当前位置:文档之家› 保险精算第二版习题及问题详解

保险精算第二版习题及问题详解

保险精算第二版习题及问题详解
保险精算第二版习题及问题详解

保险精算(第二版)

第一章:利息的基本概念

练 习 题

1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。

(0)1

(5)25 1.8

0.8

,1

25300*100

(5)300180300*100300*100(8)(64)508

180180

a b a a b a b a a a b ===+=?===?=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.0833,0.0714(0)(2)(4)

A A A A A A i i i A A A ---=

=====

(2)假设()()100 1.1n

A n =?,试确定 135,,i i i 。

135(1)(0)(3)(2)(5)(4)

0.1,0.1,0.1(0)(2)(4)

A A A A A A i i i A A A ---=

=====

3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5

年后的积累值。

11132153500(3)500(13)6200.08800(5)800(15)1120

500(3)500(1)6200.0743363800(5)800(1)1144.97

a i i a i a i i a i =+=?=∴=+==+=?=∴=+=

4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。

123(3)1000(0)(1)(1)(1)(0)794.1

A A i i i A ==+++?=

5.确定10000元在第3年年末的积累值:

(1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

(4)12

3

4

1()410000(3)10000(1)11956.18

4

10000(3)10000111750.08

14i a i a =+=?? ?

=+= ? ???

6.设m >1,按从大到小的次序排列()

()m m d d

i i δ<<<<。

7.如果0.01t t δ=,求10 000元在第12年年末的积累值。、

12

00.7210000(12)100001000020544.33t dt a e e δ?===

8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。

(4)(2)4

1

42

12(1)(1)(1)(1)(1)

42

1.1*1.086956522*1.061363551*1.050625 1.3332658580.74556336

i i i i d i -+=+-++==?= 9.基金A 以每月计息一次的年名义利率12%积累,基金B 以利息强度6

t t

δ=积累,在时刻t (t=0),两笔基金存入的款项相同,试确定两基金金额相等的下一时刻。

()()

20212112

21212

() 1.01()1.01, 1.432847643

t

t t

t dt

t t

a t a t e e

e t δ=?==?==

10. 基金X 中的投资以利息强度0.010.1t t δ=+(0≤t ≤20), 基金Y 中的投资以年实际利率i 积累;现分别投资1元,则基金X 和基金Y 在第20年年末的积累值相等,求第3年年末基金Y 的积累值。

()()()

2

2

10.010.12

20.01*200.1*2020

4

2

3

()1()11 1.8221

t

t t

t t dt

a t i a t e e

i e

e i δ++=+?==?+==+=

11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。

A. 7.19

B. 4.04

C. 3.31

D. 5.21

(3)3*5

153(1)3*1.02 4.03763

i +==

12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。

A.7 225

B.7 213

C.7 136

D.6 987

(2)2*24(1) 1.03 1.12552

i +==

第二章:年金

练习题

1.证明()

n m m n v v i a a -=-。

()11()m n

n m m n v v i a a i v v i i

---=-=-

2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付

10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A 。

120

12011000100079962.96(8.7%/12)

16000079962.9680037.04

v a i i

-===∴-= 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。

7

18711110.08299

a a a i i ??

=+ ?+??

∴=

4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。

10

101015000112968.7123

a x a i x ??

= ?+??

∴=

5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知10

1

2

v

=

,计算K 。 10

20

101010

20

1010

1110002000100011111800

A a a a i i

B Ka K a i A B K ????

=++ ? ?++??????

=+ ?+??

=∴=

6. 化简()

1020101a v v ++ ,并解释该式意义。

()102010301a v v a ++=

7. 某人计划在第5年年末从银行取出17 000元,这5年中他每半年末在银行存入一笔款项,前5次存款每次为1000元,后5次存款每次为2000元,计算每年计息2次的年名义利率。

510

55111000200017000113.355%

a a i i i ????

+= ? ?

++?????=

8. 某期初付年金每次付款额为1元,共付20次,第k 年的实际利率为

1

8k

+,计算V(2)。 112119111(2)11(1)(1)

(1)

(1)

99911011

28

V i i i i i =++++

+++++=+

++

9. 某人寿保险的死亡给付受益人为三个子女,给付形式为永续年金,前两个孩子第1到n 年每年末平分所领取的年金,n 年后所有的年金只支付给第三个孩子,若三个孩子所领取的年金现值相等,那么v=( )

A. 113n

??

???

B. 1

3n C.

13n

?? ???

D.3n 1

211

213

n n n n n a v a v v i i v ∞=-==

11. 延期5年连续变化的年金共付款6年,在时刻t 时的年付款率为()2

1t +,t 时刻的利息强度为1/(1+t),该年金的现值为( )

A.52

B.54

C.56

D.58

011

25|

65

1125|65()(1)111

()()11

(1)54

1t t dt a v t t dt

v t a t t e a t dt t δ=+=

==

+??=+=+??

