当前位置:文档之家› 线性时间选择算法实现

线性时间选择算法实现

线性时间选择算法实现
线性时间选择算法实现

【题目】:给定线性序集中n个元素和一个整数k,1≤k≤n,要求找出这n个元素中第k小的元素,(这里给定的线性集是无序的)【思路】:如果能在线性时间内找到一个划分基准,使得按这个基准所划分出的2个子数组的长度都至少为原数组长度的ε倍(0<ε<1是某个正常数),那么就可以在最坏情况下用O(n)时间完成选择任务。例如:若ε=9/10,算法递归调用所产生的子数组的长度至少缩短1/10。所以,在最坏情况下,算法所需的计算时间T(n)满足递归式

T(n)≤T(9n/10)+O(n) 。由此可得T(n)=O(n)。

#include

#include

#include

#include

int select(int *a,int p,int r,int k);

int partition(int *a,int p,int r,int x);

void sort(int *a,int p,int r);

void swap(int *a,int *b);

//主函数

int main()

{

int *a,cnt,i,k,result;

FILE *fp;

//clrscr();

printf("Input the count of elements:");

scanf("%d",&cnt);

printf("Choose the element :");

scanf("%d",&k);

a=(int *)malloc(cnt*sizeof(int));

srand(time(NULL));

if((fp=fopen("d:\\output.txt","w+"))==NULL)

{

printf("Cannot open this file!");

exit(0);

}

for(i=0;i

{

a[i]=rand()%cnt+100;

fprintf(fp,"%4d\n",a[i]);

}

result=select(a,0,cnt-1,k);

printf("The result is:%d",result);

fclose(fp);

free(a);

return 0;

}

int select(int *a,int p,int r,int k) //程序核心部分

{

char filename[10];

int i,j,temp;

if(r-p<75) //数组元素小于75个的时候,用简单排序法进行排序

{

sort(a,p,r);

return a[p+k-1];

}

for(i=0;i<(r-p-4)/5;i++) //将cnt个元素每5个元素分成一组,分别排序,并将该组中位数与a[p+i]交换位置。循环执行完后,所有组的中位数集中到数组前a[0....(r-p-4)/5-1].

{

sort(a,p+5*i,p+5*i+4);

swap(&a[p+5*i+2],&a[p+i]);

}

temp=select(a,p,p+(r-p-4)/5,(r-p-4)/10);//找中位数的中位数为划分基准

i=partition(a,p,r,temp); //依照基准划分原数组,并返回基准下标

j=i-p+1; //基准下标为a[p.....r]的第几个元素,与k的形式相同

if(k<=j) //比较k和j来确定在数组哪一部分继续选择

return select(a,p,i,k);

else

return select(a,i+1,r,k-j);

}

int partition(int *a,int p,int r,int x)

//以x为基准,将a[p...r]分割成两部分,并返回x的下标。

{

int i=p,j=r+1;

while(1)

{

while(a[++i]

while(a[--j]>x);

if(i>=j)

break;

swap(&a[i],&a[j]);

}

a[p]=a[j];

a[j]=x;

return j;

}

void sort(int *a,int p,int r)

//对a[p...r]进行冒泡排序

{

int i,j,temp;

for(i=p;i

{

for(j=r;j>i;j--) //此处r为下标,j的范围应该最大为r-1 if(a[j-1]>a[j])

{

temp=a[j-1];

a[j-1]=a[j];

a[j]=temp;

}

}

return;

}

void swap(int *a,int *b)

{

int temp;

temp=*a;

*a=*b;

*b=temp;

