当前位置:文档之家› 外墙传热系数计算

外墙传热系数计算

外墙传热系数计算

传热系数计算公式

1、围护结构热阻的计算

单层结构热阻

R=δ/λ

式中:δ材料层厚度(m)

λ材料导热系数[W/(m.k)]

多层结构热阻

R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn

式中: R1、R2、---Rn各层材料热阻(m2.k/w)

δ1、δ2、---δn各层材料厚度(m)

λ1、λ2、---λn各层材料导热系数[W/(m.k)]

2、围护结构的传热阻

R0=Ri+R+Re

式中: Ri 内表面换热阻(m2.k/w)(一般取0.11)

Re外表面换热阻(m2.k/w)(一般取0.04)

R 围护结构热阻(m2.k/w)

3、围护结构传热系数计算

K=1/ R0

式中: R0围护结构传热阻

外墙受周边热桥影响条件下,其平均传热系数的计算

Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:

Km外墙的平均传热系数[W/(m2.k)]

Kp外墙主体部位传热系数[W/(m2.k)]

Kb1、Kb2、Kb3外墙周边热桥部位的传热系数[W/(m2.k)]

Fp外墙主体部位的面积

Fb1、Fb2、Fb3外墙周边热桥部位的面积

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

建筑物围护结构传热系数的检测

建筑物围护结构传热系数的检测 一适用范围 适用于严寒和寒冷地区设置集中采暖的居住建筑及节能技术措施的节能效果检验。 二引用标准 JGJ 132-2001 《采暖居住建筑节能检验标准》 三仪器设备 建筑热工温度热流巡回检测仪 四检测条件 检测期间室内平均温度应保持基本稳定,热流计不得受阳光直射,围护结构被测区域的外表面宜避免雨雪侵袭和阳光直射,检测持续时间不应少于96h。 五建筑物围护结构主体部位的传热系数应符合设计要求。 六试验步骤 1 测点位置的确定 测量主体部位的传热系数时,测点位置不应靠近热桥,裂缝和有空气渗漏的部位,不应受加热、制冷装置和风扇的直接影响。

2 热流计和温度传感器的安装 ① 热流计应直接安装在被测围护结构的内表面上,且应与表面完全接触。 ② 温度传感器应在被测围护结构两侧表面安装。内表面温度传感器应靠近热流计安装,外表面温度传感器宜在与热流计相对应的的位置安装。温度传感器连同0.1m 长引线应与被测表面紧密接触,传感器表面的辐射系数应与被测表面基本相同。 3 记录数据 检测期间,应逐时记录热流密度和内、外表面温度。可记录多次采样数据的平均值,采样间隔宜短于传感器最小时间常数的二分之一。 七 数据处理 1 数据分析可采用算术平均法 采用算术平均法进行数据分析时,应按下式计算围护结构的热阻,并符合下列规定。 ∑ ∑ ===n j 1 j n 1 j Ej Ij q ) -(R θθ

式中:R——围护结构的热阻(m2·K/W); θIj——围护结构内表面温度的第j次测量值; θEj——围护结构外表面温度的第j次测量值; q j——热流密度的第j次测量值; ①对于轻型围护结构(单位面积比热容小于20KJ/(M2·K)),宜使用夜间采集的数据(日落后1h至日出)计算围护结构的热阻。当经过连续四个夜间测量之后,相邻两测量的计算结果相差不大于5%时,方可结束测量; ②对于重型围护结构(单位面积比热容大于等于20KJ/(m2·K)),应使用全天数据(24h的整数倍)计算围护结构的热阻,且只有在下列条件得到满足时方可结束测量。 a 末次R计算值与24h之前的R计算值相差不大于5%。 b 检测期间内第一个INT(2×DT/3)天内与最后一个同样长的天数内的R计算值相差不大于5%。 注:DT为检测持续天数,INT表示取整数部分。 2. 围护结构的传热系数计算: 按下式计算: K=1/(Ri+R+Re)

建筑围护结构传热系数现场检测方法

建筑围护结构传热系数现场检测方法 研究总结。 1. 引言 随着能源和环境形势日益严峻,建筑节能将是我国的一项长期国策。传热系数是建筑热工节能设计中的重要参数。建筑构件(如门、窗等)的传热系数,可在实验室条件下对其进行测试。而建筑围护结构是在建造过程中形成的,其传热系数需要现场检测才能确定。通过检测建筑的实际传热性能,来判定建筑保温隔热系统的产品、技术是否符合节能设计要求,以此来鉴定新系统的产品、技术的优缺点等,同时对分析建筑物实际运行中的能耗状况和施工过程的偏差也起着非常重要的作用。本文对传热系数现场检测方法进行综述,注重对热流计法研究总结。 2. 围护结构传热系数现场检测方法 目前对围护结构的传热系数现场检测的方法主要有四种,即热流计法、热箱法、控温箱热流计法和常功率平面热源法。 2.1热流计法。 (1)热流计法原理[1]。 热流计法是利用温差和热流量之间的对应关系进行传热系数的测

