当前位置:文档之家› 物理气相沉积PVD技术

物理气相沉积PVD技术

物理气相沉积PVD技术
物理气相沉积PVD技术

物理气相沉积(PVD)技术

第一节 概述

物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。,并向着环保型、清洁型趋势发展。20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。

物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。

物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。

真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。

溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。

电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。

离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。

物理气相沉积技术基本原理可分三个工艺步骤:

(1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。

(2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。

(3)镀料原子、分子或离子在基体上沉积。

物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。

第二节 真空蒸镀

(一)真空蒸镀原理

(1)真空蒸镀是在真空条件下,将镀料加热并蒸发,使大量的原子、分子气化并离开液体镀料或离开固

体镀料表面(升华)。

(2)气态的原子、分子在真空中经过很少的碰撞迁移到基体。

(3)镀料原子、分子沉积在基体表面形成薄膜。

(二)蒸发源

将镀料加热到蒸发温度并使之气化,这种加热装置称为蒸发源。最常用的蒸发源是电阻蒸发源和电子束蒸发源,特殊用途的蒸发源有高频感应加热、电弧加热、辐射加热、激光加热蒸发源等。

(三)真空蒸镀工艺实例

以塑料金属化为例。真空蒸镀工艺包括:镀前处理、镀膜及后处理。真空蒸镀的基本工艺过程如下:

(1)镀前处理,包括清洗镀件和预处理。具体清洗方法有清洗剂清洗、化学溶剂清洗、超声波清洗和离子轰击清洗等。具体预处理有除静电,涂底漆等。

(2)装炉,包括真空室清理及镀件挂具的清洗,蒸发源安装、调试、镀件褂卡。

(3)抽真空,一般先粗抽至6.6Pa以上,更早打开扩散泵的前级维持真空泵,加热扩散泵,待预热足够后,打开高阀,用扩散泵抽至6×10 -3Pa半底真空度。

(4)烘烤,将镀件烘烤加热到所需温度。

(5)离子轰击,真空度一般在10Pa~10-1Pa,离子轰击电压200V~1kV负高压,离击时间为5min~30min

(6)预熔,调整电流使镀料预熔,调整电流使镀料预熔,除气1min~2min。

(7)蒸发沉积,根据要求调整蒸发电流,直到所需沉积时间结束。

(8)冷却,镀件在真空室内冷却到一定温度。

(9)出炉,.取件后,关闭真空室,抽真空至l × l0-1Pa,扩散泵冷却到允许温度,才可关闭维持泵和冷却水。

(10)后处理,涂面漆。

第三节 溅射镀膜

溅射镀膜是指在真空条件下,利用获得功能的粒子轰击靶材料表面,使靶材表面原子获得足够的能量而逃逸的过程称为溅射。被溅射的靶材沉积到基材表面,就称作溅射镀膜。

溅射镀膜中的入射离子,一般采用辉光放电获得,在l0-2Pa~10Pa范围,所以溅射出来的粒子在飞向基体过程中,易和真空室中的气体分子发生碰撞,使运动方向随机,沉积的膜易于均匀。近年发展起来的规模性磁控溅射镀膜,沉积速率较高,工艺重复性好,便于自动化,已适当于进行大型建筑装饰镀膜,及工业材料的功能性镀膜,及TGN-JR型用多弧或磁控溅射在卷材的泡沫塑料及纤维织物表面镀镍Ni及银Ag。

第四节 电弧蒸发和电弧等离子体镀膜

这里指的是PVD领域通常采用的冷阴极电弧蒸发,以固体镀料作为阴极,采用水冷、使冷阴极表面形成许多亮斑,即阴极弧斑。弧斑就是电弧在阴极附近的弧根。在极小空间的电流密度极高,弧斑尺寸极小,估计约为1μm~100μm,电流密度高达l05A/cm2~107A/cm2。每个弧斑存在极短时间,爆发性地蒸发离化阴极改正点处的镀料,蒸发离化后的金属离子,在阴极表面也会产生新的弧斑,许多弧斑不断产生和消失,所以又称多弧蒸发。

最早设计的等离子体加速器型多弧蒸发离化源,是在阴极背后配置磁场,使蒸发后的离子获得霍尔(hall)加速效应,有利于离子增大能量轰击量体,采用这种电弧蒸发离化源镀膜,离化率较高,所以又称为电弧等离子体镀膜。

由于镀料的蒸发离化靠电弧,所以属于区别于第二节,第三节所述的蒸发手段。

第五节 离子镀

离子镀技术最早在1963年由D.M.Mattox提出,1972年,Bunshah &Juntz推出活性反应蒸发离子镀(AREIP),沉积TiN,TiC等超硬膜,1972年Moley&Smith发展完善了空心热阴极离子镀,l973年又发展出射频离子镀(RFIP)。20世纪80年代,又发展出磁控溅射离子镀(MSIP)和多弧离子镀(MAIP)。