第三章:生命表基础

练习题

1.给出生存函数()22500

x s x e

-=,求:

(1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。

(4)50岁的人能活到70岁的概率。

()()()10502050(5060)50(60)

50(60)

(50)

(70)(70)

70(50)

P X s s s s q s P X s s p s <<=--=

>==

2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。

()()

()5|605606565(66)650.1895,0.92094

(60)(60)65(66)

0.2058

(65)

s s s q p s s s s q s -=

===-∴=

=

3. 已知800.07q =,803129d =,求81l 。

808081

808080

0.07d l l q l l -=

== 4. 设某群体的初始人数为3 000人,20年的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。

120

121

122

(20)0.92,(21)0.915,(22)0.909d d d d d d s s s l l l +

++

++

+=

==

==

=

5. 如果22

1100x x x

μ=

+

+-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。

A.2073.92

B.2081.61

C.2356.74

D.2107.56

2

2211000100()1((1)(4))2081.61

x

x

x dx dx

x x

x s x e e x l s s μ-

+-

+--????=== ?+??-=

6. 已知20岁的生存人数为1 000人,21岁的生存人数为998人,22岁的生存人数为992人,则|201q 为

( )。

A. 0.008

B. 0.007

C. 0.006

D. 0.005

2221

1|2020

0.006l l q l -=

= 第四章:人寿保险的精算现值

练 习 题

1. 设生存函数为()1100

x

s x =-

(0≤x ≤100),年利率i =0.10,计算(保险金额为1元):

(1)趸缴纯保费130:10

ā的值。 (2)这一保险给付额在签单时的现值随机变量Z 的方差Var(Z)。

10

101

30:10

10

10

211

222230:1030:10

()1

()1100()10011

0.0921.17011

()()0.0920.0920.0551.2170

t x x t t

t t x x t t

t t x x t x s x t s x p s x x

A v p dt dt Var Z A A v p dt dt μμμ+++'+=-

?=-=-??=== ?

??

??=-=-=-= ?

??????

2. 设年龄为35岁的人,购买一保险金额为1 000元的5年定期寿险保单,保险金于被保险人死亡的保单年度末给付,年利率i=0.06,试计算: (1)该保单的趸缴纯保费。

(2)该保单自35岁~39岁各年龄的自然保费之总额。 (3)(1)与(2)的结果为何不同?为什么? (1)法一:4

1135

36373839234535:5

3511000()1.06 1.06 1.06 1.06 1.06

k k x x k k d d d d d A

v p q l ++===

++++∑ 查生命表353536373839979738,1170,1248,1336,1437,1549l d d d d d ======代入计算:

4

1135

36373839234535:5

3511000() 5.7471.06 1.06 1.06 1.06 1.06

k k x x k k d d d d d A

v p q l ++===

++++=∑ 法二:1

3540

35:535

10001000

M M A D -=

查换算表1

354035:53513590.2212857.61

10001000

1000 5.747127469.03

M M A D --===

(2)

1

353535:1351

363636:1361373737:1371383838:1

38143.58

100010001000

1000 1.126127469.03144.47

100010001000

1000 1.203120110.22

145.94

100010001000

1000 1.29113167.06100010001000100C p A D C p A D C p A D C p A D ===============1

393939:1393536373839148.050 1.389

106615.43

150.55

100010001000

1000 1.499100432.54

1000() 6.457

C p A

D p p p p p =====++++= (3)

111213141

352

353354

3535:535:136:1

37:138:1

39:

1

1

3536373839

35:5

A A vp A v p A v p A v p A A

p p p p p =++++∴<++++

3. 设0.25x =A , 200.40x +=A , :200.55x =A , 试计算:

非寿险精算201606

非寿险精算 一、名词解释 1、到期风险单位数:也称为已经风险单位数,是指在一定时期内保险人已经提供了相应的保险保障的风险单位数。 2、未到期风险单位数:是指在承保的风险单位数中,截至到某个时点,保险公司尚未提供保险保障的风险单位数。 3、已赚保费:也称作满期保费,是指在保险人所收保费中,已尽保险责任所对应的那部分保费。 4、未赚保费:也称作未到期保费,是指在保险人所收保费中,未尽保险责任所对应的那部分保费。 5、纯费率:是指保险公司对每一风险单位的平均赔款金额,通常用赔款总额与风险单位数之比进行估计,其计算公式为E L P ,P 表示纯费率,L 表示赔款总额,E 表示风险单位数。 6、赔付率:是指在每单位保费中用于支付赔款的部分,通常用赔款与保费之比进行估计。 7、承保费用率:是每单位保费中用于支付承保费用的部分。可以用承保费用和保费之比进行估计。 8、事故年度法:即按事故年汇总数据,是汇总精算数据最常见的方法。按事故年汇总数据就是以事故发生为统计标准,把发生在同一日历年度的保险事故所对应的赔款和保费等数据汇总在一起。 9、未决赔款准备金:是指在会计年度末,已经发生的赔案由于尚未处理(包括尚未报告)或赔付而必须提存的责任准备金。 10、未到期责任准备金:又叫保费准备金。是指当年承保的业务在会计年度末尚未到期,在下一年度仍然有效的保险合同按照未到期的时间提存的准备金。 二、简答题 1、确定保险产品市场销售价格的方法 (1)使用保险市场上或竞争对手的相同产品的价格; (2)根据利润目标确定价格;

