对电网正常传输产生直接影响,也是电力传输结构不断优化的构成要素。 (响水长江风力发电有限公司 224600)摘要:电力系统小干扰稳定性,是电力传输安全性分析的重要分支,对电网正常传输产生直接影响,也是电力传输结构不断优化的构成要素。基于此,本文对电力系统小干扰稳定性的分析,主要结合风力发电的模式,对现代电网电力传输的状态进行探究,实现现代电力传输模式,高效、安全、稳定性应用。 关键词:风力发电;电力系统;小干扰稳定性引言:风力发电是现代电力供应的主要渠道,是社会电网资源长久性传输的重要保障。随着风力发电技术的不断创新,当前,我国风力发电技术在实践过程中不断革新,风力发电已经逐步从单项电力传输向着并网式电力供应的趋向转变。为了充分发挥风力发电技术在实际中应用的优势,除了要保障电流传输量增加、传输电压稳定,同时也要做好风力发电传输的外部干扰问题的有效处理,才能够推进风力发电技术不断升级、拓展。 一、电力系统小干扰稳定性理论论述 电力系统小干扰稳定性,是指电网传输结构受到小型电流冲击波,外部携带电流波等小规模的干扰后,电力传输系统能够自动进行结构调整,电力传输周期不会出现传输混乱的问题[1]。我们以电力传输动态管理的分析模式进行探究,电网结构中出现小干扰问题,是由于线路传输中的线路做功夹角与同步转矩的速率不协调,导致线路两侧电流不均衡所引起的;或者,当发动机做功转矩的转子运动方程与线性模型分析的比值不同,也容易出现电力系统小干扰问题[2]。 二、风力发电对电力系统小干扰稳定性的影响 现代风力发电系统的周期运作,是在现有资源基础上,实现了电力传输结构的运转结构调整,它能够有效克服传统电力系统中部分小干扰问题,从而使电力传输体系的稳定性得到了保障。 (一)线路做功与同步转矩速率的协调新型风力发电模式,将传统资源传输的基础上,实现风力发电结构周期性运转,同时,增加了风力发电的外部机械转换的整体动力,保障发电过程中,发电机始终保持匀速运动。简单来说,就是外部机械做功部分的传输来源增多,替代了发电站外部机械做功,会出现间断性做功的状态。而后期线路传输分析时,也只需按照供电部分的运作周期设定即可,线路传输中出现电压不稳的频率会大大减少。此外,风力发电设计系统保障线路小干扰稳定性,也在发动机转矩调整方面发挥着重作用,现代风力发电的发动机,逐步应用双馈式发电机取代异步转矩发动机,双馈式模式主要借助电磁感应原理,实行发动机周期转换,因此,即使电力转换过程中受到电流波干扰振动,电磁转换依旧是按照磁场周期运转的模式做功,从而保障了电力系统传输的稳定性。 (二)发动机转子运动方程与线性模型比值的调整风力发电对电力系统小干扰稳定性的影响解析,也可以从发动机运动方程与线性模型比值之间的相互调整进行分析。我们设定本次电力分析的域为Q,电力传输向量值为Y,发动机转子运动为G,方程协调运作中小干扰稳定性为X,按照Y=GQ的模式,计算出Y的向量值。如果Y向量值为正数,则说明此时发动机转子运动方程的结果大于线性模型比值,风力发电的电力传输稳定性高;如果Y向量值为负数,则说明此时发动机转子运动方程的结果小于线性模型比值,风力发电的电力传输稳定性低。由此,发电人员能够按照电力传输的实际情况,调整风力发电机械做功速率。通过以上分析可知,风力发电结构作为电力传输的主要构成部分,其传输干扰调整模式,为电力传输模式的周期运转提供了可调节空间,因此,风力发电模式能够保障电力系统小干扰稳定性。 (三)电流系统稳定器的调整电流系统稳定器的调整,也是风力发电对电力系统小干扰稳定性影响分析的主要方面。这种设备是一种附加性监控设备,能够在电力系统传输的过程中,实现动态性检测线路各部分的电流传输情况。风力发电系统将该装置作为能源转换的监控装置,当外部出现线路干扰振动时,电流系统稳定器,能够进行小规模的调整,也就达到了辅助电力系统有效应对小干扰问题的目的了。值得注意的是,电流系统稳定器只能用于风力发电系统电力传输的小型干扰调整,而不能作为发电结构大干扰电流调整的措施,一旦风力发电模式中出现大规模电流波干扰,要实行有效的系统维护。 (四)电力系统阻尼分析风力发电对电力系统小干扰稳定性的影响,也可以通过电力系统的阻尼变化进行分析。阻尼是电网传输波自身携带的干扰信号,一般而言,如果电力系统母线、子线的电流传输稳定,则电力系统阻尼的振动变化频率规律性较强,电力结构的信号传输结构的综合运转效果较好;反之,如果电力系统母线、子线的电流传输受到外部强电流的干扰,则电力系统阻尼的振动变化频率变化较大,规律性不明显,电力结构的信号传输结构的综合运转效果较差。我们进行系统结构判断时,就要可以调整风力发电结构的电流传输运转速率,降低电流传输波动率。那么,当电力系统受到外部干扰波的影响,其干扰结构的传输调整,也能够通过风力发电机械持续性动力进行电流波补给,使电力系统的电流传输,始终保持恒定状态,线路应对小干扰的能力自然较强[2]。 结论:综上所述,浅谈风力发电对电力系统小干扰稳定性的影响分析,为现代电力传输结构的不断优化提供了理论指导。在此基础上,为了确保风力发电在现代电力系统中的有机融合,应实行线路做功与同步转矩速率的协调、发动机转子运动方程与线性模型比值的调整、电流系统稳定器的调整、以及电力系统阻尼动态分析,才能够达到稳定电力传输线路的效果。因此,风力发电对电力系统小干扰稳定性的影响剖析,将为国内电力供应结构的优化提供技术保障。 参考文献: [1]王铭.风光储接入对电力系统稳定性的影响分析[D].太原理工大学,2016. [2]和萍,文福拴,薛禹胜,LedwichGerard.风力发电对电力系统小干扰稳定性影响述评[J].电力系统及其自动化学报,2014,26(01):1-7+38.

