当前位置:文档之家› 第三章 数系的扩充与复数的引入(B)

第三章 数系的扩充与复数的引入(B)

第三章 数系的扩充与复数的引入(B)
第三章 数系的扩充与复数的引入(B)

实用文档 第三章 数系的扩充与复数的引入(B)

一、选择题

1、复数1+2

i 3等于( )

A .1+2i

B .1-2i

C .-1

D .3

2、若(x 2-1)+(x 2+3x +2)i 是纯虚数,则实数x 的值是( )

A .1

B .-1

C .±1

D .以上都不对

3、若-1-3i

2是方程x 2+px +1=0的一个根,则p 等于(

) A .0 B .i C .-i D .1

4、复数(1+2i)2

3-4i 等于( )

A .-1

B .1

C .-i

D .i

5、设i是虚数单位,则

5i

2-i

等于( )

A.1+2i B.-1-2i

C.1-2i D.-1+2i

6、如图,设向量,,,所对应的复数分别为z1,z2,z3,z4,那么( )

A.z1-z2-z3=0

B.z1+z2+z3=0

C.z2-z1-z3=0

D.z2+z4-2z3=0

7、设z=1+i (i是虚数单位),则z z+z+z等于( )

A.-1-i B.-1+i

C.1 D.4

实用文档

实用文档 8、复数z 满足(1+2i)z =4+3i ,那么z 等于( )

A .2+i

B .2-i

C .1+2i

D .1-2i

9、定义运算??????

a c

b d =ad -b

c ,则符合条件??????1

z -1z i =4+2i 的复数z 等于(

)

A .3-i

B .1+3i

C .3+i

D .1-3i

10、若(m +i)3∈R ,则实数m 的值为( )

A .±2 3

B .±3

3 C .± 3 D .±3

2

11、如果复数z =3+a i 满足条件|z -2|<2,那么实数a 的取值范围是( )

A .(-22,22)

B .(-2,2)

C .(-1,1)

D .(-3,3)

实用文档

12、已知z 是纯虚数,z +2

1-i 是实数,那么z 等于( )

A .2i

B .i

C .-i

D .-2i

二、填空题

13、设z 1=1+i ,z 2=-2+2i ,复数z 1和z 2在复平面内对应点分别为A 、B ,O 为坐标原点,则△AOB 的面积为________.

14、若复数z =23+2i 对应的点为Z ,则向量所在直线的倾斜角θ=________.

15、下列命题,正确的是________.(填序号)

①复数的模总是正实数;

②虚轴上的点与纯虚数一一对应;

③相等的向量对应着相等的复数;

④实部与虚部都分别互为相反数的两个复数是共轭复数.

16、在复平面内,复数2i

1-i

对应点的坐标为________.三、解答题

17、计算i-23

1+23i +(5+i19)-

?

?

?

?

?

?

1+i

2

22.

18、已知复数z1=i(1-i)3,

(1)求|z1|;

(2)若|z|=1,求|z-z1|的最大值.

19、已知1+i是方程x2+bx+c=0的一个根(b、c为实数).

实用文档

(1)求b,c的值;

(2)试说明1-i也是方程的根吗?

20、在复平面内,点P、Q对应的复数分别为z1、z2,且z2=2z1+3-4i,|z1|=1,求点Q的轨迹.

21、实数k为何值时,复数(1+i)k2-(3+5i)k-2(2+3i)满足下列条件?

(1)是实数;(2)是虚数;(3)是纯虚数.

22、已知复数x2+x-2+(x2-3x+2)i (x∈R)是4-20i的共轭复数,求实数x的值.

实用文档

实用文档

以下是答案

一、选择题

1、A [1+2

i 3=1-2i =1+2i.]

2、A [∵(x 2-1)+(x 2+3x +2)i 是纯虚数,

∴????? x 2-1=0,x 2+3x +2≠0,∴x =1.]

3、D [已知-1-3i 2是方程x 2+px +1=0的一个根,则x =-1-3i 2满足方程, 代入得? ??

???-1-3i 22+p ·-1-3i 2+1=0, 整理得(1-p )3i 2+? ??

??12-p 2=0,解得p =1.]

实用文档

4、A [原式=4i -33-4i =-(3-4i)3-4i

=-1.]

5、D [5i 2-i =5i(2+i)

(2-i)(2+i)=2i -1.]

6、D [∵z 2+z 4-2z 3=z 2-z 3+(z 4-z 3),而z 2-z 3对应的向量运算为:-=- =,

z 4-z 3对应的向量运算为:-=,

又∵+=0,∴z 2+z 4-2z 3=0.]

7、D [z z +z +z =(1+i)(1-i)+1+i +1-i =2+2=4.]

8、A [z =4+3i 1+2i =(4+3i)(1-2i)5

=10-5i 5

=2-i ,∴z =2+i.]

9、A [????

??1z -1z i =z i +z =z (1+i)=4+2i , ∴z =4+2i 1+i =(4+2i)(1-i)2=6-2i 2

=3-i.]

实用文档

10、B [因为(m +i)3∈R ,(m +i)3=m 3-3m +(3m 2-1)i ,所以3m 2-1=0,解得m =±33.]

11、D [∵|z -2|<2,∴1+a 2<2,-3

12、D [设z =b i (b ≠0),则

z +21-i =2+b i 1-i =(2+b i)(1+i)2=(2-b )+(2+b )i

2.

因为z +21-i 是实数,所以2+b =0,

∴b =-2,∴z =-2i.]

二、填空题

13、2

解析 由题意知=(1,1),=(-2,2),

且||=|z 1|=2,||=|z 2|=8=2 2.

∴cos ∠AOB = =1×(-2)+1×22×22

=0.

实用文档

∴∠AOB =π2

, ∴S △AOB =12||·|| =12×2×22=2.