(3)在期望保险成本的基础上增加一个百分比来确定价格,增加的这个百分比相当于费用附加和利润附加; (4)根据市场供求关系确定价格; (5)基于再保险费率确定市场价格。 2、数据汇总的方法 (1)事故年度法:按事故年汇总数据就是以事故发生为统计标准,把发生在同一个日历年度的保险事故所对应的赔款和保费等数据汇总在一起。 (2)保单年度法:按保单年汇总数据就是以保单生效日期为统计标准,把在同一个日历年度生效的保单所对应的赔款和保费等数据归集在一起。 (3)日历年度法:按日历年汇总数据就是把发生在同一日历年度的会计数据归集在一起,而不论这些保单何时签发,相应的事故何时发生。 (4)报案年度法:按报案年汇总数据就是以保险事故的报案时间为统计标准,把在同一个日历年度报案的赔款数据归集在一起,而不考虑事故的发生日期和保单的生效日期。 3、赔款数据调整的内容 (1)剔除经验数据中的异常损失,然后将其在一个较长的时期内分摊; (2)应用链梯法等技术将经验期的已付赔款或已报案赔款进展到最终赔款; (3)根据保障水平的变化和通货膨胀等因素对经验期的赔款进行趋势调整,得到新费率使用期的期望赔款。 4、纯保费法与赔付率法的比较 (1)区别 纯保费法是建立在每个风险单位的损失基础上的,它需要严格定义的风险单位。若风险单位不易认定或在各风险单位间不一致,则纯保费不适用。如火灾保险。 损失率法不适用于新业务的费率厘定。因为损失率法得到的是指示费率的变化,他需要当前费率和保费经验的记录。 在均衡保费难以计算时,纯保费法更为适用。 (2)联系

保险精算学试题

A 卷 保险精算学试题 (2004级统计学专业) 一、 名词解释(20分,每小题1分) 1、 生存函数 2、生存年金 3、取整余命 4、n 年定期生存年金 5、趸缴纯保费 6、附加保费 7、精算现值 8、亏损随机变量 9、n 年期两全保险 10、利力 二、 已知:,6435,62,01.0575556===l d q 求5511 q (20分) 三、 计算保险金额为15000元的下列保单,在30岁签发时的趸缴 纯保费。设死亡给付发生在保单年度未,利率为6%。 1、 终身寿险 2、30年定期寿险 3、30年期储蓄保险。已知:02.26606,66.9301,78.170037,19.1473060603030====D M D M (20分) 四、 分别计算一现年50岁者购买期未及期初付金额1500元的终身 生存年金的精算现值。已知:.52.51090,27.6953865050==D N (20分) 五、 用换算函数计算(写出公式)30岁的人购买如下终身寿险的 初始年保费。若被保险人在前10年内死亡,则可得到死亡保险金为15000元。若被保险人在10年后死亡,则可得到死亡保险金为30000元。已知保险费按年交纳至被保险人60岁时。且前10年每年交纳的保费为10年后每年交纳的保费的一半,且死亡保险金于死亡年未给付。(20分)

B 卷 保险精算学试题 (2004级统计学专业) 一、 名词解释(20分,每小题1分) 1、 剩余寿命 2、终身生存年金 3、死力 4、纯保费 5、终身寿险 6、精算现值 7、n 年期生存保险 8、全期缴费 9、趸缴纯保费 10、保险金 二、 假设74岁和75岁的死亡率分别为0.06和0.07。设年龄内均匀 分布,求4个月前满74岁者在77岁前死亡的概率。(20分) 三、 已知现年36岁的人购买了一张终身寿险保单。保单规定被保险 人在10年内死亡,则给付金额为20000元,10年后死亡则给付数额为30000元,设死亡给付发生在保单未。试求其趸缴纯保费。利率为6%,.91.12492,5.119226,97.139********===M D M (20分) 四、 分别计算一现年55岁者购买期未及期初付金额1500元的终身 生存年金的精算现值。已知:.27.37176,42.4693045555==D N (20分) 五、 用换算函数计算(写出公式)25岁的人购买如下终身寿险的初 始年保费。若被保险人在前10年内死亡,则可得到死亡保险金为15000元。若被保险人在10年后死亡,则可得到死亡保险金为30000元。已知保险费按年交纳至被保险人60岁时。且前10年每年交纳的保费为10年后每年交纳的保费的一半,且死亡保险金于死亡年未给付。(20分)

保险精算试题

共 4 页 第 1 页 保险精算复习自测题(90分钟) 选择题(20分) 1.(20)购买了一种终身生存年金,该年金规定第一年初给付500元,以后只要生存每年初增加100元,该生存年金的精算现值为( )。 A... .. 2020400100()a I a + B.2020400100()a I a + C... .. 2020500100()a I a + D.2020500100()a I a + 2. UDD 假设 若q 50=0.004,在UDD 假设下0.5p 50等于( )。 3. 每次期初支付10000元,一年支付m 次,共支付n 年的生存年金的精算现值表示为( )。 A.() ..:10000m x n m a B.() :10000m x n ma C.() ..:10000m x n nm a D.() :10000m x n nm a 4.关于(x )的一份2年定期保险,有如下条件:(1)0.02(1)x k q k +=+ 0,1k =(2)0.06i =(3)在死亡年末支付额如下: k 1k b + b1 1 b2 若 z 是死亡给付现值的随机变量则()E Z 等于( )。

共 4 页 第 2 页 填空题(20分) 1.按缴费方式和保险金的给付方式,把寿险分为 、 、 。 2.若一个人在x 岁时死亡,此时随机变量T (30)= ,K(50)= 。 3. = ,35:]1000n n V 。 4.日本采用的计算最低现金价值的方法是 。 5.专业英语:Nominal interest 中文意思是 。 6.生存年金精算现值的计算方法 和 。 7.假设i=5%,现向银行存入1万元,在以后的每年末可取出 元。 8.假设40l =A ,50l =B ,则1040q = 。 9.责任准备金的两种计算方法为 、 。 1 20:] 1000t t V