}

线性规划计算方法

线性规划法的数学模型如下: 设X1,X2,X3,…,X n为各变量,n为变量个数,m为约束条件数,a ij(i=1,2…,m;j=1,2…,n)为各种系数,b1,b2,b3,…,b m为常数,C1,C2,C3,…C n为目标函数系数,Z为目标值,则线性规划模型如下: a11X1+a12X2+…+a1n X n≥(=≤)b1 a21X1+a22X2+…+a2n X n≥(=≤)b2 ………………… a m1X1+a m2X2+…+a mn X n≥(=≤) b m X1,X2,…,X n≥0 目标函数Zmin(max)=C1X1+C2X2十…+C n X n 线性规划计算方法: 鲜花店向李大民预定两种花卉——百合、玫瑰。其中每株收购价百合为4元,玫瑰为3元,鲜花店需要百合在1100~1400株之间,玫瑰在800~1200株之间,李大民只有资金5000元, 要去购买良种花苗, 在自家902m的温室中培育,每株苗价百合为2.5元,玫瑰为2元,由于百合与玫瑰生长所需采光条件的不同,百合每株大约占地0.052m,玫瑰每株大约占地0.032m,应如何配置才能使李大民获利最大? 数学建模:设种百合x1 株,玫瑰x2 株,则 2. 5 x1 + 2 x2 ≤5000 0. 05 x1 + 0. 03 x2 ≤90 x1 ≥1100 x1 ≤1400 x2 ≥800

x2 ≤1200 目标函数求最大值(即获利)Max z = (4 - 2. 5) x1 + (3 - 2) x2 = 1. 5 x + x1 可以看出,变量数为2,约束方程数为6,目标函数求最大值,打开线性规划计算软件,输入如下所示: 输入完成后点“计算”按纽,即可完成计算结果如下图:

实验二 选择结构程序设计 实验报告,DOC

实验二选择结构程序设计 一、实验目的和要求 1.掌握关系表达式和逻辑表达式的使用。 2.熟悉选择结构程序设计。 3.熟练使用if语句进行程序设计。 4.使用switch语句实现多分支选择结构。 二、实验设备 PC机VisualC++6.0 三、实验内容 (一)实验准备 1.从程序流程的角度来看,程序可以分为三种基本结构,即顺序结构、分支(选择)结构、循环结构。 2.If-else语句: 一般形式为:if(表达式) 语句1; else 语句2; 该语句用于实现分支结构,根据表达式的值选择语句1或语句2中的一条执行。首先求解表达式,如果表达式的值为“真”,则执行语句1;如果表达式的值为“假”,则执行语句2. 2.switch语句 switch语句可以处理多分支选择问题,根据其中break语句的使用方法,

一般分为三种情况。 (二)实验项目 1.计算a+|b| #include intmain(void) { inta,b,z; printf("Pleaseentera,b:\n"); scanf("%d,%d",&a,&b); if(b>=0){ b=b; } else{ b=-b; } z=a+b; printf("%d+%d=%d\n",a,b,z); return0; } 2判断一个整数是否可以被3和5整除 #include intmain(void) { inta; printf("Pleaseentera:\n"); scanf("%d",&a); if(a%3==0){ printf("a可以被3整除:\n"); } else{ if(a%5==0){ printf("a可以被5整除:\n"); } else{ printf("a不可以被5整除,也不可以被3整除:\n"); } }

随机化算法实验(Sherwood型线性时间选择)

算法分析与设计实验报告 第八次实验 所需的平均时间为 的可能性。希望获得一个随机化算法 的每一个实例均有。

不输出数组数只输出结果比较:

附录: 完整代码(随机化算法) Sherwood.cpp //随机化算法线性时间选择输入预处理洗牌 #include"RandomNumber.h" #include #include #include using namespace std; template Type select(Type a[],int l,int r,int k); //声明选出要选择的元素的函数

template //声明判断是否越界的函数 Type select(Type a[],int n,int k); template //声明洗牌算法函数Shuffle void Shuffle(Type a[],int n); template //声明交换函数 inline void Swap(Type &a,Type &b); void ran(int *input,int n) //随机生成数组元素函数{ int i; srand(time(0)); for(i=0;i>n; int *a=new int[n+1]; cout<<"原数组为:"<