(一)离子镀

离子镀的基本特点是采用某种方法(如电子束蒸发磁控溅射,或多弧蒸发离化等)使中性粒子电离成离子和电子,在基体上必须施加负偏压,从而使离子对基体产生轰击,适当降低负偏压后,使离子进而沉积于基体成膜。

离子镀的优点如下:①膜层和基体结合力强。②膜层均匀,致密。③在负偏压作用下绕镀性好。④无污染。⑤多种基体材料均适合于离子镀。

(二)反应性离子镀

如果采用电子束蒸发源蒸发,在坩埚上方加20V~100V的正偏压。在真空室中导人反应性气体。如N2、02、C2H2、CH4等代替Ar,或混入Ar,电子束中的高能电子(几千至几万电子伏特),不仅使镀料熔化蒸发,而且能在熔化的镀料表面激励出二次电子,这些二次电子在上方正偏压作用下加速,与镀料蒸发中性粒子发生碰撞而电离成离子,在工件表面发生离化反应,从而获得氧化物(如Te02:Si02、Al203、Zn0、Sn02、Cr203、Zr02、In02等)。其特点是沉积率高,工艺温度低。

(三)多弧离子镀

多弧离子镀又称作电弧离子镀,由于在阴极上有多个弧斑持续呈现,故称作“多弧”。多弧离子镀的主要特点如下:

(1)阴极电弧蒸发离化源可从固体阴极直接产生等离子体,而不产生熔池,所以可以任意方位布置,也可采用多个蒸发离化源。

(2)镀料的离化率高,一般达60%~90%,显著提高与基体的结合力改善膜层的性能。

(3)沉积速率高,改善镀膜的效率。

(4)设备结构简单,弧电源工作在低电压大电流工况,工作较为安全。

物理气相沉积

物理气相沉积(PVD)技术 第一节概述 物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。,并向着环保型、清洁型趋势发展。20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。 物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光

薄膜基本知识

膜是什么? 新华字典: 膜:①动植物体内象薄皮的组织;②象膜的薄皮。 这种解释“膜”就是薄皮,因此又有薄膜之说,我们所要探讨的特指薄膜。至于其他的膜种比如耳膜、骨膜、肋膜由医学界研究,还有敏感部位与节操有关的膜大部分被腐败的领导们研究了,在此也不做赘述。 薄膜又是什么呢? 《薄膜科学与技术》:膜是两个几何学平行平面向所夹的物质。薄膜多数是由一个个的原子以无规则的方式射到平整表面上,并使其凝结而形成的,在薄膜形成的初期,由于原子的表面迁移、生核等,从徽观上,所得到的物质多数为是丘陵似的岛状结构,在这种状态下从宏观上可看作是各向同性且均匀,这种物质即为薄膜。 通俗讲薄膜就是贴皮:A物质(可以多种构成)以原子或离子态附着在B物质上,且A物质同时满足以下几个条件:薄、匀、牢、密,各种涂层形成的表面都可以叫做薄膜。 多薄才可以叫薄膜呢? 木有严格定义,一般来说应该比B物质薄、不影响B物质使用且能够起保护作用或提高B物质功能属性。

薄膜起什么作用? 首先是保护,薄膜附着在机体上,可以首先磨损薄膜,防腐蚀耐磨损;其次是改性,使原来的物质具备薄膜的物理属性:提高硬度、提高耐高温能力、降低摩擦系数;第三改变颜色,使机体更炫更美。 薄膜的物理属性有哪些? 1、有一定的厚度,无论多薄的膜,都有一定的厚度; 2、薄膜有一定的致密性,孔隙率越小致密性越大,膜的质量 月好; 3、有一定的硬度,根据使用要求不同,薄膜应该满足相应的 硬度需求,由于薄膜的构成和制备工艺不同硬度也千差万别; 4、有一定的结合力,薄膜和机体的结合力应该满足使用要求; 其结合力的强度决定于薄膜的构成和制备工艺; 5、薄膜有特定的色泽,薄膜成分不同会产生万紫千红、色彩 斑斓的表面颜色,根据需求选择适合的元素搭配。 薄膜有哪些分类? 致密性薄膜从大类上可分为装饰膜和功能膜两种。 功能膜又可以分成硬膜和润滑膜。 如何测量膜的硬度? 硬度是材料抵抗异物压入的能力,是材料多种力学性能的综合表

物理气相沉积

1 第二章 物理气相沉积 一、物理气相淀积(Physical Vapor Deposition, PVD )的第一类 1、电阻热蒸发(thermal vaporization ) 蒸发材料在真空室中被加热时,其原子或分子就会从表面逸出,这种现象叫热蒸发。 A 、饱和蒸气压P V 在一定温度下,真空室中蒸发材料的蒸汽在与固体或液体平衡过程中所表现出的压力称为该温度下的饱和蒸汽压。 () L G V V V T H dT dP -?= ?H :mol 汽化热,T :绝对温度。 V G 、V L :分别为汽相和液相mol 体积。 RT H C P V ?- =ln R :气体普适常数 T B A P V - =ln 下图给出了以lgP V 和lgT 为坐标而绘制的各种元素的饱和蒸汽压曲线。 图2-1 某些元素的平衡蒸气压