电力系统稳定性

DYNAMICS OF A SYNCHRONOUS MACHINE 同步电机动力学 同步电机转子的动能 2 6 sm 1 10MJ 2 KE J ω-=? 式中:J 为转子转动惯量,单位2 kg m - sm ω为机械同步转速,单位r a s 而 s sm 2P ωω?? = ??? 为电气同步转速,单位rad s ,式中, P 为电机磁极数。 ∴ 2 6 s s 12102KE J P ωω-????=? ? ? ????? s 1 2 M ω= 式中, 2 6 s 12102M J P ω-????=? ? ? ????? ,为惯性矩,单位MJ-s elect rad 惯性常数H 定义为 s 1 M J 2 G H K E M ω== 式中,G 为电机额定容量,单位MV A (3相) H 为惯性常数,单位MJ/MV A 或MW-s/MV A 由上式可推导出,惯性矩 s 2 M J -s /e l e c t r a d G H G H M f ωπ= =

M J -s /e l e c t d e g r e e 180 GH f = (12.1) 也可称为惯性常数。取G 为基准,惯性常数的标幺值 2 (p u ) s /e l e c t r a d H M f π= 2 s /e l e c t d e g r e e 180H f = (12.2) 摇摆方程(SWING EQUATION ) 同步电机中转矩、转速和机械电气功率流向如图12.1所示。假定忽略风阻、摩擦和铁损转矩,转子运动可用以下微分方程描述: 2m m e 2 d Nm d J T T t θ=- (12.3) 式中,m θ为机械转角,单位为rad m T 为原动机转矩,单位Nm ;电动机取负值 e T 为电机产生的电磁转矩,单位Nm ;电动机取负值 图12.1 同步电机中机械功率和电磁