保险精算习题及答案

保险精算习题及答案 第一章:利息的基本概念 练习题 21(已知,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,atatb,,,, 在时刻8的积累值。 2((1)假设A(t)=100+10t, 试确定。 iii,,135 n(2)假设,试确定。 An,,1001.1iii,,,,,,135 3(已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 4(已知某笔投资在3年后的积累值为1000元,第1年的利率为,第2年的利率为,i,10%i,8%12第3年的利率为,求该笔投资的原始金额。 i,6%3 5(确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 2226(设m,1,按从大到小的次序排列与δ。 vbqep,,,xx 7(如果,求10 000元在第12年年末的积累值。 ,,0.01tt 8(已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 t9(基金A以每月计息一次的年名义利率12%积累,基金B以利息强度积累,在时刻t (t=0),两笔,,t6 基金存入的款项相同,试确定两基金金额相等的下一时刻。

10. 基金X中的投资以利息强度(0?t?20), 基金Y中的投资以年实际利率积累;现分别,,,0.010.1tit 投资1元,则基金X和基金Y在第20年年末的积累值相等,求第3年年末基 金Y的积累值。 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 nmvviaa,,,1(证明。,,mn 1 2(某人购买一处住宅,价值16万元,首期付款额为A,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首 期付款额A。 3. 已知 , , , 计算。 a,5.153a,7.036a,9.180i71118 4(某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其 每年生活费用。 5(年金A的给付情况是:1,10年,每年年末给付1000元;11,20年,每年年末 给付2000元;21,30年,每年年末给付1000元。年金B在1,10年,每年给付额为K元;11,20年给付额为0;21,30年,每年

寿险精算习题及答案

习题 第一章人寿保险 一、n 年定期寿险 【例4.1】设有100个40岁的人投保了1000元5年期定期寿险,死亡赔付在死亡年年末,利率为3%。 I 、如果各年预计死亡人数分别为1、2、3、4、5人,计算赔付支出; II 、根据93男女混合表,计算赔付支出。 解:I 表4–1 死亡赔付现值计算表 年份 年内死亡人数 赔付支出 折现因子 赔付支出现值 (1) (2) (3)=1000*(2) (4) (5)=(3)*(4) 1 1 1000 103.1- 970.87 2 2 2000 203.1- 1885.19 3 3 3000 303.1- 2745.43 4 4 4000 403.1- 3553.9 5 5 5 5000 503.1- 4313.04 合计 --- 15000 --- 13468.48 根据上表可知100张保单未来赔付支出现值为: 48.13468)03.1503.1403.1303.1203.11(100054321=?+?+?+?+??-----(元) 则每张保单未来赔付的精算现值为134.68元,同时也是投保人应缴的趸缴纯保费。 解:II 表4–2 死亡赔付现值计算表 年份 年内死亡人数 赔付支出 折现因子 赔付支出现值 (1) (2) (3)=1000*(2) (4) (5)=(3)*(4) 1 1000*40q =1.650 1650 103.1- 1601.94 2 1000*40|1q =1.809 1809 203.1- 1705.16 3 1000*40|2q =1.986 1986 303.1- 1817.47 4 1000*40 | 3q =2.181 2181 403.1- 1937.79

最新保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100 (5)300180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+= 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5 年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值:

保险精算第1章习题答案

第1章 习题答案 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 解: 100)0(100)0(.k )0(2=+?==b a a A 或者由1)0(=a 得1=b 180)15(100)5(100)5(2=+?=?=a a A 得032.0=a 以第5期为初始期,则第8期相当于第三期,则对应的积累值为: 4.386)13032.0(300)3(2=+??=A 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 解:(1)A(0)=100;A(1)=100+10×1=110;A(2)=120;A(3)=130;A(4)=140;A(5)=150 ; ; 。 (2)A(0)=100;;;;; 。 ; ; 。 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 解:单利条件下: 得; 则投资800元在5年后的积累值:; 在复利条件下: 得 则投资800元在5年后的积累值:。 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率

为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 解: 得元。 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。 解:(1) 元 (2) 得 10000元在第3年年末的积累值为: 元 6.设m >1,按从大到小的次序排列,,,与。 解:,所以,。 ,在的条件下可得。 ,在的条件下可得 。 对其求一阶导数得得 对其求一阶导数,同理得。 由于,所以,同理可得。 综上得: 7.如果0.01t t δ=,求10 000元在第12年年末的积累值。 解:元 8.已知第1年的实际利率为10%,第2年的实际贴现率为8%,第3年的每季度计息的年名义利率为6%,第4年的每半年计息的年名义贴现率为5%,求一常数实际利率,使它等价于这4年的投资利率。 解:注意利用如下关系:则 则根据上述关系可得:

2016年中国精算师考试模拟试题:非寿险精算(2)