2 饱和蒸汽压随着温度升高而迅速增加。由上图1曲线知, a. 达到正常薄膜蒸发速率所需的温度,即P V =1Pa 时温度; b. 蒸发速率随温度变化的敏感性; c. 蒸发形式:蒸发温度高于熔点,蒸发状态是熔化的,否则是升华。 下表是几种介质材料的蒸汽压与温度的关系 B 、蒸发粒子的速度和能量 C T KT E M RT m KT v kT mv E m m 2500~1000 2 3 332122 === === 平均速度105cm/s ,eV E 2.0~1.0= C 、蒸发速率和淀积速率 ()[] mkT P P dt A dN h V e πα2/Re -=?= (个/米2 ·秒) dN :蒸发粒子数,α e :蒸发系数,A :面积 P V :饱和蒸汽压;P h :液体静压,m :原子量, K :玻耳兹曼常数。 设α e =1, P h =0 mkT Pv π2/Re = 质量蒸发速率:

物理气相沉积PVD技术

物理气相沉积(PVD)技术 第一节 概述 物理气相沉积技术早在20世纪初已有些应用,但在最近30年迅速发展,成为一门极具广阔应用前景的新技术。,并向着环保型、清洁型趋势发展。20世纪90年代初至今,在钟表行业,尤其是高档手表金属外观件的表面处理方面达到越来越为广泛的应用。 物理气相沉积(Physical Vapor Deposition,PVD)技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。 物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。 电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。 第二节 真空蒸镀

实验指导书-化学气相沉积上课讲义

实验指导书-化学气相 沉积

化学气相沉积技术实验 一、实验目的 1.了解化学气相沉积制备二硫化钼的基本原理; 2.了解化学气相沉积方法制备二硫化钼薄膜材料的基本流程及注意事项; 3.利用化学气相沉积方法制备二硫化钼薄膜材料。 二、实验仪器 该实验中用到的主要实验仪器设备以及材料有:干燥箱、CVD生长系统、电子天平、超声清洗机,去离子水机等,现将主要设备介绍如下: 1.CVD生长系统 本实验所用CVD生长系统由生长设备,真空设备,气体流量控制系统和冷却设备四部分组成,简图如下 图1 CVD设备简图 2.电子天平 本实验所用电子天平采用电磁力平衡被称物体重力原理进行称量,特点是称量准确可靠、显示快速清晰并且具有自动检测系统、简便的自动校准装置以及超载保护等装置。在本实验中电子天平主要用于精确称量药品,称量精度可精确到小数点后第五位。 三、实验原理

近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 一、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。