14、π6

解析 由题意=(23,2),

∴tan θ=223

=33,即θ=π6.

15、③

16、(-1,1) 解析 2i 1-i =2i(1+i)

(1-i)(1+i)=i(1+i)=-1+i. ∴复数对应点的坐标为(-1,1).

三、解答题

实用文档

17、解 原式=i(1+23i)1+23i

+(5+i 3)-(2i)11

211 =i +(5-i)-i 11=5-i 3=5+i.

18、解 方法一 (1)z 1=i(1-i)3=i(-2i)(1-i) =2(1-i),

∴|z 1|=22+22=2 2.

方法二 |z 1|=|i(1-i)3|=|i|×|1-i|3

=1×(2)3=2 2.

(2)∵|z |=1,∴设z =cos θ+isin θ,

|z -z 1|=|cos θ+isin θ-2+2i|

=(cos θ-2)2+(sin θ+2)2 =9+42sin ?

????θ-π4. ∴当sin ?

????θ-π4=1时,|z -z 1|2取得最大值 9+42,从而得到|z -z 1|的最大值为22+1.

实用文档

19、解 (1)因为1+i 是方程x 2+bx +c =0的根,

∴(1+i)2+b (1+i)+c =0,

即(b +c )+(2+b )i =0.

∴????? b +c =02+b =0,得????? b =-2c =2.∴b =-2,c =2.

(2)方程为x 2-2x +2=0.

把1-i 代入方程左边得(1-i)2-2(1-i)+2=0,显然方程成立,∴1-i 也是方程的一个根.

20、解 ∵z 2=2z 1+3-4i ,∴2z 1=z 2-3+4i.

又|2z 1|=2,∴|z 2-3+4i|=2,

即|z 2-(3-4i)|=2.

由模的几何意义知点Q 的轨迹是以(3,-4)为圆心,2为半径的圆.

21、解 (1+i)k 2-(3+5i)k -2(2+3i)

=(k 2-3k -4)+(k 2-5k -6)i.

(1)当k 2-5k -6=0,即k =6或k =-1时,该复数为实数.

实用文档 (2)当k 2-5k -6≠0,即k ≠6且k ≠-1时,该复数为虚数.

(3)当????? k 2-5k -6≠0,k 2-3k -4=0,

即k =4时,该复数为纯虚数.

22、解 因为复数4-20i 的共轭复数为4+20i ,由题意得:x 2+x -2+(x 2-3x +2)i = 4+20i ,

根据复数相等的定义,得:

????? x 2+x -2=4, ①x 2-3x +2=20. ②

方程①的解为x =-3或x =2,

方程②的解为x =-3或x =6.

∴x =-3.

数系扩充与复数概念

数系的扩充与复数的引入 教学目标: 1.知识与技能:了解数系扩充的必要性;理解虚数单位i的产生及意义 2.过程与方法:掌握复数的分类,理解虚数单位与实数进行四则运算的规律,复数与复数的运算规律。 3?情感、态度与价值观:从运动发展的眼光观察事物,体验数系的不断变化扩大 教学重点: 复数的概念,虚数单位i,复数的分类以及复数在实际生活中的应用 教学难点: 虚数单位i的引进及复数的概念是本节课的教学难点,复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后得到的 学情分析: 高二的学生在复数的概念以前,已经经历了实数从N、Z、Q、R的扩充过程,对数系扩充的过程方法、注意事项有一定的了解,因此在介绍新知识之前,可以先回顾一下以前是如何进行扩充的,然后给出新的问题,为什么现在又要进行扩充 教学过程: 一、知识回顾及问题提出 数的概念是从实践中产生和发展起来的?早在人类社会初期,人们在狩猎、采集果实 等劳动中,由于计数的需要,就产生了1,2,3, 4等数以及表示“没有”的数0?自然数的 全体构成自然数集N * 随着生产和科学的发展,数的概念也得到发展 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各 种具有相反意义的量以及满足记数的需要,人们又引进了负数?这样就把数集扩充到有理数 集Q.显然N^Q.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则 有z^Q、N= Z.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集* 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数?所谓无理数,就是无限不循环小数?有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有

最新数系的扩充和复数的概念教案

§3.1.1数系的扩充和复数的概念 教案 李 志 文 【教学目标】 知识与技能:1.了解数系的扩充过程;2.理解复数的基本概念 过程与方法:1.通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法. 2.类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于 新数系中,在此基础上,理解复数的基本概念. 情感态度与价值观: 1、虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创 新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系; 2、初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和 处理问题。 【重点难点】 重点: 理解虚数单位i 的引进的必要性及复数的有关概念. 难点:复数的有关概念及应用. 【学法指导】 1、回顾以前学习数的范围扩充过程,体会数系扩充的必要性及现实意义; 2、思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定方法基础. 【知识链接】 前两个学段学习的数系的扩充: 但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为在实数范围内,没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗? Q N Z R 人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数 的全体构成自然数集N 为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负整,将数系扩充至整数集Z. 为了解决测量、分配中遇到的将某些量进行等分的问题, 人们引进了分数,将数系扩充至有理数集Q. 用方形的边长去度量它的对角线所得的结果,无法用有 理数表示,为了解决这个矛盾,人们又引进了无理数.有 理数集与无理数集合并在一起,构成实数集R . N x 2=-1,x =?