定。通常的做法是用热流计、热电偶在现场检测出被测围护结构的热流密度以及内、外表面温度,通过数据处理计算得出建筑物围护结构各部分的传热系数(如图1)。计算公式如下: (2)热流计法特点。 热流计法的核心是测量通过被测对象的热流,并假定传热为一维。否则,热流有分量,计算出的被测物的热阻偏小,传热系数就偏大。该方法是国家检测标准首选的方法,在国际上也是公认的方法,但是这种方法用在现场测试有严重的局限性。因为使用该方法的前提条件是必须在采暖期才能进行测试,我国的现实情况是有些地区基本不采暖、采暖地区的有些工程又在非采暖期竣工等,这样就限制了它的使用。在计算时所用到的内外墙表面换热系数受环境(温度、风速、辐射等)的影响显著。 如文献[2]对实验用房进行了不同风速的情况下,外墙表面换热系数A 的研究,结果表明外环境(风速)对外墙表面换热系数的影响很大(如表1)。文献[3][4]就其它环境(如雨水和太阳辐射等)条件对围护结构传热系数的影响也作了研究和分析,结果表明也有较大的影响。 (3)双面热流计法。 它是改进的热流计法,一般的热流计法是在墙体内表面(环境相对

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

建筑物围护结构传热系数现场检测技术

建筑物围护结构传热系数现场检测技术 范宏武,邢大庆,王吉霖,李德荣,曹亮,曹毅然 上海市建筑科学研究院 为改善居住建筑室内热环境质量,提高人民居住水平,提高采暖、空调能源利用效率,贯彻执行国家可持续发展战略,2001 年《夏热冬冷地区居住建筑节能设计标准》颁布实施[1]。该标准在提出节能50% 的同时,对建筑物围护结构的热工性能也进行了相应规定。虽然《节能标准》在设计阶段保证了建筑物围护结构的热工性能达到目标要求,但并不能保证建筑物 建造完后也能达到节能要求,因为建筑的施工质量同样非常关键。因此,判定建筑物围护结构热工性能是否达到标准要求,仅靠资料并不能给出结论,需要现场实测。 但我国建筑节能工作起步较晚,至今尚无一套完善、先进、适合我国国情的建筑节能现场检测技术,在某种程度上限制了建筑节能工作的规范发展。这使得建筑节能现场检测技术的研究开发就显得尤为迫切和重要。 围护结构传热系数是表征围护结构传热量大小的一个物理量,是围护结构保温性能的评价指标,也是隔热性能的指标之一[2],因此本文主要针对围护结构传热系数的现场检测技术进行分析与探讨。 1 现有围护结构传热系数现场检测方法 1.1 热流计法[3] 热流计是建筑能耗测定中常用仪表,该方法采用热流计及温度传感器测量通过构件的热流值和表面温度,通过计算得出其热阻和传热系数。其检测基本原理为:在被测部位布置热流计,在热流计周围的内外表面布置热电偶,通过导线把所测试的各部分连接起来,将测试信号直接输入微机,通过计算机数据处理,可打印出热流值及温度读数。当传热过程稳定后,开始计量。为使测试结果准确,测试时应在连续采暖(人为制造室内外温差亦可)稳定至少7d 的房间中进行。 般来讲,室内外温差愈大(要求必须大于20C),其测量误差相对愈小,所得结果亦较为精 确,其缺点是受季节限制。该方法是目前国内外常用的现场测试方法,国际标准和美国ASTM 标准都对热流计法作了较为详细的规定。

各类玻璃的传热系数

精心整理附表外窗(包括透明幕墙、屋顶透明部分)的传热系数 玻璃 间隔层 (mm) 间隔层 气体 玻璃传热系数K b W/(m2·K) 窗框K c 中空玻璃6 空气 3.00 塑料 2.58~2.79 铝合金 3.69~4.38 PA隔热铝合金 3.18~3.33 12 2.60 塑料 2.34~2.47 铝合金 3.38~4.13 PA隔热铝合金 2.70~3.09 辐射率≤0.25 Low-E中空玻璃(在线)6 空气 2.80 塑料 2.44~2.63 铝合金 3.47~4.17 PA隔热铝合金 2.97~3.16 9 2.20 塑料 2.09~2.13 铝合金 2.99~3.81 PA隔热铝合金 2.51~2.79 12 1.90 塑料 1.90 铝合金 2.76~3.63 PA隔热铝合金 2.26~2.62 6 氩气 2.40 塑料 2.26~2.30 铝合金 3.17~3.91 PA隔热铝合金 2.66~2.93 9 1.80 塑料 1.82~1.84 铝合金 2.68~3.56 PA隔热铝合金 2.18~2.56 12 1.70 塑料 1.73~1.79 铝合金 2.60~3.50 PA隔热铝合金 2.11~2.50 辐射率≤0.15 Low-E中空玻璃(离线)12 空气 1.80 塑料 1.82~1.84 铝合金 2.68~3.56 PA隔热铝合金 2.18~2.56 氩气 1.50 塑料 1.58~1.67 铝合金 2.45~3.38 PA隔热铝合金 1.94~2.39 双银Low-E 中空玻璃12 空气 1.70 塑料 1.73~1.79 铝合金 2.60~3.50 PA隔热铝合金 2.11~2.50 氩气 1.40 塑料 1.50~1.60 铝合金 2.37~3.32 PA隔热铝合金 1.86~2.32 注:1K b—窗玻璃的传热系数,K c—窗的传热系数; 2表玻璃性能数据取自有关研究报告及厂家的产品样本,窗框对窗传热系数的影响是根据窗框比及窗框和玻璃的计算传热系数通过计算得出的,供参考; 3多层中空玻璃、其他玻璃品种及呼吸透明幕墙(双层皮玻璃幕墙)的性能可参考其他有关资料。 附表各种玻璃的遮阳系数 玻璃玻璃 颜色 可见光(%)太阳能(%)玻璃遮 阳系数 SC 透射反射透射反射 中空玻璃 间隔层6mm无色79 14 63 12 0.81 间隔层12mm无色75 14 58 11 0.77 着色中空玻璃蓝色66 12 47 8.4 0.65 绿色65 12 48 8.5 0.66 茶色46 10 46 8.6 0.64 灰色39 8 38 8 0.54 热反射中空玻璃反 射 颜 色 深绿色无色8 16 12 11 0.26 绿色 绿色45 9 26 6 0.42 蓝绿40 9 24 6 0.40 蓝绿色蓝绿49 26 31 14 0.46 灰绿色 绿色46 17 28 9 0.44 蓝绿40 19 28 11 0.44 现代绿色绿色48 26 28 13 0.44 蓝色无色41 17 33 13 0.48