电力系统稳定性分类

GB XXXXX —XXXX 14 附录A 电力系统稳定性分类 根据电力系统失稳的物理特性、受扰动的大小以及研究稳定问题应考虑的设备、过程和时间框架,电力系统稳定可分为功角稳定、电压稳定和频率稳定3大类以及若干子类。电力系统稳定性分类如图 A.1所示。 图A.1 电力系统稳定性分类 A.1 功角稳定 rotor angle stability 同步互联电力系统中的同步发电机受到扰动后保持同步运行的能力。功角失稳由同步转矩或阻尼转矩不足引起,同步转矩不足导致非周期性失稳,而阻尼转矩不足导致振荡失稳。 A.1.1 小扰动功角稳定 small-disturbance rotor angle stability 电力系统遭受小扰动后保持同步运行的能力,它由系统的初始运行状态决定。小扰动功角失稳可表现为转子同步转矩不足引起的非周期失稳以及阻尼转矩不足造成的转子增幅振荡失稳。 A.1.1.1 静态功角稳定 steady-state rotor angle stability 简称静态稳定,是指电力系统受到小扰动后,不发生非周期性失步,自动恢复到起始运行状态的能力。是小扰动功角稳定的一种形式。 A.1.1.2 小扰动动态稳定 small-disturbance dynamic stability 电力系统受到小的扰动后,在自动调节和控制装置的作用下,不发生发散振荡或持续的振荡。是小扰动功角稳定的另一种形式。 A.1.2 大扰动功角稳定 large-disturbance rotor angle stability 电力系统遭受严重故障时保持同步运行的能力,它由系统的初始运行状态和受扰动的严重程度共同决定。大扰动功角失稳也表现为非周期失稳和振荡失稳两种形式。 A.1.2.1 暂态稳定 transient stability 电力系统稳定性 功角稳定非周期 性失稳 (静态稳定)大扰动功角稳定小扰动 功角稳定周期性失稳(小扰动动态稳定)第一、二摆失稳(暂态稳定)周期性失稳(大扰动动态稳定)电压稳定 大扰动电压稳定 短期过程(暂态电压稳定)长期过程长期过程频率稳定短期过程小扰动电压稳定

电力系统电压稳定性的基本概念

电压稳定基本概念 从80年代以来,电网运行越来越接近于极限状态。主要有几个原因: ?环保对电源建设和线路扩建的压力 ?重负荷区域的用电消费增加 ?电力市场下的新的系统负荷方式(潮流方式) ?。。。 无论发达国家还是发展中国家,都存在负荷、线路和电源间的矛盾 用户负荷在增加<——> 电网扩建却面临着更大的问题 由于网络运行在重载情况下,出现了慢速或快速的电压跌落现象,有时甚至产生电压崩溃,电压稳定已成为电力系统规划和运行的主要问题之一。 (介绍电压稳定的三本国际性的书籍:) 那么什么是电压失稳?(在国际上,有多种公认的定义。)在这里,我们观察文献[TVCUTSEM]的定义: 电压失稳产生于动态的负荷功率的恢复在传输网和发电系统的能力之外。作者进一步解释道: ?电压:许多母线的电压发生明显的、不可控的下跌。 ?失稳:超越了最大的传输功率极限,负荷功率的恢复变得不稳,反面降 低了功率的消耗,这是电压失稳的关键。 ?动态:任何稳定问题与动态有关,可以用微分方程(连续变化)或用差 分方程(离散变化)模拟。 ?负荷:是电压失稳的原动力,因此这一现象也被称为负荷失稳,但负荷 不是仅有的角色。 ?传输网:有传输极限,从基本电工理论就可是到这个结论,这一极限是 电压失稳的开始。 ?发电系统:发电机不是理想的电压源,其模型的准确性对正确的电压稳 定十分重要。 与电压稳定相关的另一术语是电压崩溃。电压崩溃可能不是电压失稳的最终结果。 电压稳定基本概念 1