数的发展简史

自然数的产生,起源于人类在生产和生活中计数的需要.开始只有很少几个自然数,后来随着生产力的发展和记数方法的改进,逐步认识越来越多的自然数..从某种意义上说,幼儿认识自然数的过程,就是人类祖先认识自然数的过程的再现. 随着生产的发展,在土地测量、天文观测、土木建筑、水利工程等活动中,都需要进行测量.在测量过程中,常常会发生度量不尽的情况,如果要更精确地度量下去,就必然产生自然数不够用的矛盾.这样,分数就应运而生.据数学史书记载,三千多年前埃及纸草书中已经记有关于分数的问题.引进分数,这是数的概念的第一次扩展. 最初人们在记数时,没有“零” 的概念.后来,在生产实践中,需要记录和计算的东西越来越多,逐渐产生了位值制记数法.有了这种记数法,零的产生就不可避免的了.我国古代筹算中,利用“空位”表示零.公元6世纪,印度数学家开始用符号“0”表示零. 但是,把“0”作为一个数是很迟的事.引进数0,这是数的概念的第二次扩充. 以后,为了表示具有相反意义的量,负数概念就出现了.我国是认识正、负数最早的国家,《九章算术》中就有了正、负数的记载.在欧洲,直到17世纪才对负数有一个完整的认识.引进负数,这是数的概念的第三次扩充. 数的概念的又一次扩充渊源于古希腊。公元前5世纪,古希腊毕达哥拉斯(Pythagqras,约公元前580~前500)学派发现了单位正方形的边长与对角线是不可公度的,为了得到不可公度线段比的精确数值,导致了无理数的产生.当时只是用几何的形象来说明无理数的存在,至于严格的实数理论,直到19世纪70年代才建立起来.引进无理数,形成实数系,这是数的概念的第四次扩充. 数的概念的再一次扩充,是为了解决数学自身的矛盾.16世纪前半叶,意大利数学家塔尔塔利亚发现了三次方程的求根公式,胆地引用了负数开平方的运算,得到了正确答案.由此,虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用,成功地经受了理论和实践的检验,最后于18世纪末至19世纪初确立了虚数在数学中的地位.引进虚数,形成复数系,这是数的概念的第五次扩充. 上面,我们简要地回顾了数的发展过程.必须指出,数的概念的产生,实际上是交错进行的.例如,在人们还没有完全认识负数之前,早就知道了无理数的存在;在实数理论还未完全建立之前,经运用虚数解三次方程了. 直到19世纪初,从自然数到复数的理论基础,并未被认真考虑过.后来,由于数学严密性的需要以及公理化倾向的影响,促使人们开始认真研究整个数系的逻辑结构.从19世纪中叶起,经过皮亚诺(G.Peano,1855~1939)、康托尔(G.Cantor,1845~1918)、戴德金

数系的扩充和复数的引入教学设计

《数系的扩充与复数的引入》第1课时教案设计学校:江西省抚州市临川二中姓名:黄志彬联系方式: 学情分析: “数系的扩充与复数的引入”是北师大版选修2-2第五章第一节内容,是在学生已经学习了 x+=没有实数解,但实际需要要求此方程的解,实数以及实数有关的运算,知道方程210 所以有必要引出复数的概念以及复数的有关运算,建立新的数系。 ●教学理念: 本着“以学生为主体,教师为主导”的理念,采用探究式教学方法,按照提出问题,思考、交流进而分析得出结论的方法进行启发式教学。 教学目标: 知识技能: 1.了解数系发展原因,数集的扩展过程; 2.理解复数的有关概念以及符号表示; 过程与方法:经历了数系的扩充过程,体验了复数引入的必要,探究了复数相等的概念,领悟了类比的思想方法. 情感态度与价值观:在问题情境中了解数系的扩充过程,体会实际需求;在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. ●教学重难点: 重点:对引入复数的必要性的认识,理解复数的基本概念 难点:虚数单位的引入以及复数概念的生成. ●设计思路: 本节课主要采用“问题发现”与“讨论探究”等方式组织教学,凸显学生的主体地位,让教师成为活动的组织者、引导者、合作者,课堂展示学生的研究过程来激发学生的探索勇气。并灵活运用多媒体辅助教学,增强教学的直观性,激发学生的学习兴趣。 教学过程: 以问题为载体,以学生思考为主线 创设情境→建构知识→知识运用→归纳总结→作业布置→课后探究 1.提出问题,探究新知:以一分四十秒数学史录音视频开始,提出问题:自然数集,整数集,有理数集,实数集的关系,继续提出问题:数集扩充到实数集之后,是不是所有的方

数系的扩充(教案及教学设计说明)

课题:数系的扩充 授课教师:吴晶 教材:苏教版选修1-2第三章第一节 【教材分析】 教材地位和作用: 数系扩充的过程体现了数学的发现和创造过程,体现了数学发生发展的客观需求.通过学习,学生在问题情景中了解数系扩充的过程以及引入虚数的必要性,体会人类理性思维在数系扩充中的作用,有助于提高学生的数学素养.复数的引入是中学阶段数系的最后一次扩充.学习复数的一些基本知识,为学习复数的四则运算和几何意义做好知识储备. 教材处理办法: 精心设计制作教学课件,直观形象地展示数系扩充的过程.化抽象为具体,使学生真实体验数系扩充的必要性及数系扩充要遵循的法则.在这个过程中了解复数、虚数、纯虚数、复数的实部、虚部等相关概念就水到渠成了. 重点: 数系扩充的过程和方法,复数的相关概念. 难点: 数系扩充的过程和方法,虚数的引入. 【教学目标】 知识目标: 了解数系的扩充过程,感受人类理性思维的作用以及数与现实世界的联系;了解复数的相关概念. 能力目标: 发展学生独立获取数学知识的能力和创新意识. 情感目标: 初步认识数学的应用价值、科学价值和人文价值,崇尚数学具有的理性精神和科学态度,树立辩证唯物主义世界观. 【教学方法】 教学方法: 开放式探究,启发式引导,互动式讨论,反馈式评价. 学习方法: 自主探究,观察发现,合作交流,归纳总结. 教学手段: 结合多媒体网络教学环境,构建学生自主探究的教学平台. 【教学程序】