建筑物围护结构传热系数的检测

建筑物围护结构传热系数的检测 一适用围 适用于严寒和寒冷地区设置集中采暖的居住建筑及节能技术措施的节能效果检验。 二引用标准 JGJ 132-2001 《采暖居住建筑节能检验标准》 三仪器设备 建筑热工温度热流巡回检测仪 四检测条件 检测期间室平均温度应保持基本稳定,热流计不得受直射,围护结构被测区域的外表面宜避免雨雪侵袭和直射,检测持续时间不应少于96h。 五建筑物围护结构主体部位的传热系数应符合设计要求。 六试验步骤 1 测点位置的确定 测量主体部位的传热系数时,测点位置不应靠近热桥,裂缝和有空气渗漏的部位,不应受加热、制冷装置和风扇的直接影响。

2 热流计和温度传感器的安装 ① 热流计应直接安装在被测围护结构的表面上,且应与表面完 全接触。 ② 温度传感器应在被测围护结构两侧表面安装。表面温度传感 器应靠近热流计安装,外表面温度传感器宜在与热流计相对应的的位置安装。温度传感器连同0.1m 长引线应与被测表面紧密接触,传感器表面的辐射系数应与被测表面基本相同。 3 记录数据 检测期间,应逐时记录热流密度和、外表面温度。可记录多次采 样数据的平均值,采样间隔宜短于传感器最小时间常数的二分之一。 七 数据处理 1 数据分析可采用算术平均法 采用算术平均法进行数据分析时,应按下式计算围护结构的热阻,并符合下列规定。 ∑ ∑ ===n j 1j n 1 j Ej Ij q ) -(R θθ

式中: R——围护结构的热阻(m2·K/W); θIj——围护结构表面温度的第j次测量值; θEj——围护结构外表面温度的第j次测量值; q j——热流密度的第j次测量值; ①对于轻型围护结构(单位面积比热容小于20KJ/(M2·K)),宜使用夜间采集的数据(日落后1h至日出)计算围护结构的热阻。当经过连续四个夜间测量之后,相邻两测量的计算结果相差不大于5%时,方可结束测量; ②对于重型围护结构(单位面积比热容大于等于20KJ/(m2·K)),应使用全天数据(24h的整数倍)计算围护结构的热阻,且只有在下列条件得到满足时方可结束测量。 a 末次R计算值与24h之前的R计算值相差不大于5%。 b 检测期间第一个INT(2×DT/3)天与最后一个同样长的天数的R 计算值相差不大于5%。 注:DT为检测持续天数,INT表示取整数部分。 2. 围护结构的传热系数计算: 按下式计算: K=1/(Ri+R+Re)

管道总传热系数计算18

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡 层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: (1-1)1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++????????∑式中:——总传热系数,W /(m 2·℃);K ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于e D 无保温埋地管路可取沥青层外径);——管道内直径,m ;n D ——管道最外层直径,m ;w D ——油流与管内壁放热系数,W/(m 2·℃);1α ——管外壁与周围介质的放热系数,W/(m 2·℃);2α ——第层相应的导热系数,W/(m·℃);i λi ,——管道第层的内外直径,m ,其中;i D 1i D +i 1,2,3...i n =——结蜡后的管内径,m 。L D 为计算总传热系数,需分别计算内部放热系数、自管壁至管道最外径K 1α的导热热阻、管道外壁或最大外围至周围环境的放热系数。 2α(1)内部放热系数的确定1α放热强度决定于原油的物理性质及流动状态,可用与放热准数、自然1αu N 对流准数和流体物理性质准数间的数学关系式来表示[47]。r G r P 在层流状态(Re<2000),当时:500Pr

建筑节能检测方法综述

建筑节能检测方法综述 The Standardization Office was revised on the afternoon of December 13, 2020