线性规划问题的算法综述

线性规划问题的算法综述 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 线性规划概念是在1947年的军事行动计划有关实践中产生的,而相关问题1823年Forier和口1911年PQusi就已经提出过,发展至今已有将近100年的历史了。现在已成为生产制造、市场营销、银行贷款、股票行情、出租车费、统筹运输、电话资费、电脑上网等等热点现实问题决策的依据。线性规划就是在满足线性约束下,求线性函数的极值。 毋庸置疑,数学规划领域的重大突破总是始于线形规划。提到线性规划算法,人们最先想到的是单纯形法和内点法。单纯形法是实际应用中使用最普遍的一种线性规划算法,而研究者们已证明在最坏的情况下单纯形法的计算复杂度是指数级的,内点算法的计算复杂度是多项式时间的。把两种算法相提并论,要么是这两种算法都已经非常完备,要么都有需改进之处。显然不属于前者,即两者都有需要改进之处。几十年来,研究者通过不断努力,在两种算法的计算上都取得相当的进展。 1数学模型

线性规划问题通常表示成如下两种形式:标准型、规范型。 设jj(2…,n)是待确定的非负的决策变量;认2…,n)是与决策变量相对应的价格系数;K2…mj=l2…n)是技术系数;b(i12…,m)是右端项系数; 线性规划是运筹学最基本、运用最广泛的分支,是其他运筹学问题研究的基础。在20世纪50年代到60年代期间,运筹学领域出现许多新的分支:非线性规划(nonlinearprogranming、商业应用(crnxmereialpplieation、大尺度方法(laresealemeh-Qd)随机规划(stochasticPKgiamniig)、整数规划(ntegerprogramming)、互补转轴理论(amplmentaiyPivotheor)多项式时间算法(polynomialtjneagatm)等。20世纪70年代末,上述分支领域都得到了极大发展,但是却都不完善。而且数学规划领域中存在许多Nfkhard问题,如TP问题,整数规划问题等。这些问题的基本模型都可以写成线性规划形式,因此通过对线性规划算法的进一步研究,可以进一步启发及推动数学规划领域内其他分支的发展。 2边界点算法 由于单纯形法与基线算法都是在可行集的边界上

线性时间选择算法

福州大学数学与计算机科学学院 《计算机算法设计与分析》上机实验报告(1)

图中箭头指向表示大的数值指向小的数值,所以根据图 可以看出,在x的右边,每一个包含5个元素的组中至少有3 个元素大于x,在x的左边,每一组中至少有3个元素小于x (保证x分割一边必定有元素存在)。 图中显示的中位数的中位数x的位置,每次选取x作为划 分的好处是能够保证必定有一部分在x的一边。所以算法最坏 情况的递归公式可以写成: ,使用替换法可以得出) (。 n cn T 4、算法代码: #include #include using namespace std; template void Swap(Type &x,Type &y); inline int Random(int x, int y); template int Partition(Type a[],int p,int r); template int RandomizedPartition(Type a[],int p,int r); template Type RandomizedSelect(Type a[],int p,int r,int k); int main() { void SelectionSort(int a[]); int s;

int a[2000]; int b[2000]; for(int i=0; i<2000; i++) { a[i]=b[i]=rand()%10000; cout< void Swap(Type &x,Type &y) { Type temp = x; x = y; y = temp; } inline int Random(int x, int y) { srand((unsigned)time(0)); int ran_num = rand() % (y - x) + x; return ran_num; } template int Partition(Type a[],int p,int r) { int i = p,j = r + 1; Type x = a[p]; while(true) { while(a[++i]x); if(i>=j) { break;

线 性 规 划 算 法 详 解

线性规划算法详解 线性规划 首先什么是线性规划,大致的定义我总结为在线性的目标和约束中,找出一个最优解。 举个例子: ?M1和M2两种原料用于生产内外墙涂料,M1日最大可用量24吨,M2日最大可用量为6吨,外墙涂料每吨需要6吨M1,1吨M2,内墙涂料每吨需要4吨M12,吨M2,外墙涂料每吨利润5个单位,内墙涂料每吨利润4个单位。且市场需求调查数据得出,内墙日需求量不超过外墙的日需求量+1吨,内墙最大日需求量为2吨 怎样在这样的各个线性的条件中,得到最优的内外墙生产吨数,就是我们线性规划算法要做的事情。 设外墙生产x1吨,内墙生产x2吨,设利润为z,要得到z的最大化,也就是最优解,上述条件罗列为公式可得出 6x1+4x2=24 x1+2x2=6 -x1+x2=1 z=5x1+4x2 如何从这个公式中求出最优解?有以下两大方法 我们将上述约束条件画图,y轴为x2,x轴为x1,得出如下:圈红色的部分就是所有的可行解,表示这个区间内都的x1x2能满