以问题为载体,以学生活动为主线. 创设情境→建构数学→知识运用→归纳总结→巩固作业 创设情境: 用心智的全部力量,来选择我们应遵循的道路-------笛卡尔. 名人名言引入,投影出为数系扩充作出贡献的一些数学家的照片和名字.让学生把自己所了解的一些数学家作简要介绍,教师适时总结:他们都是科学巨匠,他们都曾为人类文明的进步做出过巨大贡献,同时,他们也为数的概念的发展做出过巨大贡献.回忆学过的数的类型. 建构数学: 数的概念来源于生活,为了计数的需要产生了自然数;为了表示相反意义的量,有了负数;为了解决测量、分配中的等分问题,有了分数;为了度量(例如边长为1km 的正方形田地的对角线长度)的需要,产生了无理数. 数的概念的发展一方面是生产生活的需要,另一方面也是数学科学本身发展的需要.矛盾是事物发展的根本动力.看以下几个方程: 1x 2x 1201x 22 =+===+x 规定: (1)i 2=-1 虚数单位:i (2)实数可以与i 进行四则运算,且进行四则运算时,原有的加法、乘法运算律仍然成立. 找到了方程012=+x 的解. 设计意图:适当了解一些与数系扩充有关的数学伟人和数学史,激发学生学习兴趣,引入新课. 设计意图:认识到数系扩充的必要性. 发展学生求知、求实、勇于探索的情感和态度,体会数学体系的系统性和严密性.

数系的扩充教学设计说明

《数系的扩充与复数的概念》 教学设计 -----高中人教A版选修2-2 王 海 艳

唐山市第六十二中学 【教材分析】 本章《数系的扩充与复数的概念》是中学课程里数的概念的最后一次扩展。引入复数后,不仅可以使学生对数的概念有一个初步完整的认识,也为进一步学习数学奠定基础。教材编写的线索是:先将复数看成是有序实数对,然后学习复数代数形式的四则运算,最后介绍复数的几何意义。本节是该章的基础课、起始课,具有承上启下的作用。 【学情分析】 在学习本节之前,学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。另一方面学生对方程解的问题会默认为在实数集中进行,缺乏严谨的思维习惯。 【三维目标】 知识与技能:了解数系的扩充过程;理解复数的基本概念、代数表示法以及复数相等的条件 过程与方法:经历数的概念的发展和数系扩充的过程,体会数学发现和创造的过程,以及数学发生、发展的客观需求,让学生学会对事件归纳与认识的方法。 情感、态度与价值观:

(1)培养学生分类讨论、等价转化等数学思想和方法; (2)培养学生矛盾转化、分与合、实与虚等辩证唯物主义观点; (3)感受人类理性思维的作用。 【教学重点】复数的基本概念、代数表示法以及复数相等的条件 【教学难点】数集扩充的必要性和过程 【教学设计】 设计思想 知识来源于实际生活。教学中应注重把教材内容与生活实践结合起来,加强数学教学的实践性。本节课对知识结构进行创造性地“教学加工”,教学方法上则采用“合作-探究”的模式,保证学生对知识的主动获取,促进学生充分、和谐、自主、个性化发展。 媒体设计 本节课是概念课,要避免单一下定义再作练习模式,应努力使课堂元素更丰富,因此借助于多媒体课件配合教学,添加与教学内容匹配的图片背景,激发学生的学习兴趣;而例习题用媒体展示分析,则可以提高课堂教学效率。 设计特色 (1)重视数学的人文价值。(2)知识建构采用合作探究模式。 【教学过程】 一、创设情境,提出问题

数学的发展历史

数学的发展历史 数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自然科学相比,数学更是积累性科学,它是经过上千年的演化发展才逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。而数学的历史更从另一个侧面反映了数学的发展。但有一点值得注意的是,人是这一方面的创造者,因此人本身的作用起着举足轻重的作用,首先表现为是否爱数学,是否愿为数学贡献毕生的精力。正是这主导着数学。 数学史是研究数学发展历史的学科,是数学的一个分支,和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。 数学出现于包含著数量、结构、空间及变化等困难问题内。一开始,出现于贸易、土地测量及之后的天文学;今日,所有的科学都存在着值得数学家研究的问题,且数学本身亦存在了许多的问题。而这一切都源于数学的历史。 数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。从历史时代的一开始,数学内的主要原理是为了做测量等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构方面的研究。数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。 数学发展具有阶段性,因此根据一定的原则把数学史分成若干时期。目前通常将数学发展划分为以下五个时期: 1.数学萌芽期(公元前600年以前); 2.初等数学时期(公元前600年至17世纪中叶); 3.变量数学时期(17世纪中叶至19世纪20年代); 4.近代数学时期(19世纪20年代至第二次世界大战); 5.现代数学时期(20世纪40年代以来)

数系的扩充和复数的概念教案

§3.1.1数系的扩充和复数的概念教案 【教学目标】 知识与技能:1.了解数系的扩充过程; 2.理解复数的基本概念 过程与方法:1.通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法. 2.类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于 新数系中,在此基础上,理解复数的基本概念. 情感态度与价值观:1、虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创新精神和实践水平,感受人类理性思维的作用以及数与现实世界的联系; 2、初步学会使用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和 处理问题。 【重点难点】 重点:理解虚数单位i的引进的必要性及复数的相关概念. 难点:复数的相关概念及应用. 【学法指导】 1、回顾以前学习数的范围扩充过程,体会数系扩充的必要性及现实意义; 2、思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定方法基础. 没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗?