热喷涂及电子束物理气相沉积技术在热障涂层制备中的应用

热喷涂及电子束物理气相沉积技术在热障涂层制备中的应用* 张红松,耿国强,杜可可,张 政 (河南工程学院机械工程系,郑州450007) 摘要 对常用热障涂层制备技术,包括火焰喷涂、爆炸喷涂、大气等离子喷涂、高能等离子喷涂、超音速等离子喷涂、低压等离子喷涂、溶液注入等离子喷涂及电子束物理气相沉积技术进行了综述。介绍了上述几种制备技术的原理、工艺特点、存在不足及解决措施。认为发展爆炸喷涂工艺、溶液注入等离子喷涂工艺与EB 2PVD 工艺及其在新型热障涂层制备中的应用将是热障涂层制备技术研究的重点。 关键词 热障涂层 火焰喷涂 爆炸喷涂 等离子喷涂 中图分类号:T G174.4 文献标识码:A Application of Thermal 2spraying and Electron Beam Physical Vapor Deposition Technologies on Preparation of Thermal Barrier Coatings ZHANG H ongsong,GENG Guoqiang,DU Keke,ZHANG Zheng (Department of Mechanical Engineering,H enan Institute of Engineer ing,Zhengzhou 450007) Abstr act A few pr epar ation technologies of t her mal bar rier coatings,including flame spraying,detonat ion spr aying,atmospheric plasma spraying,plazjet plasma spraying,supersonic plasma spr aying,low pr essure plasma spr aying,solution precursor plasma spra ying as well as electron beam physical vapor deposition technology ar e sum 2marized r espect ively.T he principles,technical char acter istics,existing short ages and the corr esponding resolving methods of each technology are introduced.It is indicated t hat the development of detonation spraying,solut ion pre 2cursor plasma spr aying,elect ron beam physical vapor deposition as well as their applications for pr epar ation of novel thermal bar rier coatings should be regarded the research emphasis in the fut ur e. Key wor ds ther mal barr ier coatings,f lame spr aying,detonation spraying,plasma spr aying *河南工程学院博士基金(D2007012) 张红松:1976年生,博士,讲师,主要从事热障涂层技术的研究 E 2mail:zhs761128@https://www.doczj.com/doc/2e1104489.html, 热障涂层(Thermal barrier coat ings,TBCs)是通过特殊的工艺将具有良好隔热性能的陶瓷材料涂到航空发动机的关键热端部件表面得到的一层保护层,厚度一般不超过0.5mm [1]。该类涂层虽然很薄,却能有效避免航空涡轮发动机热端关键部件与高温燃气的直接接触,从而为发动机热端部件提供有效保护。由于其优良的性能,热障涂层在航空发动机技术几十年来的发展中获得了广泛应用[2]。其中涂层制备方法及工艺的研究一直是广大学者关注的焦点。近几年来,随着航空发动机向高流量比、高涡轮进口温度和高推重比方向的发展,发动机燃气温度进一步提高,使得热障涂层技术显得更加重要,有关涂层制备方法的研究在国内外更加活跃[3,4]。热喷涂及电子束物理气相沉积技术作为热障涂层常用的2种制备技术,历来备受关注,本文就热障涂层制备所用到的热喷涂方法及电子束物理气相沉积技术进行了综述,并就将来涂层制备技术的发展方向进行了探讨。 1 火焰喷涂 1.1 沉积原理 火焰热喷涂包括粉末火焰喷涂和丝材火焰喷涂,在制备热障涂层研究中多以粉末喷涂为主。喷涂中通常使用乙炔和氧组合提供热量,也可以使用甲基乙炔、丙二炔(MPS)、丙烷、氢气或天然气。喷枪通过气阀引入乙炔和氧气,二者混合后在喷嘴处产生燃烧火焰。喷枪上设有粉斗或进粉管,利用送粉气流产生的负压抽吸粉末,使粉末随气流进入火焰,在火焰中被加热熔化或软化后,在气流和焰流的作用下喷射到基材表面形成涂层。 1.2 工艺特点及存在不足 火焰喷涂可喷涂金属、陶瓷、塑料等材料,应用非常灵活,喷涂设备轻便简单,价格低于其他喷涂设备,经济性好,是目前喷涂技术中使用较广泛的一种方法。但火焰喷涂也存在明显的不足,如火焰温度低,熔点超过2500e 的材料很难用火焰进行喷涂。另外,进入火焰及随后飞行中的粉末,由于处在火焰中的位置不同,被加热的程度存在很大的差别,导致部分粉末未熔融、部分粉末仅被软化,从而造成涂层的结合强度及致密性比较低。此外,火焰中心为氧化性气氛,会加剧金属粉末的氧化程度[5]。陈文华等采用火焰喷涂技术制备了A l 2O 3/Fe 功能梯度热障涂层、普通纯Al 2O 3热障涂层和带过渡层(Cu )的热障涂层,结果表明,涂层的结合

论述物理气相沉积和化学气相沉积的优缺点

论述物理气相沉积和化学气相沉积的优缺点 物理气相沉积技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。 随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。 化学气相沉积是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相

物理气相沉积真空镀膜设备介绍要点

物理气相沉积真空镀膜设备介绍 (上海大学材料科学与工程学院电子信息材料系,上海200444) 摘要:本文主要介绍了五类物理气相沉积的真空镀膜设备。五种设备分别为:电阻式蒸发装置、电子束蒸发装置、电弧蒸发装置、激光蒸发装置以及空心阴极蒸发装置。介绍了相关设备的原理,优缺点等。其中,着重列出了有关电子束蒸发装置的其中一个应用,是厚度为200μm左右的独立式的铁铬-Y2O3非晶态/晶态复合涂层的已经从基板温度500oC左右的铁铬和氧化钇材料的电子束物理气相沉积产生。 Abstract:It describes the five physical vapor deposition vacuum coating equipment in this article.Five kinds of equipment are: resistive evaporation apparatus, an electron beam evaporation apparatus, arc evaporation apparatus, laser evaporation apparatus and a hollow cathode evaporation apparatus.It introduces the principle of related equipment, advantages and disadvantages. Emphatically identifies the electron beam evaporation apparatus in which an application.It is that Freestanding FeCrAl-Y2O3 amorphous/crystalline composite coating with a thickness of about 200nm has been produced from electron-beam physical vapor deposition of FeCrAl and yttria materials with a substrate temperature of 500 ℃ around. 关键词:电阻式蒸发装置、电子束蒸发装置、电弧蒸发装置、激光蒸发装置、空心阴极蒸发装置 Keyword :Resistive evaporation apparatus, an electron beam evaporation apparatus, arc evaporation apparatus, a laser evaporation apparatus, a hollow cathode evaporation device