建筑节能现场检测方法 田斌守 摘要本文综述了几种建筑物围护结构传热系数现场检测方法的原理、操作方法、适用条件,指出各种方法的优缺点及注意事项。 关键词建筑节能检测热流计法热箱法控温箱-热流计法非稳态法当今飞速发展的国民经济活动必然导致前所未有的资源能源消耗速度。而许多资源能源是不可再生的,为了人类的可持续发展,节约能源刻不容缓。据介绍,我国目前单位建筑面积采暖能耗相当于气候条件相近的发达国家的2~3倍,而建筑能耗也占全国能耗总量的%。随着人民生活水平的不断提高、城市化进程的加快以及住房体制改革的深化,建筑能耗在我国增长趋势很大,很可能是我国今后能耗的一个主要增长点。为建设节约型社会,促进经济社会可持续发展,国家发展委员会发布了“节能中长期专项规划”,建筑节能作为三大重点领域中的一项,受到高度重视。建设部也相继发布了一系列建筑节能标准,其中包括若干强制性条款,目前正在建设领域逐步实施。 建筑节能工作从流程上可分为设计审查、现场检测、竣工验收三个大的阶段。对节能建筑的评价,从建设前期对施工图纸审查计算阶段、向现场检测和竣工验收转移是大势所趋。建筑节能现场检测也是落实建筑节能政策的重要保证手段。目前,全国范围内建筑节能检测都执行JGJ132-2001《采暖居住建筑节能检验标准》,它是最具权威性的检测方法,它的发布实施,为建筑节能政策的执行提供了一个科学的依据,使得建筑节能由传统的间接计算、目测定性评判到现在的直接测量,从此这项工作进入了由定性到定量、由间接到直接、由感性判断到科学检测的新阶段。 根据我们对建筑节能影响因素和现场检测的可实施性的分析,我们认为能够在实验室检测的宜在实验室检测(如门窗等作为产品在工程使用前后它的性状不会发生改变),除此之外,只有围护结构是在建造过程中形成的,对它的检测只能在现场进行。因此建筑节能现场检测最主要的项目是围护结构的传热系数,这也是最重要的项目。如何准确测量墙体传热系数是建筑节能现场检测验收的关键。目前对建筑节能现场检测的、围护结构(一般测外墙和屋顶、架

附录D 节能窗传热系数计算

附录D 节能窗传热系数计算D.0.1节能窗(单层窗(中空双玻))传热系数计算公式: K W =(K g A g +K f A f +ψL g )/( A g +A f ) 式中: K W---- 窗传热系数 K g---- 玻璃传热系数 K f---- 窗框传热系数 A g---- 玻璃面积(里外两面投影中取小的一面面积) A f----窗框面积(包括窗扇和窗外套,A W =A g +A r ) ψ----玻璃、窗框间的传热系数 L g---- 玻璃、窗框间的线长,m D.0.2中空玻璃的传热系数见下表: 表D1 中空玻璃传热系数(W/(m2K))

D.0.3窗框传热系数 以下数据仅用于垂直窗情况(屋顶窗及其它可参考)。 (1)塑料型材 下面给出金属加强的塑料型材的传热系数,无金属加强的也可选用。 表D2 塑料型材的传热系数(W/(m 2 K)) (2)金属材料 ①无断热桥的金属窗框,其传热系数也受空腔的影响,一般空腔不多的情况下,型材传热系数取K f =5.9W/(m 2K)。

②断热桥的金属窗框传热系数受断热材的影响大(图D1)。 图D1 断热桥最小高度d(两金属框之间的距离)与传热系数关系 D.0.4窗框窗玻璃间线传热系数 线传热系数用于计算窗框与玻璃接触处传热量,它与填入材料的导热系数及接触长度有关(表D3)。 表D3 铝合金框与玻璃的线传热系数ψ(W/(m.K)) D.0.5窗传热系数可参考表D4,表D5: 窗传热系数不但受玻璃和框的传热系数影响,还受窗框比影响。

表D4 窗框比为30%的窗传热系数(W/(m2K)) 表D5 窗框比为20%的窗传热系数(W/(m2K)) D.0.6中空玻璃遮阳系数,可见光透射比(透过率)

玻璃的传热系数计算

4.3 热工设计 4.3.1 本系统用于外墙外保温时的保温层设计厚度,应根据《河南省公共建筑节能设计标准》(DBJ41/075-2006)、《河南省居住建筑节能设计标准(寒冷地区)》(DBJ41/062-2005)、《河南省居住建筑节能设计标准(夏热冬冷地区)》(DBJ41/071-2006)规定的外墙传热系数限值,通过热工计算确定。 4.3.2 ZCK无机复合保温板用于外墙外保温时,其导热系数(λ)、蓄热系数(S)设计计算值和修正系数按下表取值。 表4.3.2 ZCK无机复合保温板λ、S、修正系数 4.3.3 热工计算示例,以采用60mm保温板为例。 示例一:200mm混凝土剪力墙外贴60mm保温板,计算如下: Ra=R内+R1+R2+R3+R4+R外=0.11+0.0215+0.1149+1.1429+0.005+0.04=1.4343 Ka=1/R=1/1.4333=0.70W/(m2.K) 其中:R内为内表面换热阻,0.11m2.K/W; R1为水泥砂浆层热阻,0.02/0.81=0.0215 m2.K/W; R2为混凝土剪力墙层热阻,0.2/1.74=0.1149 m2.K/W; R3为保温板层热阻,0.06/(0.05*1.05)=1.1429 m2.K/W; R4为抗裂砂浆层热阻,0.005/0.93=0.005 m2.K/W; R外为外表面换热阻,0.04m2.K/W; 示例二:200mm加气混凝土砌块外贴60mm保温板,计算如下: Rb=R内+R1+R2+R3+R4+R外=0.11+0.0215+0.80+1.1429+0.005+0.04=2.1194 Kb=1/R=1/2.1194=0.47W/(m2.K) 其中:R内为内表面换热阻,0.11m2.K/W; R1为水泥砂浆层热阻,0.02/0.81=0.0215 m2.K/W; R2为加气混凝土砌块层热阻,0.2/(0.20*1.25)=0.80 m2.K/W; R3为保温板层热阻,0.06/(0.05*1.05)=1.1429 m2.K/W; R4为抗裂砂浆层热阻,0.005/0.93=0.005 m2.K/W;