【问题探究】 探究一、复数的引入 引导1:因为解方程的需要,人们引入了一个新数i ,并规定: (1)=2i 1- ; (2)实数能够与i 实行加法和乘法运算: 实数a 与数i 相加记为:i a +; 实数b 与数i 相乘记为:bi ; 实数a 与实数b 和i 相乘的结果相加记为:bi a +; (3)实数与i 实行加法和乘法时,原有的加法、乘法运算律仍然成立。 引导2:复数的相关概念: (1)我们把形如bi a +()R b a ∈,的数叫做复数,其中i 叫做 虚数单位 , 全体复数所组成的集合叫做复数集,常用大写.. 字母 C 表示。 (2)复数的代数形式: 复数通常用小写字母z 表示,即bi a z +=()R b a ∈,,这个表示形 式叫做复数的代数形式,其中a 叫做复数z 的实部,b 叫做复数z 的虚部。 例1请说出复数i i 31,5,32--+的实部和虚部。 引导:考虑复数的相关概念.对于复数(),z a bi a b R =+∈,a 叫实部,b 叫虚部. 解: 变式再练:请说出复数)12(,231, 0,6,84-++-i i i 的实部和虚部。点拨:当我们遇到使用原有知识解决不了的问题时,可以适当地引入一些新的规定,譬如这里我们引入的数i 及引入数i 后实数与i 进行加法和乘法时的运算律,但是切记引入的规定要合理,要有一定的依据基础. ;,虚部是的实部是虚部是的实部是; ,虚部是的实部是3 1031;0,553232----+i i . 120)12(5;2 3212314066300024884)1(--+-+-,虚部是的实部是)(,虚部是的实部是);(,虚部是的实部是)(; ,虚部是的实部是);(,虚部是的实部是解:i i i

数的起源与发展

数的起源与发展 摘要:数,从我们懂事开始,就天天和我们打交道的对象,但是你知道数是怎样产生,又是如何发展成为今天这个模样的吗?数是人类文明的伟大创造,人类在长期的实践中,由于生活的需要产生了数。在人类几千年的发展历程中,人类对数的认识一步步深入,到现在数已经涉及到社会的各个领域,本文旨在介绍数的起源,数的发展的几个阶段,以及数的衍生。 关键词:数起源发展远古时期罗马时期筹算0的引进阿拉伯数字 正文: (一)数的起源 数是一个神秘的领域,人类最初对数并没有概念。但是,生活方面的需要,让人类脑海中逐渐有了“数量”的影子。 数究竟产生于何时,由于其年代久远,我们已经无从考证。不过可以肯定的一点是数的概念和计数的方法在文字记载之前就已经发展起来了。根据考古学家提供的证据,人类早在5000多年前就已经采用了某种计数方法。 1.数的概念的产生 原始时代的人类,为了维持生活他们必须每天外出狩猎和采集果实。有时他们满载而归,有时却一无所获;带回的食物有时有富余,有时却不足果腹。生活中这种数与量上的变化,使人类逐渐产生了数的意识。在那个时候,他们开始了解有与无,多与少的差别,进而知道了一和多的区别。然后又从多到二、三等单个数目概念的形成,是一个不小的飞跃。随着社会的进一步进步和发展,简单的计数就是必须的了,一个部落集体必须知道它有多少成员或有多少敌人,一个人也必须知道他的羊群里的羊是不是少了。这样,人类的祖先在与大自然的艰难搏斗中,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,逐渐产生了数的概念。 数的产生,标志着人类的思维逐步由事件的直观思维走向形式或抽象思维。

但当代科学界多称为数量的形式思维,标志着人们的思维由朴素的“低级”思维向“高级”思维发展。无疑,由此就形成了认识的差别性。实际上,形式思维在于笼统性,事件的直观思维在于事件的具体性。显然,“低级、高级”的区分,是将“事件的具体性”深层次性贬低的错误认识。因为任何将物质或事件的深层次性揭示清楚的分析,无疑具有本质性;而形式的笼统性,只能停留在表面的一般性。所以,将形式的数量分析称为“高级”性,是来自毕达哥拉斯学派的认识观,尔后流行的“量化可比性是科学的唯一标准”的由来。无疑,“数或数量”来自物质或事件的计量,尔后扩展为计时、编序或丈量土地面积、计算财富等日常生产和生活的需要。正如英国哲学家伯特兰?罗素所说:“当人们发现一对雏鸡和两天之间有某种共同的东西(数字2)时,数学就诞生了。”最早发明的数是自然数。但也局限于分辨一、二等数量的增多。当人们用自己的十个手指记数不敷应用时,便开始采用“石头记数”、“结绳记数”和“刻痕记数”等记数方法。 2.计数方法 考古证据表明,虽然地区和民族之间存在差异,但在采用计数方法时,都不约而同地使用过“一一对应”的方法。关于这个方法,在我国还有一则流传已久的笑话:从前,有个目不识丁的大财主,请了一位教书先生来教他儿子识字。第一天,先生在纸上画了一横,说,这是“一”。第二天,先生在纸上画了两横,说:,这是‘二’。第三天,先生在纸上画了三横,说,这是‘三’。财主的儿子学到这儿,便把笔一扔,跑过去对他爹说:“识字真是太容易了,我已经全学会了”。财主自然十分高兴,便把先生辞退了。过了几天,财主要请一位姓万的亲戚到家里做客,就让儿子写一份请帖。谁知财主左等右等,从早上一直等到晌午,还不见请帖送来,他只好亲自上房去催。儿子看见父亲来了,便埋怨地说“天下姓氏那么多,偏偏拣个姓‘万’的。从早上到现在,我才画了五百多划,离一万还远着呢……。”这虽然是一则笑话,但这种画杠的方法曾经被多个民族所采用。关于这个一一对应的方法,可以举出许多别的例证,如一些美洲的印第安人通过收集每个被猎杀者的头皮来计数他们杀敌的数目;一些非洲的原始猎人通过积累野猪的牙齿来计数他们所捕野猪的数目;居住在乞力马扎罗山山坡上的马萨伊游牧部落的少女,习惯在颈上佩戴铜环,其个数等于自己的年龄。几乎所有的人都常常扳着指头计数较小的数目。1937年,人们在捷克斯洛伐克发现了一根大约三万