2016年中国精算师考试模拟试题:非寿险 精算(2) 1.下面对风险的陈述,哪一项是正确的? A.风险就是自然状态的不确定性 B.风险是由人的主观行为造成的 C.风险就是地震、车祸等不确定事件的发生 D.风险就是给人们造成损失或伤害的危险 E.风险与三个因素直接有关,那就是自然状态的不确定性、人的主观行为及二者结合所蕴涵的潜在后果 2.以下说法哪一项是正确的? A.保险公司的投资是没有风险的 B.保费的计算也通常是十分准确的,没有风险可言 C.赔付额的评估也无风险可言 D.再保险也没有风险 E.保险公司管理人员的贪污会形成保险公司的风险 3.关于矩母函数的陈述,下列哪一项是正确的? A.任何随机变量都存在矩母函数

B.矩母函数就是特征函数 C.如果x的矩母函数为,那么为常数)的矩母函数为: D.如果X的矩母函数是,那么X的方差为: E.X的矩母函数的定义是: 5.有关韦伯分布的陈述,下列哪一项是正确的? A.韦伯分布的分布函数为: B.指数分布函数是其的推广 C.参数为c=1,r=1的韦伯分布的数学期望为2 D.韦伯分布常用于模拟人的寿命分布 E.韦伯分布是对称分布 5.设某保险组合中个别保单的理赔次数随机变量N服从泊松分布,记作N~P(λ),但每张保单的情况是不一样的,泊松参数A是一个随机变量,其分布的密度函数为:试求P(N=2)的表达式。 6.已知某保险人预测下一保险年度索赔额随机变量X服从对数正态分布,平均理赔额为5000元,标准差为7 500元,该保险人办理了再保险,再保险人只赔付2 500元以上的部分,求再保险人发生理赔的概率。 A. B. C. D. E. 7.关于产生均匀分布随机数的方法的陈述,下列哪一项是不正确的? A.可用检表法

保险精算李秀芳1-5章习题答案

第一章 生命表 1.给出生存函数()22500 x s x e -=,求: (1)人在50岁~60岁之间死亡的概率。 (2)50岁的人在60岁以前死亡的概率。 (3)人能活到70岁的概率。(4)50岁的人能活到70岁的概率。 ()()()10502050(5060)50(60) 50(60) (50) (70)(70) 70(50) P X s s s s q s P X s s p s <<=--= >== 2.已知生存函数S(x)=1000-x 3/2 ,0≤x ≤100,求(1)F (x )(2)f(x)(3)F T (t)(4)f T (f)(5)E(x) 3. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求q 65。 ()() ()5|605606565(66)650.1895,0.92094(60)(60)65(66) 0.2058 (65) s s s q p s s s s q s -= ===-∴= = 4. 已知Pr [T(30)>40]=0.70740,Pr [T(30)≤30]=0.13214,求10p 60 Pr [T(30)>40]=40P30=S(70)/S (30)=0.7074 S (70)=0.70740×S(30) Pr [T(30)≤30]=S(30)-S(60)/S(30)=0.13214 S(60)=0.86786×S(30) ∴10p 60= S(70)/S (60) =0.70740/0.86786=0.81511

5.给出45岁人的取整余命分布如下表: 求:1)45岁的人在5年内死亡的概率;2)48岁的人在3年内死亡的概率;3)50岁的人在52岁至55岁之间死亡的概率。 (1)5q 45=(0.0050+0.0060+0.0075+0.0095+0.120)=0.04 6.这题so easy 就自己算吧 7.设一个人数为1000的现年36岁的群体,根据本章中的生命表计算(取整) (1)3年后群体中的预期生存人数(2)在40岁以前死亡的人数(3)在45-50之间挂的人 (1)l 39=l 36×3P 36=l 36(1-3q 36)=1500×(1-0.0055)≈1492 (2)4d 36=l 36×4q 36=1500×(0.005+0.00213)≈11 (3)l 36×9|5q 36=l 36×9P 35×5q 45=1500×(1-0.02169)×0.02235=1500×0.021865≈33 8. 已知800.07q =,803129d =,求81l 。 808081 8080800.07d l l q l l -= == 808081 808080 0.07d l l q l l -= == 9. 015.060=q ,017.061=q ,020.062=q , 计算概率612P ,60|2q .

保险精算例题

保险精算例题

第二章 【例2.1】某人1997年1月1日借款1000元,假设借款年利率为5%,试分别以单利和复利计算: (1)如果1999年1月1日还款,需要的还款总额为多少? (2)如果1997年5月20日还款,需要的还款总额为多少? (3)借款多长时间后需要还款1200元。 解:(1)1997年1月1日到1999年1月1日为2年。 在单利下,还款总额为: A(2)=A(0)(1+2i)=1000×(1+2×5%)=1100(元) 在复利下,还款总额为: A(2)=A(0)(1+i)2=1000×(1+5%)2=1102.5(元) (2)从1997年1月1日到1997年5月20日为140天,计息天数为139天。 在单利下,还款总额为: 1000×(1+ 139 365×5%)=1019.04(元) 在复利下,还款总额为: 1000×139365 % (1+5)=1018.75(元)(4)设借款t年后需要还款1200元。 在单利下,有 1200=1000×(1+0.05t) 可得:

t=4(年) 在复利下,有 1200=1000×(1+0.05)t 可得: t≈3.74(年) 【例2.2】以1000元本金进行5年投资,前2年的利率为5%,后3年的利率为6%,以单利和复利分别计算5年后的累积资金。 解:在单利下,有 A(5)=1000×(1+2×5%+3×6%)=12800(元) 在复利下,有 A(5)+1000×(1+5%)2 ×(1+6%)3=13130.95(元) 【例2.3】计算1998年1月1日1000元在复利贴现率为5%下1995年1月1日的现值及年利率。 解:(1)1995年1月1日的现值为: 1000×(1-0.05)3=857.38(元) (2)年利率为: i=d 1-d =0.050.95 =0.053 【例2.4】1998年8月1日某投资资金的价值为14000元,计算: (1) 在年利息率为6%时,以复利计算,这笔资金在1996年8月1 日的现值。 (2) 在利率贴现率为6%时,这笔资金在1996年8月1日的现值。 解:(1)以知利率时,用折现系数计算现值,14000元2年前的现值