传热系数计算

传热系数计算 散热器是一种热交换器~其热工计算的基本公式为传热方程式~其表达式为: Ф=KAΔt ,6,1, m Ф为传热量单位:W 2K为传热系数单位:W/(m〃?) A 为传热面积单位:? Δt为冷热流体间的对数平均温差单位:? m,,,从《车辆冷却传热》上可知~以散热器空气侧表面为计算基础~散热器传热系数 计算公式为: -1K=(β/h+(β×λ) +(1/η×h)+ R) ,6,2, 1管02f 式中:β为肋化系数~其等于空气侧所有表面积之和/水侧换热面积 2h为水侧表面传热系数单位:W/(m〃?) 12h为空气侧表面传热系数单位:W/(m〃?)2 2λ为散热管材料导热系数单位:W/(m〃?) 管2R为散热器水侧和空气侧的总热阻单位:,m〃?),W f η为肋壁总效率~其表达式为: 0 η=1,(×,1,η,),A ,6,3, f20 A为空气侧二次换热面积~单位:? 22 A为空气侧所有表面积之和~单位:? 2 η为肋片效率 f η,th(m×h)/ (m×h) ,6,4, fff th为双曲线函数 h为散热带的特性尺寸~即散热管一侧的肋片高度 f m为散热带参数~表达式为: 0.5 m=((2×h)/(δ×λ)),6,5, 2222h为空气侧传热系数单位:W/(m〃?) 2 δ为散热带壁厚单位:m 22λ为散热带材料导热系数单位:W/(m〃?) 2

从《传热学》上可知~表面传热系数h的公式为: 2 h= Nu×/de 单位:W/(m 〃?) ,6,6, λ为流体的热导率~对散热器~即为空气热导率 de为换热面的特性尺度~对散热器~求气侧换热系数时~因空气外 掠散热管~故特性尺度为散热管外壁的当量直径, 单位m [2]由《传热学》中外掠管束换热实验知,流体横掠管束时~对其第一排管子来说~换热情况与横掠但管相仿。 Nu=C×Re (6,7) m[3]式中C、为常数~数值见《传热学》表5.2 Re=Va×de/νa ,6,8, Va 为空气流速单位m/s 2νa为空气运动粘度单位m/s

传热系数检测方法之热箱法

传热系数检测方法之热箱法 甘肃省建材科研设计院 兰州瑞洋建筑节能检测咨询有限公司 田斌守 2、功率法(就是俗称的热箱法) 2.1热箱法原理 热箱法是基于一维稳态传热的原理,在试件两侧的箱体(热箱和冷箱)内,分别建立所需的温度、风速和辐射条件,达到稳定状态后,测量空气温度、试件和箱体内壁的表面温度及输入到计量箱的功率,就可以根据公式(2)计算出试件的热传递性质——传热系数。因为要检测通过被测对象的热量,因此要把传向别处的热量进行剔除,这样根据处理方式的不同又分为标定热箱法和防护热箱法。 ) (e i T T A Q k -= (2) 其中: K 为传热系数,W/(m 2.K); Q 为通过试件功率,W ; A 为热箱开口面积,m 2; Ti 热箱空气温度,K 或℃; Te 冷箱空气温度,K 或℃。 2.1.1标定热箱法原理 检测原理示意图如图2所示。将标定热箱法的装置置于一个温度受到控制的空间内,该空间的温度可与计量箱内部的温度不同。采用高比热阻的箱壁使得流过箱壁的热流量Q 3尽量小。输入的总功率Q p 应根据箱壁热流量Q 3和侧面迂回热损Q 4进行修正。Q 3 和Q 4应该用已知比热阻的试件进行标定,标定试件的厚度、比热阻范围应同被测试件的范围相同,其温度范围亦应与被测试件试验的温度范围相同。用公式(3)计算被测试件的热阻、传热阻和传热系数。 ?? ???-=-=--=)(//)(11431ne ni se si p T T A Q K Q T T A R Q Q Q Q (3) 式中 Q p 为输入的总功率,W ;