《数系的扩充》说课稿

数系的扩充的说课稿 (江苏省宿迁中学 陆明明) 1 教材内容分析 1.1 本质、地位及作用 复数的引入实现了中学阶段数系的最后一次扩充.但是,复数它完全没有按照教科书所描述的逻辑连续性.实际的需要使实数具有某种实在感.可是,复数的情形却不一样,是纯理论的创造. 新课程中复数内容突出复数的代数表示,同时也强调了复数的几何意义.它的内容是分层设计的:先将复数看成是有序实数对,再把复数看成是直角坐标系下平面上的点或向量,最后介绍复数代数形式的加、减运算的几何意义.同时,复数作为一种新的数学语言,也为我们今后用代数的方法解决几何问题提供了新的工具和方法,体现了数形结合思想. 本节课的学习,一方面让学生回忆数系扩充的过程,体会虚数引入的必要性和合理性.另一方面,让学生理解复数的有关概念,掌握复数相等的充要条件,为今后的学习奠定基础.因此,本节课具有承前启后的作用,是本章的重点内容. 1.2 教学重点难点 根据教学内容分析及学生已有的认知基础,本节课的教学重点、难点确定为: 重点:感受数系扩充的过程,理解复数的有关概念,掌握复数相等的充要条件. 难点:数系扩充的过程与原则. 2 教学目标分析 遵循新课标,本节课的教学目标确定如下: 2.1 知识与技能 理解复数的概念及复数的代数表示,掌握复数相等的充要条件. 2.2 过程与方法 让学生回忆并感知数系扩充的过程,感悟数系扩充的基本方法,领悟复数的有关理论. 2.3 情感、态度与价值观 通过问题情境感受虚数引入的必要性,体会人类理性思维的作用,形成学习数学知识的积极态度. 3 教学问题诊断分析 根据历史相似性原理,结合学生已有的认知基础,预测学生在学习本节内容可能产生的认知障碍与学习困难:为什么要引入i ?如何引入?i 是什么? 根据教与学的关系,学生的学可以促进教师的教与学.教师通过学习数系的扩充历史,了解数系扩充的原则与方法,从而为虚数单位i 的引入奠定理论基础;虚数的引入虽然最先由于数学本身的需要,但也只有当高斯用i a b 表示一个向量的时候,复数在解决实际问题中才得到广泛的应用,渐渐地才被大家接受.因此,i 是人类理性思维的产物,是一种创造. 4 教法特点 结合以上教学问题诊断分析,本节课的教法主要采用问题驱动教学模式.通过设置问题串, 让学生形成认知冲突;通过设置问题串,引领学生追溯历史,提炼数系扩充的原则;通过设置问题串,帮助学生合乎情理的建立新的认知结构,让数学理论自然诞生在学生的思想中,教师仅起到“助产士”的作用. 5 教学设计流程 从建构主义的角度来看,数学学习是指学生自己建构数学知识的活动.在数学活动过程中,学生与教材及教师产生交互作用,形成了数学知识、技能和能力,发展了情感态度和思维品

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结 一.数系的扩充和复数的概念 1.复数的概念 (1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部. (2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数. (3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等. 即:如果:,,,a b c d R ∈,那么:=+=+b=d a c a bi c di ????,特别地: . (4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数. 即:=+=-(,)z a bi z a bi a b R ∈的共轭复数是 2.复数的几何意义 (1)数()可用点表示,这个建立了直角坐标系来表示复数的 平面叫做复平面,也叫高斯平面, 轴叫做实轴,轴叫做虚轴. 实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数. 复数集C 和复平面内所有的点所成的集合是一一对应关系,即复数 复平面内的点每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应,这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法. (2)复数的几何意义 坐标表示:在复平面内以点表示复数(); 向量表示:以原点 为起点,点为终点的向量表示复数. 向量的长度叫做复数的模,记作 .即. 3.复数的运算 (1)复数的加,减,乘,除按以下法则进行 设12,(,,,)z a bi z c di a b c d R =+=+∈则 12()()z z a c b d i ±=±+±

数系的扩充与复数的引入知识点总结

数系的扩充与复数的引入知识点总结 一。数系的扩充和复数的概念 1.复数的概念 (1) 复数:形如(,)a bi a R b R +∈∈的数叫做复数,a 和b 分别叫它的实部和虚部. (2) 分类:复数(,)a bi a R b R +∈∈中,当0b =,就是实数; 0b ≠,叫做虚数;当0,0a b =≠时,叫做纯虚数. (3) 复数相等:如果两个复数实部相等且虚部相等就说这两个复数相等. 即:如果:,,,a b c d R ∈,那么:=+=+b=d a c a bi c di ????,特别地: 。 (4) 共轭复数:当两个复数实部相等,虚部互为相反数时,这两个复数互为共轭复数。 即:=+=-(,)z a bi z a bi a b R ∈的共轭复数是 2。复数的几何意义 (1)数()可用点表示,这个建立了直角坐标系来表示复数的平 面叫做复平面,也叫高斯平面, 轴叫做实轴,轴叫做虚轴. 实轴上的点都表示实数.除了原点外,虚轴上的点都表示纯虚数. 复数集C和复平面内所有的点所成的集合是一一对应关系,即复数 复平面内的点每一个复数有复平面内唯一的一个点和它对应;反过来,复平面内的每一个点,有唯一的一个复数和它对应,这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法. (2)复数的几何意义 坐标表示:在复平面内以点表示复数(); 向量表示:以原点为起点,点为终点的向量表示复数. 向量的长度叫做复数的模,记作.即 . 3.复数的运算 (1)复数的加,减,乘,除按以下法则进行 设12,(,,,)z a bi z c di a b c d R =+=+∈则 12()()z z a c b d i ±=±+±