足约束条件 对于我们的z函数,其实表示的是一条截距为z斜率为-(5-4)的线性直线,我们要求z最大化的最优解,就是在所有的可行区域内找到可以满足z曲线截距最大的点。 最后我们发现,可行区域内能让z函数达到最大截距的点就是我圈出来的那个角点,z再增大的话,就超出可行区域了,所以不满足要求,所以最终得出最优解为x1=3,x2=1.5 这就是图解法的做法,一个定理就是,线性规划的最优解总是发生在约束几何平面的角点上,例如上面圈出来的点,先当做是个定理,我也不知道怎么证明这个定理。 以上就是线性规划的图解法,优点是简单明了,缺点就是当参数超过3个时,我们很难直观画出一个jihe几何平面来找角点,所以我们需要下面的另一种解法。 单纯形法 当超过3个参数时,单纯形法就派上用场了,单纯形法首先要做的就是把方程化为标准形式: 所有的变量都是非负数 所有的约束都是等式(非负限制除外),且具有非负的右端项像上述的方程,如果化为标准形式,将会是如下 6x1+4x2+s1=24 x1+2x2+s2=6 -x1+x2+s3=1

多目标线性规划的若干解法及MATLAB实现

多目标线性规划的若干解法及MATLAB 实现 一.多目标线性规划模型 多目标线性规划有着两个和两个以上的目标函数,且目标函数和约束条件全是线性函 数,其数学模型表示为: 11111221221122221122max n n n n r r r rn n z c x c x c x z c x c x c x z c x c x c x =+++??=+++?? ??=+++? (1) 约束条件为: 1111221121122222112212,,,0 n n n n m m mn n m n a x a x a x b a x a x a x b a x a x a x b x x x +++≤??+++≤?? ??+++≤?≥?? (2) 若(1)式中只有一个1122i i i in n z c x c x c x =+++ ,则该问题为典型的单目标线性规划。我们记:()ij m n A a ?=,()ij r n C c ?=,12(,,,)T m b b b b = ,12(,,,)T n x x x x = , 12(,,,)T r Z Z Z Z = . 则上述多目标线性规划可用矩阵形式表示为: max Z Cx = 约束条件:0 Ax b x ≤?? ≥? (3) 二.MATLAB 优化工具箱常用函数[3] 在MA TLAB 软件中,有几个专门求解最优化问题的函数,如求线性规划问题的linprog 、求有约束非线性函数的fmincon 、求最大最小化问题的fminimax 、求多目标达到问题的fgoalattain 等,它们的调用形式分别为: ①.[x,fval]=linprog(f,A,b,Aeq,beq,lb,ub) f 为目标函数系数,A,b 为不等式约束的系数, Aeq,beq 为等式约束系数, lb,ub 为x 的下 限和上限, fval 求解的x 所对应的值。 算法原理:单纯形法的改进方法投影法 ②.[x,fval ]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub ) fun 为目标函数的M 函数, x0为初值,A,b 为不等式约束的系数, Aeq,beq 为等式约束

线性时间排序

8.1比较排序算法的时间下界 决策树模型 比较排序的过程可以被抽象地视为决策树。一棵决策树是一棵满二叉树,表示某排序算法作用于给定输入所做的所有比较。排序算法的执行对应于遍历一条从树的根到叶节点的路径。每个内结点对应一个比较ai&aj,左子树决定着ai<=aj以后的比较,右子树决定着ai>aj以后的比较。当到达一个叶节点时,排序算法就已确定。排序算法能够正确工作的的必要条件是,n个元素的n!种排列都要作为决策树的一个叶节点出现。设决策树的高度为h,叶子数目为l,那么有2h>=l>=n!,于是有h>lgn! = Ω(nlgn)。这说明比较排序的最坏时间复杂度为Ω(nlgn)。这也说明合并排序和堆排序的复杂度已经渐进最优了。 练习: 8.1-1 在比较排序的决策树中,一个叶节点最小可能的深度是多少? 分析:n-1。因为至少要比较n-1次。不知道有没有更加理论化的证明? 8.1-3 证明:对于长度为n的n!种输入中的至少一半而言,不存在具有线性时间的比较排序算法。对n!的1/n部分而言又怎样?1/2n部分呢? 分析:假设在决策树种,m个叶节点的深度为h =O(n);那么有2h > m,于是可知h为 Ω(lgm)。将m=n!/2代入,可知这与h=O(n)相矛盾。同样,对于1/n*n!和1/2n*n!也一样。 8.1-4 现有n个元素要排序,输入序列为n/k个子序列,每个包含k个元素,每个子序列中的元素都小于后继子序列中的元素,大于前驱子序列中的元素。这样只要对个子序列中的k 各元素进行排序就可以得到对整个输入序列的排序结果,证明:这个排序问题中所需的比较