保险精算试卷及答案

保险精算试卷 1. A.104 B.105 C.106 D.107 E.108 2. (A) 77,100 (B) 80,700 (C) 82,700 (D) 85,900 (E) 88,000 3.Lucky Tom finds coins on his way to work at a Poisson rate of 0.5 coins per minute. The denominations are randomly distributed: (i) 60% of the coins are worth 1; (ii) 20% of the coins are worth 5; (iii) 20% of the coins are worth 10. Calculate the variance of the value of the coins Tom finds during his one-hour walk to work. (A) 379 (B) 487 (C) 566 (D) 670 (E) 768 game. If 4.A coach can give two ty pes of training, “ light” or “heavy,” to his sports team before a the team wins the prior game, the next training is equally likely to be light or heavy. But, if the team loses the prior game, the next training is always heavy. The probability that the team will win the game is 0.4 after light training and 0.8 after heavy training. Calculate the long run proportion of time that the coach will give heavy training to the team.

保险精算第二版习题及答案

保险精算(第二版) 第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 800元在28%i =,第3为 t (t=0),i 积累; 11. 某人1999年初借款3万元,按每年计息3次的年名义利率6%投资,到2004年末的积累值为( )万元。 A. 7.19 B. 4.04 C. 3.31 D. 5.21 12.甲向银行借款1万元,每年计息两次的名义利率为6%,甲第2年末还款4000元,则此次还款后所余本金部分为( )元。 A.7 225 B.7 213 C.7 136 D.6 987 第二章:年金 练习题 1.证明() n m m n v v i a a -=-。

2.某人购买一处住宅,价值16万元,首期付款额为A ,余下的部分自下月起每月月初付1000元,共付10年。年计息12次的年名义利率为8.7% 。计算购房首期付款额A 。 3. 已知7 5.153a = , 117.036a =, 189.180a =, 计算 i 。 4.某人从50岁时起,每年年初在银行存入5000元,共存10年,自60岁起,每年年初从银行提出一笔款作为生活费用,拟提取10年。年利率为10%,计算其每年生活费用。 5.年金A 的给付情况是:1~10年,每年年末给付1000元;11~20年,每年年末给付2000元;21~30年,每年年末给付1000元。年金B 在1~10年,每年给付额为K 元;11~20年给付额为0;21~30年,每年年末给付K 元,若A 与B 的现值相等,已知10 1 2 v = ,计算K 。 6. 化简() 1020101a v v ++ ,并解释该式意义。 5 。 n 年每年,那么v=( 2. 已知Pr [5<T(60)≤6]=0.1895,Pr [T(60)>5]=0.92094,求60q 。 3. 已知800.07q =,803129d =,求81l 。 4. 设某群体的初始人数为3 000人,20年内的预期死亡人数为240人,第21年和第22年的死亡人数分别为15人和18人。求生存函数s(x)在20岁、21岁和22岁的值。 5. 如果221100x x x μ= ++-,0≤x ≤100, 求0l =10 000时,在该生命表中1岁到4岁之间的死亡人数为( )。 A.2073.92 B.2081.61 C.2356.74 D.2107.56

保险精算练习题

1.李华1990年1月1日在银行帐户上有5000元存款,(1)在每年10%的单利下,求1994年1月1日的存款额。(2)在年利率8%的复利下,求1994年5月1日的存款额。解:(1)5000×(1+4×10%)=7000(元) 4.33=7556.8(元) 5000×(1+10%)(2) 2.把5000元存入银行,前5年的银行利率为8%,后5年年利率为11%,求10年末的存款累计额。 55=12385(元)×(1+11%解:5000(1+8%)) 3.李美1994年1月1日在银行帐户上有10000元存款。(1)求在复利11%下1990年1月1日的现值。(2)在11%的折现率下计算1990年1月1日的现值。 -4=5934.51(元)1+11%)(1)10000×(解:4=6274.22(元)) 2)10000×(1-11%( 4.假设1000元在半年后成为1200元,求 (2)(3)id。⑴ i, ⑶,⑵(2)i(2)1000?(1?)?12004.??i0;所以解:⑴ 2(2)i2)1?i?(1?44?0.i⑵;所以2(n)(m)di?1?mn(1?)?1?i?(1?d)?(1?) ⑶;mn(3)d3?1(1?)?(1?i))(3?0.34335d;所以,3 (n)(n)???id?id?。时,证明:5.当1?n(n)dd?证明:①,为因 (n)(n)(n)(n)dddd012n323))(C)C1CC(1d(1????????????? d1?? nnnn nnnn(n)