数系的扩充和复数的概念

《》教学设计 1.了解解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的 分类表; 2.理解复数的有关概念以及符号表示; 3.掌握复数的代数表示形式及其有关概念; 4.在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. 【教学重点】引进虚数单位i的必要性、对i的规定以及复数的有关概念. 【教学难点】复数概念的理解. 【教学过程】 1.对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简 明扼要的概括和总结) 自然数整数有理数无理数实数 2.提出问题 我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢? 3.组织讨论,研究问题 我们说,实系数一元二次方程没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问

题呢?组织学生讨论,引导学生研究,最后得出结论:最根本的问题是要解决-1的开平方问题.即一个什么样的数,它的平方会等于-1. 4.引入新数,并给出它的两条性质 根据前面讨论结果,我们引入一个新数,叫做虚数单位,并规定:(1); (2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是). 5.提出复数的概念 根据虚数单位的第(2)条性质,可以与实数b相乘,再与实数a相加.由于满足乘法交换律及加法交换律,从而可以把结果写成这样,数的范围又扩充了,出现了形如的数,我们把它们叫做复数. 全体复数所形成的集合叫做复数集,一般用字母C表示,显然有:N* N Z Q R C. 【巩固练习】 下列数中,哪些是复数,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复数的实部与虚部各是什么? 例1.实数m分别取什么值时,复数z=m+1+(m-1)i是 (1)实数?(2)虚数?(3)纯虚数? 分析:因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实、虚数、纯虚数与零的条件可以确定实数m的值.

数学的发展史

数学的发展史 学史研究证明:数学的发源地除古代非洲的尼罗河,还有西亚的底格里斯河和幼发拉底河、中南亚的印度河和恒河、东亚的黄河和长江。 知识简介:尼罗河-世界上最长的大河 尼罗河纵贯非洲大陆东北部,流经布隆迪、卢旺达、坦桑尼亚、乌干达、埃塞俄比亚、苏丹、埃及,跨越世界上面积最大的撒哈拉沙漠,最后注入地中海。流域面积约335万平方公里,占非洲大陆面积的九分之一,全长6650公里,年平均流量每秒3100立方米,为世界最长的河流。尼罗河——阿拉伯语意为“大河”。“尼罗,尼罗,长比天河”,是苏丹人民赞美尼罗河的谚语。古埃及人在这里创造出高度的文明。 世界三大河流:非洲尼罗河、南美洲亚马逊河、亚洲长江 中国第一大河——长江 长江的上源沱沱河出自青海省西南边境唐古拉山脉各拉丹冬雪山,干流全长6300公里。以干流长度和入海水量论,长江均居世界第三位。 长江流经青海、西藏、四川、重庆、云南、湖北、湖南、江西、安徽、江苏、上海,注入东海。 长江在湖北省宜昌市以上为上游,宜昌至江西省湖口间为中游,湖口以下为下游 长江流域是中国人口密集经济繁荣的地区,沿江重要城市有重庆、武汉、南京、上海。 长江在四川奉节以下至湖北宜昌为雄伟险峻的三峡江段(瞿塘峡、巫峡、西陵峡) 世界最大的水利枢纽工程三峡工程位于西陵峡中段的三斗坪(1994年12月14日开工,总工期17年) 中华民族的母亲河—黄河 黄河,发源于青海省巴颜喀拉山脉的约古宗列渠,流经青海、四川、甘肃、宁夏、内蒙古、陕西、山西、河南、山东9个省区,最后于山东省东营垦利县注入渤海。 干流河道全长5464千米,仅次于长江,为中国第二长河,世界第五长河黄河从源头到内蒙古自治区托克托县河口镇为上游,河口镇至河南郑州桃花峪间为中游,桃花峪以下为下游. 数学的发展史一般分为四个时期(有很多分法),即数学的萌芽时期,古代数学时期,近代数学时期和现代数学时期。 一、数学萌芽时期(公元前6世纪以前) 1.“数”概念的产生 早在远古时代,人类就已具备了识别事物多少的能力。逐渐地,这种原始的“数觉”经过漫长的历史演进,发展并形成了“数”的概念。早期人类在对事物数量共性的认识与提炼中,获取数的概念,从而播下了人类文明史上的数学火种。大约发生于30万年以前的这一过程可能与早期人类对火的认识与使用一样悠久而漫长。数对于人类文明的意义决不亚于火的使用。 当对“数”的认识变得越来越明确时,人们开始对其表达萌生了一种冲动,于是就有了记数(实物记数、书写记数)的产生。 最早比较成功的计数方式可能来自于最方便的实物工具,那就是人类自己的手指。一只手上的五个指头可以被现成地用来表示五个以内事物的集合。两只手上的指头合在一起,不超过10个元素的集合就有办法表示。 当十指不够用时,随处可见的石子便成了当然的替代与补充。但记数的石子堆,很难长久保存信息,于是又有了结绳记数和书契(qi)记数。 结绳记数是我国原始公社时期的一种计量方法,是原始公社时期社会生产力发展到一定程

数系的扩充和复数的概念

数系的扩充和复数的概念教学设计

3.1.1数系的扩充和复数的概念(人教版) 华南师范大学陈栩林(仅供参考) 一、教学内容 数系的三次扩充过程,复数的引入过程,复数概念的知识 二、教学目标 知识与技能1、了解数系扩充的过程及引入复数的需要 2、掌握复数的有关概念和代数符号形式、复数的分类方法及复数相等的 充要条件 过程与方法1、通过数系扩充的介绍,让学生体会数系扩充的一般规律 2、通过具体到抽象的过程,让学生形成复数的一般形式 情感态度与价值观1、体会数系的扩充过程中蕴含的创新精神与实践精神,感受人类理性思 维的作用 2、体会类比、分类讨论、等价转化的数学思想方法 三、教学重点 引入复数的必要性与复数的相关概念、复数的分类,复数相等的充要条件 四、教学难点 虚数单位i的引进和复数的概念 五、学生分析 学生在本章之前已经学习了《推理与证明》的内容,有了一定的推理与证明能力,有利于本节课运用类比思想对实数集进行扩充。 六、教学方法及教学用具 启发引导、类比探究并运用多媒体课件展示相关知识 七、教学过程 (一)问题引入 问题:若223 x y +=,3 xy=,求(1)x+y的值;(2)求x和y的值