MOCVD有机金属化学气相沉积

原理:金属有机化学气相沉积系统(MOCVD)是利用金属有机化合物作为源物质的一种化学气相淀积(CVD)工艺,其原理为利用有机金属化学气相沉积法metal-organic chemical vapor deposition.MOCVD是一种利用气相反应物,或是前驱物precursor和Ⅲ族的有机金属和V族的NH3,在基材substrate表面进行反应,传到基材衬底表面固态沉积物的工艺。 优缺点:MOCVD设备将Ⅱ或Ⅲ族金属有机化合物与Ⅳ或Ⅴ族元素的氢化物相混合后通入反应腔,混合气体流经加热的衬底表面时,在衬底表面发生热分解反应,并外延生长成化合物单晶薄膜。与其他外延生长技术相比,MOCVD技术有着如下优点:(1)用于生长化合物半导体材料的各组分和掺杂剂都是以气态的方式通入反应室,因此,可以通过精确控制气态源的流量和通断时间来控制外延层的组分、掺杂浓度、厚度等。可以用于生长薄层和超薄层材料。(2)反应室中气体流速较快。因此,在需要改变多元化合物的组分和掺杂浓度时,可以迅速进行改变,减小记忆效应发生的可能性。这有利于获得陡峭的界面,适于进行异质结构和超晶格、量子阱材料的生长。(3)晶体生长是以热解化学反应的方式进行的,是单温区外延生长。只要控制好反应源气流和温度分布的均匀性,就可以保证外延材料的均匀性。因此,适于多片和大片的外延生长,便于工业化大批量生产。(4)通常情况下,晶体生长速率与Ⅲ族源的流量成正比,因此,生长速率调节范围较广。较快的生长速率适用于批量生长。(5)使用较灵活。原则上只要能够选择合适的原材料就可以进行包含该元素的材料的MOCVD生长。而可供选择作为反应源的金属有机化合物种类较多,性质也有一定的差别。(6)由于对真空度的要求较低,反应室的结构较简单。(7)随着检测技术的发展,可以对MOCVD 的生长过程进行在位监测。 MOCVD技术的主要缺点大部分均与其所采用的反应源有关。首先是所采用的金属有机化合物和氢化物源价格较为昂贵,其次是由于部分源易燃易爆或者有毒,因此有一定的危险性,并且,反应后产物需要进行无害化处理,以避免造成环境污染。另外,由于所采用的源中包含其他元素(如C,H等),需要对反应过程进行仔细控制以避免引入非故意掺杂的杂质。 基本结构和工作流程:通常MOCVD生长的过程可以描述如下:被精确控制流量的反应源材料在载气(通常为H2,也有的系统采用N2)的携带下被通入石英或者不锈钢的反应室,在衬底上发生表面反应后生长外延层,衬底是放置在被加热的基座上的。在反应后残留的尾气被扫出反应室,通过去除微粒和毒性的尾气处理装置后被排出系统。MOCVD工作原理如图所示。

化学气相沉积设备与装置

化学气相沉积设备与装置 化学气相沉积设备与装置 136 化学工程与装备 ChemicalEngineering&Equipment 2011年第3期 2011年3月 化学气相沉积设备与装置 韩同宝 (中国石油集团东方地球物理勘探有限责任公司敦煌经理部,甘肃敦煌736200) 摘要:本文介绍了化学气相沉积设备的系统组成与典型装置,讨论了几种典型装置特点对化学气相沉积 过程的影响,分析和总结了典型装置的维护对沉积参数控制精度及沉积过程的 影响. 关键词:化学气相沉积;设各:装置 前言 化学气相沉积(CvD)技术是一种新型的材料制备方法, 它可以用于制各各种粉 体材料,块体材料,新晶体材料,陶瓷纤维,半导体及金刚石薄膜等多种类型的材料,广泛应用于宇航工业上的特殊复合材科,原子反应堆材料,刀具材料, 耐热耐磨耐腐蚀及生物医用材料等领域.同传统材料制各技术相比,Cv1)技术具有以下优点:(1)可以在远低于材科熔点的温度进行材料合成:(2)可以控制合成材料的元素组成, 晶体结构,微观形貌(粉末状,纤维状,技状,管状,块状 等):(3)不需要烧结助剂,可以高纯度合成高密度材料;(4) 可以实现材料结构 微米级,亚微米级甚至纳米级控制:(5) 能够进行复杂形状结构件及图层的制备;(6)能够制备梯度复合材料及梯度涂层和多层涂层:(7)能够进行亚稳态物质

及新材料的合成.目前,CVD己成为大规模集成电路的铁电材料,绝缘材料,磁性 材料,光电子材料,高温热结构陶瓷基复合材料及纳米粉体材料不可或缺的制备技术. 关于CVD技术的热力学,动力学,各种新型CVD方法及制各粉体,薄膜,纤维,块体,复合材料的研究已经有了大量的报道.然而,关于CVD设备与装置的系统报道却 很少见. 本文对CVD设备的系统组成,典型装置与仪器及其维护进行了分析和总结. 1CvD设备系统的构成 任何一种CVD系统都需要满足以下四个最基本的需求: 传输和控制先驱体气体,载气和稀释气体进入反应室:提供激发化学反应的能量源:排除和安全处理反应室 的副产物废气:精确控制反应参数,温度,压力和气体流量.对于大规模的生产,还 必须考虑一些其它的需求,如生产量,经济, 安全和维修等. 基于以上的这些要求.CVD设备系统通常要包括一些一些子系统: (1)气体传输系统.用于气体传输和混合:(2)反应 室,化学反应和沉积过程在其中进行:(3)进装科系统,用于装,出炉和产品在反 应室内的支捧装置;(4)能量系统, 为激发化学反应提供能量源;(5)真空系统.用于 捧除反应废气和控制反应压力,包括真空泵,管道和连接装置;(6) 工艺自动控制系统,计算机自动控制系统用于测量和控制沉积温度,压力,气体流量和沉积时间:(7) 尾气处理系统. 用于处理危害和有毒的尾气和柱子,通常包括冷阱,化学阱, 粉尘阱等. 2CvD设备系统的典型装置 2.I反应气体传输装置 CVD的反应物有气体,固体和液体三种形态.反应物为 气态的直接通入或通过载气传送近反应室内.反应物为固体的通过加热变为气 态或溶于无污染溶剂中变为液态经载气传输进反应室内.反应物为液态的可通过直 接蒸发,载气携带和鼓泡方式载入反应室内.气态反应物可通过气体减压器和流量