次数有一个下界Ω(nlgk)。 分析:每个k元素子序列的排列数目为k!,那么整个序列在上述条件下的排列数目为(k!)n/k。按决策树的分析方法,决策树的深度为h>lg((k!)n/k) = n/k lg (k!)>n/k lg (k/2)k/2= n/2lgk/2。因此h=Ω(nlgk)。 8.2计数排序 计数排序假设n个输入元素的每一个都是介于0到k之间的整数,此处k为某个整数。当 k=O(n)时,计数排序的运行时间为Θ(n)。 计数排序的思想就是对每一个输入元素x,确定出小于x的元素个数。有了这一信息,就可以把x直接放到最终输出数组的为位置上了。 下面是计数排序的伪码,假定输入是数组A[1...n], 存放排序结果的B[1...n],以及提供计数临时存储的C[0...k]。 COUNTING-SORT(A,B,k) 1 for i <-- 0 to k 2 do C[i] <-- 0 3 for j <-- 1 to length[A] 4 do C[A[j]] <-- C[A[j]]+1 5 for i <-- 1 to k

舍伍德线性时间选择

算法分析与设计实验报告 第8次实验

附录:完整代码 #include using namespace std; //随机数类 const unsigned long maxshort=66536L; const unsigned long multiplier=1194211693L;

const unsigned long adder=12345L; class RandomNumber{ private: //当前种子 unsigned long randSeed; public: RandomNumber (unsigned long s=0); //构造函数,默认值0表示由系统自动产生种子 unsigned short Random(unsigned long n); //产生0:n-1之间的随机整数 double fRandom(void); //产生[0,1)之间的随机实数 }; RandomNumber::RandomNumber(unsigned long s){ if(s==0) randSeed=time(0); else randSeed=s; } unsigned short RandomNumber::Random(unsigned long n){ randSeed=multiplier*randSeed+adder; return(unsigned short)((randSeed>16)%n); } double RandomNumber::fRandom(void){ return Random(maxshort)/double(maxshort); } template inline void Swap(Type &a,Type &b) { Type temp = a; a = b; b = temp; } //计算a[l:r]中第k小元素 template Type select(Type a[],int l,int r,int k) { static RandomNumber rnd; while(true) { if(l>=r) { return a[l]; } int i = l, j = l + rnd.Random(r-l+1);//随机选择划分基准 Swap(a[i],a[j]);

复杂度-线性时间选择算法复杂度分析

算法分析线性时间选择复杂度分析 第二组:袁瑾(计科1304:201308010410), 欧阳玉峰(计科1304:201308080216), 程帆瑾(物联1302:201378010206)。 一、问题描述: 给一个线性序列,要求在一个平均时间线性的情况下进行第k小元素的选择。 二、方法一: 模仿快速排序的方法对输入序列进行递归划分,但只对划分出的子数组之一进行递归处理。 代码如下: RandomizedSelect(a, p, r, k): if p==r : return a[p] i = RandomizedPartition(a,p,r) j = i-p+1 if k<=j : return RandomizedSelect(a,p,i,k) return RandomizedSelect(a,i+1,r,k-j) 三、方法一时间复杂度: 先从上边的函数说起。其实质是模拟一个快速排序的过程。快速排序是随机选择一个轴值,然后比轴值小的排在左边,比轴值大的排在右边。上边的函数四个参数a,p,r,k。a是数组的参数,p是数组开始元素的下标,r的数组结束的下标。k是找第k小的元素。每次划分所需要的时间是O(n),此时每个元素需要和轴值进行比较一次。所以最好的情况是选完轴值一次快排后,左边刚好有k-1个元素,则此时轴值则是第k小元素。而一般情况是,轴值左边有m个元素,mk时,在左边找第k小的元素。平均复杂度是O(n)。最坏的情况是轴值每次选的都是刚好最大的元素或者最小的元素,此时时间复杂度是O(n*k)。四.方法二: 能在线性时间内找到一个划分基准,使得按照这个基准所划分出的两个子数组长度都至少为元数组长度的 m 倍: Select(a, p, r, k): if r-p