Q 1为通过试件的功率,W ; Q 2为试件内不平衡热流,W ; Q 3为箱壁热流量,W ; Q 4为侧面迂回热损,W ; A 为热箱开口面积,m 2; T si 为试件热侧表面温度,K T se 为试件冷侧表面温度,K ; T ni 为试件热侧环境温度,K ; T ne 为试件冷侧环境温度,K 图2 实验室标定热箱法原理示意图 2.1.2防护热箱法原理 防护热箱法检测原理示意图如图3所示。在防护热箱法中,将计量箱置于防护箱内。控制防护箱内温度与计量箱内温度相同,使试件内不平衡热流量Q 2和流过计量箱壁的热流量Q 3减至最小可以忽略。按公式(4)计算被测试件的热阻、传热阻和传热系数, ?????-=-=--=)(//)(11231ne ni se si p T T A Q K Q T T A R Q Q Q Q (4)

习题热工性能现场检测含答案

习题热工性能现场检测含答案

热工性能现场检测 一、填空题 1、在建筑热工法现场测量中最关键的一项指标是建筑墙体的__________。 2、现场热工法是以测量______与______的方法确定建筑物外围护结构的传热系数。 3、围护结构的热阻是指在稳定状态下,与热流方向垂直的物体两表面______除以______。在非稳定条件下,建筑构件t 和q 是指较长检测时间的______。 4、围护结构传热阻主要包括两部分内容,一部分是-____________,另一部分是____________。表面换热阻分为-____________和____________。 5、热流计法指用热流计进行______测量并计算______或-______的测量方法。 6、热流计法是按_____传热原理设计的测试方法,采用热流计及温度传感器测量经过构件的______和____________,经过计算即可求得建筑物围护结构的热阻和传热系数。 7、热箱法中被测部位的______用热箱模拟采暖建筑室内条件,另一侧为____________。 8、围护结构的传热系数的现场检测方法有____________、-______、________________________。

9、____________具有稳定、易操作、精度高、重复性好等优点,是当前国内外常见的现场测试方法 10、热流计法主要采用____________、______在现场检测被测围护结构的热流量和其内、外表面温度。 11、公式E =中C为____________,E?为______。 C q?? 12、热流计法要求围护结构高温侧表面温度宜高于低温侧-____________________________________以上而且不低于-______℃,在检测过程中的任何时刻均不得等于或低于______表面温度。检测持续时间不应少于______。 13、热流计法检测围护结构的传热系数期间,室内空气温度应保持____________,被测区域外表面宜避免____________和-____________。 14、《民用建筑节能工程现场热工性能检测标准》DGJ32/J 23- 中规定。同一居住小区围护结构保温措施及建筑平面布局基本相同的建筑物作为一个样本随机抽样。抽样比例不低于样本比数的______,至少______;不同结构体系建筑,不同保温措施的建筑物应分别抽样检测。公共建筑应______抽样检测。 15、DGJ32/J 23- 规定抽样建筑应在______与______进行至少2处墙体、______的热阻检测。至少1组窗气密性检测。 16、DGJ32/J 23- 规定屋顶、墙体、楼板内外表面温度测点各不得少于3个;表面温度测点应选在构件有代表性的位置。测点位置不应靠近______、______和有空气渗漏的部位。

工程建筑物围护结构传热系数现场检测技术

建筑物围护结构传热系数现场检测技术 宏武,邢,王吉霖,德荣,亮,毅然 市建筑科学研究院 为改善居住建筑室热环境质量,提高人民居住水平,提高采暖、空调能源利用效率,贯彻执行国家可持续发展战略,2001年《夏热冬冷地区居住建筑节能设计标准》颁布实施[1]。该标准在提出节能50%的同时,对建筑物围护结构的热工性能也进行了相应规定。虽然《节能标准》在设计阶段保证了建筑物围护结构的热工性能达到目标要求,但并不能保证建筑物建造完后也能达到节能要求,因为建筑的施工质量同样非常关键。因此,判定建筑物围护结构热工性能是否达到标准要求,仅靠资料并不能给出结论,需要现场实测。 但我国建筑节能工作起步较晚,至今尚无一套完善、先进、适合我国国情的建筑节能现场检测技术,在某种程度上限制了建筑节能工作的规发展。这使得建筑节能现场检测技术的研究开发就显得尤为迫切和重要。 围护结构传热系数是表征围护结构传热量大小的一个物理量,是围护结构保温性能的评价指标,也是隔热性能的指标之一[2],因此本文主要针对围护结构传热系数的现场检测技术进行分析与探讨。 1现有围护结构传热系数现场检测方法 1.1热流计法[3] 热流计是建筑能耗测定中常用仪表,该方法采用热流计及温度传感器测量通过构件的热流值和表面温度,通过计算得出其热阻和传热系数。其检测基本原理为:在被测部位布置热流计,在热流计周围的外表面布置热电偶,通过导线把所测试的各部分连接起来,将测试信号直接输入微机,通过计算机数据处理,可打印出热流值及温度读数。当传热过程稳定后,开始计量。为使测试结果准确,测试时应在连续采暖(人为制造室外温差亦可)稳定至少7d的房间中进行。