)(n dd?所以得到,;(n)??d②?????????423423 ?)??1C?1??C?()?C?()??(e m?)(n)e(1?d?m m; ??i③ nnn mmmmm?)n(??)](1?d?m[1?所以,m(n) (n)i)(n i n[1?]?1?i??)1?iln(1?)?ln(n?即,,n n? ????? (n)i?n?(e?1)n所以,? 434232?1??)C?e?1?C?()??()?C?(n? nnn mmmmm ?(n)??])?1?n[(i1?n(n)?ii④ (n)(n)(n)iii)(n i)n22(n01[1?]?C?1?C??C?()???1?i n[1?]?1?i nnn,nnn n )(n ii?所以, 6.证明下列等式成立,并进行直观解释:m aav?a? ⑴;nnm?m m v?1n?nmm v1?vv?n?m v1?a?mm?va?v a? i m ii n,,解: i n?m n?mmm v?1?v?v m a?ava?? i mnnm?所以, m sva?a?nm?nm⑵;m v1?n?m v?1nmm?v?v?a a?m??vs i m i n?m,解:, i n nmm?m vv??1?v m a??a?vs i mnm?n所以, m as?s?(1?i)nmm?n⑶;

最新非寿险精算答案整理

一:假设某保单的损失服从指数分布,概率密度函数为)0();(>=-x e x f x λλ其中,λ为未 知参数,如果该保单过去各年的损失观测值为),(21n x x x Λ,求参数λ的极大似然估 解:利用极大似然估计的方法,可以得到x x n n i i 1?1 ==∑=λ 二:假设某保险业务的累积损失S 服从复合泊松分布,泊松参数为20,而每次损失的金额服从均值为100的指数分布,用正态近似求累积损失的99%的分位数。 解: []400000 )100100(20)()()()()(2000 10020)()(2 2 2 =+=+==?==X E N VAR N E X VAR S VAR X E S E λ 分位数=3471)(326.2)(=?+S VAR S E 加二、某保单规定的免赔额为20,该保单的损失服从参数为0.2的指数分布,求该保险人对该保险保单的期望赔款。 解: 令?? ?≥-≤=20 2020 0X X X Y ,,为保险人的赔款随机变量 420 2.052.0)20()2020()(-∞ -=-=>-=?e dx e x X X E Y E x 三、假设某公司承保的所有汽车每年发生交通事故的次数都服从泊松分布,而不同汽车的泊松分布参数不同,假设只取两个值(1或2),进一步假设λ的先验分布为4.0)2(,6.0)1(====λλp p ,如果汽车一年内发生4次事故,求该汽车索赔频率λ的后验分布。 解:λλλ-= =e x P ! 4)4(4 1241)14(-= ==e x P λ 2 24 16)24(-===e x P λ 2031.04.024 166.0246.024)41(2 11 =?+??===---e e e x P λ 7969.04.024 166.0246.02416)42(2 12 =?+??===---e e e x P λ =)(λE 1)41(?==x P λ+2)42(?==x P λ=1.7969 四:假设某险种的损失次数服从参数为0.2的泊松分布,对于一次保险事故,损失为5000元的概率是80%,损失为10000元的概率是20%,请计算保险公司的累积损失的分布 解:为简化计算,假设一个货币单位为5000元, 解:818731.0)0(2.0===--e e f s λ ,130997.08.02.0)0()1()1(2.0=??==-e f f f S X s λ 043229.0))0()2(2)1()1((2 )2(=+= S X S X s f f f f f λ

【良心出品】保险精算试卷2012B

湖北中医药大学《保险精算学》试卷 姓名 学号 专业 班级 一、单项选择题(每小题2分,共20分) 1、某人到银行存入1000元,第1年年末的存款余额为1020元,则第1年的实际利率为( ) A 、1% B 、2% C 、2.5% D 、3% 2、一个度量期的实际贴现率为该度量期内取得的利息金额与( )之比。 A 、期末投资可回收金额 B 、期初投资金额 C 、取得的利息金额 D 、本金 3、已知每年计息12次的年名义利率为8%,则等价的实际利率为( ) A 、8% B 、8.36% C 、8.25% D 、9% 4、某银行客户想通过零存整取方式在1年后得到10000元,在月复利为0.5%的情况下,需要在每月月初存入的钱数为( ) A 、806.63元 B 、800元 C 、820元 D 、850元 5、,,)已知17.0014.0(5050 ==A A P 为则利息强度δ( ) 。 A 、0.070 B 、0.071 C 、0.073 D 、0.076 6、40岁的死亡率为0.04,41岁的死亡率为0.06,而42岁的人生存至43岁的概率为0.92,40岁生存人数为100人,则43岁时的生存人数为( )。 A 、90.24 B 、96 C 、83.02 D 、70 7、P 62=0.0374,q 62=0.0164,i=6%,则P 63为( )。 A 、0.041 B 、0.094 D 、0.0397 D 、0.016 8、已知L 为(x )购买的保额为1元,年保费为P x 的完全离散型终身寿险,在保单签发时保险人的亏损随机变量,2A x =0.1774,5850.0d x =P ,则Var (L )为( )。 A 、0.103 B 、0.115 C 、0.105 D 、0.019