线 性 规 划 算 法 详 解

机器学习--支持向量机(四)SMO算法详解 上篇我们讲到,线性和非线性都转化为求解的问题即: 求解的方法就是SMO算法,下面详细介绍SMO算法: 在讲解SMO算法之前先说明一下讲解思路,首先先帮助大家理解这个式子,说明推倒的过程细节,然后和原论文对照,本文不打算刚开始就深入数学公式,先带大家感性认识一下SMO的算法实现过程,通过语言描述继续讲解,让大家对该算法有一个整体的认识?,然后在循序渐进深入数学公式,吃透原理,这样符合知识的接受过程。 从倒数第二行,大家可以看到第一项我们可以看做一个含有未知数的常数项,第二项大家感觉是不是很眼熟即,向量的转置乘以本向量这就是求內积啊,只是说这里的A不简单而已,两个i不是同时变化的,因此为了方便把其合在一起,而合在一起的前提是需要表现两个i不一样,因此引入了j以示区别,至于为什么不一样,举一个简单的例子,因为里面是求和,大家各自展开求和在相乘,举个例子,含有三项的: ?(a1 + a2 + a3)* (a1 + a2 + a3)=?+ a1*a2 + a1+a3 + a2*a1 +?+ a2*a3 + a3*a1 + a3*a2 +? ? =?+?+?+ 2a1*a2 + 2a1*a3 + 2a2*a3 求和后各自展开,结果是上式,如果直接把两个i合并为一个i,那么化简会是什么样呢? ?其实就只有平方项了即:++ 之所以讲解这个,原因是希望大家能拿笔自己推一下上面的式子,同

时按照下面的要求展开试试,虽然没必要推这些,但是如果去做一下,你会发现数学的推倒很有助于理解,同时这种“复杂”的式子其实还好,强化学习中的数学推倒比这里复杂多了,所以建议大家以后遇到数学公式尽量自己推一遍,比你看几遍有用的多,好了,废话不多说,把上面的结果按如下要求展开, 把和看做未知数,其他的看做已知数进行展开,我先给出自己推倒的(讲真编辑这个式子很耗费时间,我查了一下网上其他人的推到感觉有点问题,所以打算自己推倒一下,为了确认自己正确把原论文读了一下,是正确的): 先令? ------------为內积,为了大家能看懂就做这一个假设: 首先他假设的分离平面就和我们不一样,但是道理都是一样的: 与我们之前的?是一样的意思 他的优化目标相同即: 经过引入拉格朗日因子和对偶后再求对w、b求导为: 其实到这里就和我们的形式是一样的,只是正负号位置不一样的,所以极值就是求极小值了,这也是差异的原因继续往下: 加入松弛变量以后: 到这里就是我们最后的求解式子了,有点不同,但是原理都是一样的把和看做未知数,其他的看做已知数进行展开为: 我和他展开的是差不多的,只是正负号问题,原因上面讲了,在查看相关的推倒博客,发现好多人目标是我们定义的目标,分解后就是这个结果,真不知道如何来的,所以自己动手推了一遍,形式和原著一样,结果