等离子体增强化学气相沉积设备说明书

中国电子科技集团公司第四十八研究所 M82200-3/UM型 等离子体增强化学气相淀积设备 使 用 说 明 书 中国电子科技集团公司第四十八研究所

目录 1 概述 2 结构特征与工作原理 3 主要性能指标 4安装与调试 5使用与操作 6常见故障分析与排除 7保养与维修 8安全防护及处理 9运输、贮存与开箱检查 10重量与外形安装尺寸 11文件资料

1 概述 PECVD设备的特点 1.1.1 利用高频电源辉光放电产生等离子体对化学气相沉积过程施加影响的技术被称为等离 子体增强CVD。电子和离子的密度达109~1012个/cm3,平均电子能量可达1~10ev。1.1.2 成膜过程在真空中进行,大约在5~500Pa范围内。 1.1.3 由于等离子体存在,促进气体分子的分解、化合、激发和电离,促进反应活性基团的 生成,从而降低沉积温度。PECVD在200℃~500℃范围内成膜,远小于其它CVD在700℃~950℃范围内成膜。 1.1.4 PECVD成膜均匀,尤其适合大面积沉积。 1.1.5 如果用于刻蚀可以刻蚀0.3μm以下的线条。 1.1.6 由于在氨气压条件下,提高了活性基团的扩散能力,从而提高薄膜的生长速度,一般 可达(30-300)nm/min以上。 1.2PECVD设备的主要用途 1.2.1 利用等离子体聚合法可以容易地形成与光的波长同等程度的膜厚。这样厚度的膜与光 发生各种作用,具有光学功能性。即:具有吸收、透射、反射、折射、偏光等作用。 由于这种性质的存在,低温沉积氮化硅减反射膜,以提高太阳能电池的光电转换效率。 1.2.2 用于集成光电子器件介质Si Y N X膜的制备,如半导体集成电路的衬底绝缘膜、多层布 线间绝缘膜以及表面纯化膜的生长。 1.2.3 在医用生体材料的表面改性,功能性薄膜的制备等。 1.2.4 在电子材料当中可制成无针孔的均一膜、网状膜、硬化膜、耐磨膜等。 1.2.5 在半导体工艺中不仅用于成膜,而且用于刻蚀,也是一个较为理想的设备,它可刻0.3 μm以下的线条。 PECVD设备的品种规格 C1M82200-1/UM (适用156×156以下方片,70片/批,适合科研和教学用) C3M82200-2/UM (156×156以下方片,适合科研和教学以及小规模生产线用) C3M82200-3/UM (156×156以下方片,适合大规模生产线用)

实验指导书-化学气相沉积

实验十五化学气相沉积技术实验 一、实验目的 1.了解化学气相沉积制备二硫化钼的基本原理; 2.了解化学气相沉积方法制备二硫化钼薄膜材料的基本流程及注意事项; 3.对实验数据进行合理正确的分析。 二、实验仪器 该实验中用到的主要实验仪器设备以及材料有:干燥箱、CVD系统、电子天平、超声清洗机,去离子水机等,现将主要设备介绍如下: 1.CVD生长系统 本实验所用CVD生长系统由生长设备,真空设备,气体流量控制系统三部分组成,简图如下 图1 CVD设备简图 2.电子天平 本实验所用电子天平采用电磁力平衡被称物体重力原理进行称量,特点是称量准确可靠、显示快速清晰并且具有自动检测系统、简便的自动校准装置以及超载保护等装置。在本实验中电子天平主要用于精确称量药品,称量精度可精确到小数点后第五位。 三、实验原理 近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄

膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 一、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 (2) 可以在常压或者真空条件下负压“进行沉积、通常真空沉积膜层质量较好 (3) 采用等离子和激光辅助技术可以显著地促进化学反应,使沉积可在较低的温度下进行 (4) 涂层的化学成分可以随气相组成的改变而变化,从而获得梯度沉积物或者得到混合镀层。 (5) 可以控制涂层的密度和涂层纯度。 (6) 绕镀件好。可在复杂形状的基体上以及颗粒材料上镀膜。适合涂覆各种复杂形状的工件。由于它的绕镀性能好,所以可涂覆带有槽、沟、孔,甚至是盲孔的工件。 (7) 沉积层通常具有柱状晶体结构,不耐弯曲,但可通过各种技术对化学反应进行气相扰动,以改善其结构。 (8) 可以通过各种反应形成多种金属、合金、陶瓷和化合物涂层。

钨化学气相沉积系统简介

钨化学气相沉积系统简介 前言 钨化学气相沉积(WCVD)工艺因其优异的空隙填充能力成为铝工艺通孔和接触的主要金属化技术。钨在集成电子学中通常被用作高传导性的互连金属、金属层间的通孔(Via)和垂直接触的接触孔(Contact)以及铝和硅间的隔离层(图1)。 虽然钨可以通过蒸发的方法来沉积,不过物理溅射(PVD)和化学气相沉积(CVD)还是首选的技术。化学气相沉积薄膜相比物理溅射薄膜有很多优势:低电阻率、对电迁移的高抵抗力,以及填充小通孔时优异的平整性。 另外,化学气相沉积工艺的阶梯覆盖能力先天地超过物理溅射工艺,垂直接触和通孔可以很容易地被填充且没有空缺。化学气相沉积的钨还可以在金属和硅上进行选择性沉积。化学气相沉积方法的钨可以由氟化钨(WF6)制备而成。最常见的WCVD工艺主要反应气体有六氟化钨(WF6)以及氢气(H2)或甲硅烷(SiH4)。 钨化学气相沉积系统(WCVD SYSTEM)是半导体集成电路制造设备中常用来生成钨金属连接的化学气相沉积系统。它结合高温,真空环境,通过化学气体参与反应,在晶圆表面产生工艺性能优异的钨金属薄膜,该金属薄膜经过化学机械研磨系统(CMP)研磨后,即得到钨金属连接线。钨化学气相沉积(WCVD)是热化学气相沉积(HIGH TEMPERATURE CVD)的一种,其沉积发生的激活能量是由高温衬底提供的,反应气体先在混合器里面混合,然后流入工艺腔内发生化学反应,并在晶圆表面形成纯钨薄膜。 系统介绍 钨化学气相沉积系统一般由主机和工艺腔组成。 主机是传送芯片的机构,由机械手将芯片传送到各腔。传送方式由工艺模式决定,工艺模式一般有单片单腔和单片多腔两种。单片单腔是指单个晶圆在单一工艺腔完成所有工艺反应。单片多腔是指单个晶圆在多个工艺腔参加反应,即在每个工艺腔完成部分反应。两种模式各有所长,单片单腔模式每个工艺腔相互独立,将生产中不可控因素对晶圆的影响减到最低并有利于工艺腔维护。单片多腔模式可以提高生产效率。使用者可以灵活的根据不同的工艺模式来选择不同的工艺顺序和传送方式。 机械手是主机的重要部件,一般由直流电机驱动外部磁极,通过磁耦合驱动内部机械手臂动作。这种设计能保证机械手高速稳定的运行。 工艺腔功能与结构 工艺腔是进行化学气体反应的场所。工艺腔体构成一个高温,真空的适合工艺反应的密闭环境。晶圆由背压吸附在电阻加热器表面均匀加热至高温400摄氏度以上,化学反应气体经过流量控制器调节流量后在工艺腔体内均匀分布并进行化学反应,腔体内部气体压力由节流阀控制调节并保持稳定以达到工艺气体反应要求。 下面简单介绍一下工艺腔主要部件。 ●工艺腔 每台主机可以外挂多个工艺腔。工艺腔由腔体和腔盖组成,腔体内部主要装载电阻加热器及工艺组件。由于电阻加热器温度很高,为保持腔体表面温度不致过高,腔体内部有循环水路降低并保持温度,腔体一般保持特定的工艺温度,由循环冷却液保持温度,冷却液由各50%

PVD简介(物理气相沉积)