保险精算习题及答案

第一章:利息的基本概念 练 习 题 1.已知()2a t at b =+,如果在0时投资100元,能在时刻5积累到180元,试确定在时刻5投资300元,在时刻8的积累值。 (0)1 (5)25 1.8 0.8 ,1 25300*100(5)300 180300*100300*100(8)(64)508 180180 a b a a b a b a a a b ===+=?===?=+=Q 2.(1)假设A(t)=100+10t, 试确定135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.0833,0.0714(0)(2)(4) A A A A A A i i i A A A ---= ===== (2)假设()()100 1.1n A n =?,试确定 135,,i i i 。 135(1)(0)(3)(2)(5)(4) 0.1,0.1,0.1(0)(2)(4) A A A A A A i i i A A A ---= ===== 3.已知投资500元,3年后得到120元的利息,试分别确定以相同的单利利率、复利利率投资800元在5年后的积累值。 11132153500(3)500(13)6200.08800(5)800(15)1120 500(3)500(1)6200.0743363800(5)800(1)1144.97 a i i a i a i i a i =+=?=∴=+==+=?=∴=+= 4.已知某笔投资在3年后的积累值为1000元,第1年的利率为 110%i =,第2年的利率为28%i =,第3年的利率为 36%i =,求该笔投资的原始金额。 123(3)1000(0)(1)(1)(1)(0)794.1 A A i i i A ==+++?= 5.确定10000元在第3年年末的积累值: (1)名义利率为每季度计息一次的年名义利率6%。 (2)名义贴现率为每4年计息一次的年名义贴现率6%。

【良心出品】保险精算试卷2010B

湖北中医学院《保险精算学》试卷 姓名 学号 专业 班级 一、单项选择题(每小题2分,共20分) 1、某人到银行存入1000元,第1年年末的存款余额为1020元,则第1年的实际利率为( ) A 、1% B 、2% C 、2.5% D 、3% 2、一个度量期的实际贴现率为该度量期内取得的利息金额与( )之比。 A 、期末投资可回收金额 B 、期初投资金额 C 、取得的利息金额 D 、本金 3、已知每年计息12次的年名义利率为8%,则等价的实际利率为( ) A 、8% B 、8.36% C 、8.25% D 、9% 4、某银行客户想通过零存整取方式在1年后得到10000元,在月复利为0.5%的情况下,需要在每月月初存入的钱数为( ) A 、806.63元 B 、800元 C 、820元 D 、850元 5、,,)已知17.0014.0(5050 ==A A P 为则利息强度δ( ) 。 A 、0.070 B 、0.071 C 、0.073 D 、0.076 6、40岁的死亡率为0.04,41岁的死亡率为0.06,而42岁的人生存至43岁的概率为0.92,40岁生存人数为100人,则43岁时的生存人数为( )。 A 、90.24 B 、96 C 、83.02 D 、70 7、P 62=0.0374,q 62=0.0164,i=6%,则P 63为( )。 A 、0.041 B 、0.094 D 、0.0397 D 、0.016 8、已知L 为(x )购买的保额为1元,年保费为P x 的完全离散型终身寿险,在保单签发时保险人的亏损随机变量,2A x =0.1774,5850.0d x =P ,则Var (L )为( )。 A 、0.103 B 、0.115 C 、0.105 D 、0.019

保险精算练习题

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 4.假设1000元在半年后成为1200元,求 ⑴ )2(i ,⑵ i, ⑶ )3(d 。 解:⑴ 1200)2 1(1000) 2(=+?i ;所以 4.0)2(==i ⑵2 )2()2 1(1i i +=+;所以44.0=i ⑶n n m m n d d i m i ---=-=+=+)1()1(1)1() (1)(; 所以, 13)3()1()3 1(-+=-i d ;34335.0)3(=d 5.当1>n 时,证明: i i d d n n <<<<) () (δ。 证明:①) (n d d < 因为,Λ+?-?+?-?=-=-3)(3 2)(2) (10)()()(1)1(1n d C n d C n d C C n d d n n n n n n n n n ) (1n d ->所以得到, )(n d d <; ② δ<) (n d )1() (m n e m d δ - -=;m m C m C m C m e n n n m δ δ δ δ δ δ - >-?+?-?+- =- 1)()()(14 43 32 2 Λ 所以, δ δ =- -<)]1(1[) (m m d n ③) (n i <δ i n i n n +=+1]1[)(, 即,δ=+=+?)1ln()1ln()(i n i n n 所以, )1()(-?=n n e n i δ m m C m C m C m e n n n n δ δ δ δ δ δ + >+?+?+?++ =1)( )( )( 144 33 22 Λ

δ δ =-+>]1)1[() (n n i n ④ i i n <)( i n i n n +=+1]1[) (,)(2)(2)(10)(1)(1]1[n n n n n n n n i n i C n i C C n i +>+?+?+?=+Λ 所以, i i n <) ( 6.证明下列等式成立,并进行直观解释: ⑴n m m n m a v a a +=+; 解:i v a n m n m ++-= 1, i v a m m -= 1,i v v i v v a v n m m n m n m +-=-=1 所以,n m n m m m n m m a i v v v a v a ++=-+-=+1 ⑵n m m n m s v a a -=-; 解: i v a n m n m ---= 1,i v a m m -= 1,i v v s v n m m n m --= - 所以,n m n m m m n m m a i v v v s v a --=-+-=-1 ⑶ n m m n m a i s s )1(++=+; 解: i i s m m 1)1(-+=,i i i i i i s i m n m n m n m )1()1(1)1() 1()1(+-+=-++=++ 所以,n m m n m m n m m s i i i i a i s ++=+-++-+=++)1()1(1)1()1( ⑷ n m m n m a i s s )1(+-=-。

相关主题
文本预览
相关文档 最新文档