建筑物围护结构传热系数现场检测技术范文

建筑物围护结构传热系数现场检测技 术

建筑物围护结构传热系数现场检测技术 范宏武,邢大庆,王吉霖,李德荣,曹亮,曹毅然 上海市建筑科学研究院 为改进居住建筑室内热环境质量,提高人民居住水平,提高采暖、空调能源利用效率,贯彻执行国家可持续发展战略,《夏热冬冷地区居住建筑节能设计标准》颁布实施[1]。该标准在提出节能50%的同时,对建筑物围护结构的热工性能也进行了相应规定。虽然《节能标准》在设计阶段保证了建筑物围护结构的热工性能达到目标要求,但并不能保证建筑物建造完后也能达到节能要求,因为建筑的施工质量同样非常关键。因此,判定建筑物围护结构热工性能是否达到标准要求,仅靠资料并不能给出结论,需要现场实测。 但中国建筑节能工作起步较晚,至今尚无一套完善、先进、适合中国国情的建筑节能现场检测技术,在某种程度上限制了建筑节能工作的规范发展。这使得建筑节能现场检测技术的研究开发就显得尤为迫切和重要。 围护结构传热系数是表征围护结构传热量大小的一个物理量,是围护结构保温性能的评价指标,也是隔热性能的指标之一[2],因此本文主要针对围护结构传热系数的现场检测技术进行分析与探讨。

1现有围护结构传热系数现场检测方法 1.1热流计法[3] 热流计是建筑能耗测定中常见仪表,该方法采用热流计及温度传感器测量经过构件的热流值和表面温度,经过计算得出其热阻和传热系数。其检测基本原理为:在被测部位布置热流计,在热流计周围的内外表面布置热电偶,经过导线把所测试的各部分连接起来,将测试信号直接输入微机,经过计算机数据处理,可打印出热流值及温度读数。当传热过程稳定后,开始计量。为使测试结果准确,测试时应在连续采暖(人为制造室内外温差亦可)稳定至少7d的房间中进行。 一般来讲,室内外温差愈大(要求必须大于20℃),其测量误差相对愈小,所得结果亦较为精确,其缺点是受季节限制。该方法是当前国内外常见的现场测试方法,国际标准和美国ASTM 标准都对热流计法作了较为详细的规定。 1.2热箱法[4] 热箱法是测定热箱内电加热器所发出的全部经过围护结构的热量及围护结构冷热表面温度。其基本检测原理是用人工制造一个一维传热环境,被测部位的内侧用热箱模拟采暖建筑室内条件并使热箱内和室内空气温度保持一致,另一侧为室外自然条件,维持热箱内温度高于室外温度8℃以上,这样被测部位的热流总是从室内向室外传递,当热箱内加热量与经过被测部位的传递热量

各类玻璃的传热系数

附表F.0.9-1 外窗(包括透明幕墙、屋顶透明部分)的传热系数 玻璃 间隔层 (mm) 间隔层 气体 玻璃传热系数K b W/(m2·K) 窗框K c 中空玻璃6 空气 3.00 塑料 2.58~2.79 铝合金 3.69~4.38 PA隔热铝合金 3.18~3.33 12 2.60 塑料 2.34~2.47 铝合金 3.38~4.13 PA隔热铝合金 2.70~3.09 辐射率≤0.25 Low-E中空玻璃(在线)6 空气 2.80 塑料 2.44~2.63 铝合金 3.47~4.17 PA隔热铝合金 2.97~3.16 9 2.20 塑料 2.09~2.13 铝合金 2.99~3.81 PA隔热铝合金 2.51~2.79 12 1.90 塑料 1.90 铝合金 2.76~3.63 PA隔热铝合金 2.26~2.62 6 氩气 2.40 塑料 2.26~2.30 铝合金 3.17~3.91 PA隔热铝合金 2.66~2.93 9 1.80 塑料 1.82~1.84 铝合金 2.68~3.56 PA隔热铝合金 2.18~2.56 12 1.70 塑料 1.73~1.79 铝合金 2.60~3.50 PA隔热铝合金 2.11~2.50 辐射率≤0.15 Low-E中空玻璃(离线)12 空气 1.80 塑料 1.82~1.84 铝合金 2.68~3.56 PA隔热铝合金 2.18~2.56 氩气 1.50 塑料 1.58~1.67 铝合金 2.45~3.38 PA隔热铝合金 1.94~2.39 双银Low-E 中空玻璃12 空气 1.70 塑料 1.73~1.79 铝合金 2.60~3.50 PA隔热铝合金 2.11~2.50 氩气 1.40 塑料 1.50~1.60 铝合金 2.37~3.32 PA隔热铝合金 1.86~2.32 注:1K b—窗玻璃的传热系数,K c—窗的传热系数; 2表F.0.9-1玻璃性能数据取自有关研究报告及厂家的产品样本,窗框对窗传热系数的影响是根据窗框比及窗框和玻璃的计算传热系数通过计算得出的,供参考; 3多层中空玻璃、其他玻璃品种及呼吸透明幕墙(双层皮玻璃幕墙)的性能可参考其他有关资料。 附表F.0.9-2 各种玻璃的遮阳系数 玻璃玻璃 颜色 可见光(%)太阳能(%)玻璃遮 阳系数 SC 透射反射透射反射 中空玻璃 间隔层6mm无色79 14 63 12 0.81 间隔层12mm无色75 14 58 11 0.77 着色中空玻璃蓝色66 12 47 8.4 0.65 绿色65 12 48 8.5 0.66 茶色46 10 46 8.6 0.64 灰色39 8 38 8 0.54 热反射中空玻璃反 射 颜 色 深绿色无色8 16 12 11 0.26 绿色 绿色45 9 26 6 0.42 蓝绿40 9 24 6 0.40 蓝绿色蓝绿49 26 31 14 0.46 灰绿色 绿色46 17 28 9 0.44 蓝绿40 19 28 11 0.44 现代绿色绿色48 26 28 13 0.44