生(独立完成):求出x+y=3或-3 师:既然和能够求出来,那能不能求出x 和y 的值呢? 生:30?=-<3-的存在,我们求不了x 、y 的值 师:事实上在实数范围内x 和y 确实不存在?为什么会这样呢?假设x 和 y 是存在的,那么就肯定是一些不是实数的数,那么,这些数是什么 呢?我们能不能解决这个问题呢?这就是我们今天要学习的内容《数 系的扩充和复数的引入》 (二)回顾数系的扩充历程 师:其实对于这种“数不够用”的情况,我们并不陌生。大家记得吗?从 小学到现在,我们一直在经历着数的不断扩充。现在就让我们来回顾 一下,看看我们以前是怎么解决“数不够用”的问题的。 原因1 原因2 规律 自然数(N ) 计数 1、实际需要、运算矛盾 2、引入新数解决问题,运算保持,运算律不变 整数(Z ) 具有相反意义的量 减法在N 不能完全运算 有理数(Q ) 测量,分配 除法在Z 不能完全运算 实数(R ) 单位正方形对角 线长 开平方在Q 不能完全运算 1、 类比数系的扩充规律,引导学生找出解决“实数不够用”这个问题的办法 生:引入新数,使得平方为负数 师:我们希望引入的数的平方为负数,但是负数有无穷多个,我们不肯能一下子 引入那么多,只要引入平方为多少就行呢? (引导学生找到1-,因为任何一个负数都可以写成正数与-1的乘积) 2、 历史重现: 在历史上数学家们碰到我们前面这个问题的时候一开始是解决不了的,导致 在此问题上徘徊了百年之久,直到18世纪末,数学家才认识到解决21x =-的重要性,于是他们就像我们一样引入新的数,使得引入的数的平方等于1-,并把这个数记为英文字母i ,就是虚构、想象的意思。

数的产生和发展

人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 数的概念最初不论在哪个地区都是从1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。比如古代埃及的记数符号是,用古埃及的记数符号表示345,古罗马的数字相当进步,现在许多老式挂钟上还常常使用。它们是这样的:你能从这些数字的实例中找出罗马数字写法的规律吗?实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示"15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字: 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥"。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。 如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)

数的发展简史

数学阅读材料1 数的发展史 自然数的产生,起源于人类在生产和生活中计数的需要.开始只有很少几个自然数,后来随着生产力的发展和记数方法的改进,逐步认识越来越多的自然数.从某种意义上说,幼儿认识自然数的过程,就是人类祖先认识自然数的过程的再现. 随着生产的发展,在土地测量、天文观测、土木建筑、水利工程等活动中,都需要进行测量.在测量过程中,常常会发生度量不尽的情况,如果要更精确地度量下去,就必然产生自然数不够用的矛盾.这样,分数就应运而生.据数学史书记载,三千多年前埃及纸草书中已经记有关于分数的问题.引进分数,这是数的概念的第一次扩展. 最初人们在记数时,没有“零” 的概念.后来,在生产实践中,需要记录和计算的东西越来越多,逐渐产生了位值制记数法.有了这种记数法,零的产生就不可避免的了.我国古代筹算中,利用“空位”表示零.公元6世纪,印度数学家开始用符号“0”表示零. 但是,把“0”作为一个数是很迟的事.引进数0,这是数的概念的第二次扩充. 以后,为了表示具有相反意义的量,负数概念就出现了.我国是认识正、负数最早的国家,《九章算术》中就有了正、负数的记载.在欧洲,直到17世纪才对负数有一个完整的认识.引进负数,这是数的概念的第三次扩充. 数的概念的又一次扩充渊源于古希腊。公元前5世纪,古希腊毕达哥拉斯(Pythagqras,约公元前580~前500)学派发现了单位正方形的边长与对角线是不可公度的,为了得到不可公度线段比的精确数值,导致了无理数的产生.当时只是用几何的形象来说明无理数的存在,至于严格的实数理论,直到19世纪70年代才建立起来.引进无理数,形成实数系,这是数的概念的第四次扩充. 数的概念的再一次扩充,是为了解决数学自身的矛盾.16世纪前半叶,意大利数学家塔尔塔利亚发现了三次方程的求根公式,胆地引用了负数开平方的运算,得到了正确答案.由此,虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用,成功地经受了理论和实践的检验,最后于18世纪末至19世纪初确立了虚数在数学中的地位.引进虚数,形成复数系,这是数的概念的第五次扩充. 上面,我们简要地回顾了数的发展过程.必须指出,数的概念的产生,实际上是交错进行的.例如,在人们还没有完全认识负数之前,早就知道了无理数的存在;在实数理论还未完全建立之前,经运用虚数解三次方程了. 直到19世纪初,从自然数到复数的理论基础,并未被认真考虑过.后来,由于数学严密性的需要以及公理化倾向的影响,促使人们开始认真研究整个数系的逻辑结构.从19世纪中叶起,经过皮亚诺(G.Peano,1855~1939)、康托尔(G.Cantor,1845~1918)、戴德金(R.Dedekind,1831~1916)、外尔斯特拉斯(K.Weierstrass,1815~1897)等数学家的努力,完成了建立整个数系的逻辑工作. 1

相关主题
文本预览
相关文档 最新文档