电压稳定基本概念 2 无功功率的角色 可以注意到上述定义中没有引入无功功率。众所周知,在交流网中,电抗线路占主导,电压控制和无功功率有密切的关系。这里作者的目的是不想过于强调无功功率在电压稳定中的作用。的确,有功功率和无功功率二者同时对电压稳定有重要的作用。作者引用了一个例子,表明电压失稳与无功功率没有因果关系。 假设电源电压E 恒定,控制R L ,使功率消耗达到予定值P o : o L L P R I R -=2 同时,我们知道最大的传输功率发生在R L = R : R E P 42 max = 如果需求的P o 大于P max , 负荷电阻会下降比R 更小,电压失稳就会产生了。 这个范例虽然没有无功功率,没有功角稳定问题,但具有电压失稳的主要特征。在交流电力系统中,无功功率使得问题变得更复杂,但不是问题的唯一根源。传输有功功率仍然是电力系统的主要功能,而无功功率的传输和消耗也是的电力系统的不可缺少的一部分。 电压稳定VS 电力系统稳定 可以把电压稳定归到一般的电力系统稳定问题,下表显示根据时间域和失稳原因方式进行的分类。我们应该知道,可以用不同的方法对稳定问题进行分类。这里的分类可有效地分别电压稳定与功角稳定的差异。 快速稳定问题:

第七章 电力系统小干扰稳定分析

第7章 电力系统小干扰稳定分析 电力系统在运行过程中无时不遭受到一些小的干扰,例如负荷的随机变化及随后的发电机组调节;因风吹引起架空线路线间距离变化从而导致线路等值电抗的变化,等等。这些现象随时都在发生。和第6章所述的大干扰不同,小干扰的发生一般不会引起系统结构的变化。电力系统小干扰稳定分析研究遭受小干扰后电力系统的稳定性。 系统在小干扰作用下所产生的振荡如果能够被抑制,以至于在相当长的时间以后,系统状态的偏移足够小,则系统是稳定的。相反,如果振荡的幅值不断增大或无限地维持下去,则系统是不稳定的。遭受小干扰后的系统是否稳定与很多因素有关,主要包括:初始运行状态,输电系统中各元件联系的紧密程度,以及各种控制装置的特性等等。由于电力系统运行过程中难以避免小干扰的存在,一个小干扰不稳定的系统在实际中难以正常运行。换言之,正常运行的电力系统首先应该是小干扰稳定的。因此,进行电力系统的小干扰稳定分析,判断系统在指定运行方式下是否稳定,也是电力系统分析中最基本和最重要的任务。 虽然我们可以用第6章介绍的方法分析系统在遭受小干扰后的动态响应,进而判断系统的稳定性,然而利用这种方法进行电力系统的小干扰稳定分析,除了计算速度慢之外,最大的缺点是当得出系统不稳定的结论后,不能对系统不稳定的现象和原因进行深入的分析。李雅普诺夫线性化方法为分析遭受小干扰后系统的稳定性提供了更为有力的工具。借助于线性系统特征分析的丰富成果,李雅普诺夫线性化方法在电力系统小干扰稳定分析中获得了广泛的应用。 下面我们首先介绍电力系统小干扰稳定分析的数学基础。 李雅普诺夫线性化方法与非线性系统的局部稳定性有关。从直观上来理解,非线性系统在小范围内运动时应当与它的线性化近似具有相似的特性。 将式(6-290)所描述的非线性系统在原点泰勒展开,得 式中:()()0e e x x x f x x f x A x x ?=?=?+??==????如果()h x ?在邻域内是x ?的高阶无穷小

相关主题
文本预览
相关文档 最新文档