传热过程的计算16页

第五节 传热过程的计算 化工生产中广泛采用间壁换热方法进行热量的传递。间壁换热过程由固体壁的导热和壁两侧流体的对流传热组合而成,导热和对流传热的规律前面已讨论过,本节在此基础上进一步讨论传热的计算问题。 化工原理中所涉及的传热过程计算主要有两类:一类是设计计算,即根据生产要求的热负荷,确定换热器的传热面积;另一类是校核计算,即计算给定换热器的传热量、流体的流量或温度等。两者都是以换热器的热量衡算和传热速率方程为计算基础。 4-5-1 热量衡算 流体在间壁两侧进行稳定传热时,在不考虑热损失的情况下,单位时间热流体放出的热量应等于冷流体吸收的热量,即: Q=Q c =Q h (4-59) 式中 Q ——换热器的热负荷,即单位时间热流体向冷流体传递的热量,W ; Q h ——单位时间热流体放出热量,W ; Q c ——单位时间冷流体吸收热量,W 。 若换热器间壁两侧流体无相变化,且流体的比热容不随温度而变或可取平均温度下的比热容时,式(4-59)可表示为 ()()1221t t c W T T c W Q pc c ph h -=-= (4-60) 式中 c p ——流体的平均比热容,kJ/(kg ·℃); t ——冷流体的温度,℃; T ——热流体的温度,℃; W ——流体的质量流量,kg/h 。 若换热器中的热流体有相变化,例如饱和蒸气冷凝,则 ()12t t c W r W Q pc c h -== (4-61) 式中 W h ——饱和蒸气(即热流体)的冷凝速率,kg/h ; r ——饱和蒸气的冷凝潜热,kJ/kg 。 式(4-61)的应用条件是冷凝液在饱和温度下离开换热器。若冷凝液的温度低于饱和温度时,则式(4-61)变为 ()[]()122t t c W T T c r W Q pc c s ph h -=-+= (4-62) 式中 c ph ——冷凝液的比热容,kJ/(kg ·℃); T s ——冷凝液的饱和温度,℃。 4-5-2 总传热速率微分方程 图4-20为一逆流操作的套管换热器的微元管段d L ,该管段的内、外表面积及平均传热面积分别为d S i 、d S o 和d S m 。热流依次经过热流体、管壁和

公共建筑热工性能检验方法(DOC)

公共建筑热工性能检验方法 国家建筑工程质量监督检验中心 2010.03

目录 1《公共建筑节能检验方法》编制目的、意义......................................... 错误!未定义书签。2建筑热工性能检验和前期准备.............................................................. 错误!未定义书签。 2.1 检验内容 2.2 前期准备 3非透光外围护结构热工性能检验 (5) 3.1检验范围和内容................................................................................. 错误!未定义书签。 3.2检测方法 (5) 4 透光围护结构热工性能检验 (8) 4.1定义 (8) 4.2检验范围和内容 (8) 4.3 外遮阳检验 4.4透明幕墙和采光顶检验 (9) 4.5 外通风双层幕墙隔热性能检测 5建筑外围护结构气密性检验 (12) 5.1检验范围............................................................................................. 错误!未定义书签。 5.2外围护结构整体气密性能检测 (13) 5.3外窗和透明幕墙气密性检验错误!未定义书签。

1、《公共建筑节能检验方法》编制目的、意义 公共建筑包含办公建筑(包括写字楼、政府办公楼等),商场建筑(如商场、金融建筑等),旅游建筑(如旅馆饭店、娱乐场所等),科教文卫建筑(包括文化、教育、科研、医疗卫生、体育建筑等),通讯建筑(如邮电、通信,广播用房等)以及交通运输用房(如机场、车站建筑等)。我国现有公共建筑面积约45亿m2,为城镇建筑面积的27%,占城乡房屋建筑总面积的10.7%。而据测算分析,公共建筑能耗约占建筑总能耗的20%,因此,公共建筑节能已成为目前建筑节能工作的重点。 2005年、2007年先后颁布实施了《公共建筑节能设计标准》GB50189、《建筑节能工程施工质量验收规范》GB50411,从设计施工两个环节对公共建筑节能进行了规范。 为了强化大型公共建筑节能管理,2007年建设部、国家发改委等五部委联合签发了《关于加强大型公共建筑工程建设管理的若干意见》,《意见》中明确要求:“新建大型公共建筑必须严格执行《公共建筑节能设计标准》和有关的建筑节能强制性标准,建设单位要按照相应的建筑节能标准委托工程项目的规划设计,项目建成后应经建筑能效专项测评,凡达不到工程建设节能强制性标准的,有关部门不得办理竣工验收备案手续。” 《民用建筑节能条例》自2008年10月1日起施行。《条例》中规定,国家机关办公建筑和大型公共建筑的所有权人应当对建筑的能源利用效率进行测评和标识。如何检验公共建筑是否达到节能标准,规范建筑节能检验方法,已成为落实公共建筑节能管理必须的支撑手段。

相关主题
文本预览
相关文档 最新文档