PVD简介 PVD是英文Physical Vapor Deposition的缩写,中文意思是“物理气相沉积”,是指在真空条件下,用物理的方法使材料沉积在被镀工件上的薄膜制备技术。 2. PVD镀膜和PVD镀膜机— PVD(物理气相沉积)镀膜技术主要分为三类,真空蒸发镀膜、真空溅射镀和真空离子镀膜。对应于PVD技术的三个分类,相应的真空镀膜设备也就有真空蒸发镀膜机、真空溅射镀膜机和真空离子镀膜机这三种。 近十多年来,真空离子镀膜技术的发展是最快的,它已经成为当今最先进的表面处理方式之一。我们通常所说的PVD镀膜,指的就是真空离子镀膜;通常所说的PVD镀膜机,指的也就是真空离子镀膜机。 3. PVD镀膜技术的原理— PVD镀膜(离子镀膜)技术,其具体原理是在真空条件下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。 4. PVD镀膜膜层的特点— 采用PVD镀膜技术镀出的膜层,具有高硬度、高耐磨性(低摩擦系数)、很好的耐腐蚀性和化学稳定性等特点,膜层的寿命更长;同时膜层能够大幅度提高工件的外观装饰性能。 5. PVD镀膜能够镀出的膜层种类— PVD镀膜技术是一种能够真正获得微米级镀层且无污染的环保型表面处理方法,它能够制备各种单一金属膜(如铝、钛、锆、铬等),氮化物膜(TiN、ZrN、CrN、TiAlN)和碳化物膜(TiC、TiCN),以及氧化物膜(如TiO等)。 6. PVD镀膜膜层的厚度— PVD镀膜膜层的厚度为微米级,厚度较薄,一般为0.3μm ~5μm,其中装饰镀膜膜层的厚度一般为0.3μm ~1μm ,因此可以在几乎不影响工件原来尺寸的情况下提高工件表面的各种物理性能和化学性能,镀后不须再加工。 7. PVD镀膜能够镀出的膜层的颜色种类— PVD镀膜目前能够做出的膜层的颜色有深金黄色,浅金黄色,咖啡色,古铜色,灰色,黑色,灰黑色,七彩色等。通过控制镀膜过程中的相关参数,可以控制镀出的颜色;镀膜结束后可以用相关的仪器对颜色进行测量,使颜色得以量化,以确定镀出的颜色是否满足要求。 8. PVD镀膜与传统化学电镀(水电镀)的异同— PVD镀膜与传统的化学电镀的相同点是,两者都属于表面处理的范畴,都是通过一定的方式使一种材料覆盖在另一种材料的表面。两者的不同点是:PVD镀膜膜层与工件表面的结合力更大,膜层的硬度更高,耐磨性和耐腐蚀性更好,膜层的性能也更稳定;PVD镀膜不会产生有毒或有污染的物质。 9. PVD镀膜技术目前主要应用的行业— PVD镀膜技术的应用主要分为两大类:装饰镀膜和工具镀膜。装饰镀的目的主要是为了改

cvd化学气相沉积的技术和发展应用

化学气相沉积 概述 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。CVD技术可以生长高质量的单晶薄膜,能够获得所需的掺杂类型和厚度,易于实现大批量生产,因而在工业上得到广泛的应用。工业上利用CVD制备的外延片常有一个或多个埋层可用扩散或离子注入的方式控制器件结构和掺杂分布;外延层的氧和碳含量一般很低。但是CVD外延层容易形成自掺杂,要用一定措施来降低自掺杂。 CVD生长机理很复杂,反应中生成多种成分,也会产生一些中间成分,影响因素有很多,如:先躯体种类;工艺方法(tcvi,icvi,pcvd);反应条件(温度,压力,流量);触媒种类;气体浓度;衬基结构;温度梯度;炉内真空度等外延工艺有很多前后相继,彼此连贯的步骤。 原理 将两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到基体表面上。反应物多为金属氯化物,先被加热到一定温度,达到足够高的蒸汽压,用载气(一般为Ar或H2)送入反应器。如果某种金属不能形成高压氯化物蒸汽,就代之以有机金属化合物。在反应器内,被涂材料或用金属丝悬挂,或放在平面上,或沉没在粉末的流化床中,或本身就是流化床中的颗粒。化学反应器中发生,产物就会沉积到被涂物表面,废气(多为HCl或HF)被导向碱性吸收或冷阱。除了需要得到的固态沉积物外,化学反应的生成物都必须是气态沉积物本身的饱和蒸气压应足够低,以保证它在整个反应、沉积过程中都一直保持在加热的衬底上。反应过程:(1)反应气体向衬底表面扩散(2)反应气体被吸附于衬底表面(3)在表面进行化学反应、表面移动、成核及膜生长(4)生成物从表面解吸(5)生成物在表面扩散。所选择的化学反应通常应该满足:①反应物质在室温或不太高的温度下最好是气态,或有很高的蒸气压,且有很高的纯度:②通过沉积反应能够形成所需要的材料沉积层:③反应易于控制在沉积温度下,反应物必须有足够高的蒸气压 主要设备 生长设备分为开管和闭管两种。闭管外延是将源材料,衬底,输运剂一起放在一密闭容器中,容器抽空或充气。开管系统是用载气将反应物蒸汽由源区输运到衬底区进行化学反应和外延生长,副产物被载气携带排出系统。常压CVD反应中有立式反应器,水平式反应器,圆盘式反应器,和圆桶式反应器等。超高真空设备有UHV/CVD反应系统。还有等离子增强CVD外延生长装置,光增强外延生长装置,氯化物VPE系统和MOCVD生长系统。 技术特点 每一个CVD系统都必须具备如下功能:①将反应气体及其稀释剂通入反应器,并能进行测量和调节; ②能为反应部位提供热量,并通过自动系统将热量反馈至加热源,以控制涂覆温度。 ③将沉积区域内的副产品气体抽走,并能安全处理。

相关主题
文本预览
相关文档 最新文档