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

线 性 规 划 算 法 详 解

Java基础算法详解 查找和排序算法是算法的入门知识,其经典思想可以用于很多算法当中。因为其实现代码较短,应用较常见。所以在面试中经常会问到排序算法及其相关的问题。但万变不离其宗,只要熟悉了思想,灵活运用也不是难事。一般在面试中最常考的是快速排序和归并排序,并且经常有面试官要求现场写出这两种排序的代码。对这两种排序的代码一定要信手拈来才行。还有插入排序、冒泡排序、堆排序、基数排序、桶排序等。 面试官对于这些排序可能会要求比较各自的优劣、各种算法的思想及其使用场景。还有要会分析算法的时间和空间复杂度。通常查找和排序算法的考察是面试的开始,如果这些问题回答不好,估计面试官都没有继续面试下去的兴趣都没了。所以想开个好头就要把常见的排序算法思想及其特点要熟练掌握,有必要时要熟练写出代码。 冒泡排序 冒泡排序是最简单的排序之一了,其大体思想就是通过与相邻元素的比较和交换来把小的数交换到最前面。这个过程类似于水泡向上升一样,因此而得名。举个栗子,对5,3,8,6,4这个无序序列进行冒泡排序。首先从后向前冒泡,4和6比较,把4交换到前面,序列变成5,3,8,4,6。同理4和8交换,变成5,3,4,8,6,3和4无需交换。5和3交换,变成3,5,4,8,6,3.这样一次冒泡就完了,把最小的数3排到最前面了。对剩下的序列依次冒泡就会得到一个有序序列。冒泡

排序的时间复杂度为O(n^2)。 实现代码: *@Description:冒泡排序算法实现 public class BubbleSort { public static void bubbleSort(int[] arr) { if(arr == null || arr.length == 0) for(int i=0; i) { for(int j=arr.length-1; ji; j--) { if(arr[j]arr[j-1]) { swap(arr, j-1, j); public static void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; 抑或简单理解一点的正向排序 public class BubbleSort { public static void bubbleSort(int[] arr) { if(arr == null || arr.length == 0) for(int i=1;iarr.length-1;i++) { for(int j=0; jarr.length-i; j++) { if(arr[j]arr[j+1]) { swap(arr, j+1, j);

算法设计与分析线性时间选择讲解文档

《线性时间选择》讲解文档 问题: 给定线性序集中n个元素和一个整数k,1≤k≤n,要求找出这n个元素中第k小的元素 基本思想: template Type RandomizedSelect(Type a[],int p,int r,int k) { if (p==r) return a[p]; int i=RandomizedPartition(a,p,r), j=i-p+1; if (k<=j) return RandomizedSelect(a,p,i,k); else return RandomizedSelect(a,i+1,r,k-j); } 分析: 在最坏情况下,算法randomizedSelect需要O(n2)计算时间 但可以证明,算法randomizedSelect可以在O(n)平均时间内找出n个输入元素中的第k小元素。 改进算法:【中位数】 如果能在线性时间内找到一个划分基准,使得按这个基准所划分出的2个子数组的长度都至少为原数组长度的ε倍(0<ε<1是某个正常数),那么就可以在最坏情况下用O(n)时间完成选择任务。 例如,若ε=9/10,算法递归调用所产生的子数组的长度至少缩短1/10。在最坏情况下,算法所需的计算时间T(n)满足递归式T(n)≤T(9n/10)+O(n) 。由此可得T(n)=O(n)。 具体步骤: 将n个输入元素划分成 n/5 个组,每组5个元素,只可能有一个组不是5个元素。用任意一种排序算法,将每组中的元素排好序,并取出每组的中位数,共 n/5 个。 递归调用select来找出这 n/5 个元素的中位数。如果 n/5 是偶数,就找它的2个中位数中较大的一个。以这个元素作为划分基准 设所有元素互不相同。在这种情况下,找出的基准x至少比3(n-5)/10个元素大,因为在每一组中有2个元素小于本组的中位数,而n/5个中位数中又有(n-5)/10个小于基准x。同理,基准x也至少比3(n-5)/10个元素小。而当n≥75时,3(n-5)/10≥n/4所以按此基准划分所得的2个子数组的长度都至少缩短1/4。

线 性 规 划 算 法 详 解

线性回归算法及用python实现 一、线性回归算法简介 1、线性回归: 线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。 在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。 回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。 回归的目的就是预测数值型的目标值,因此我们要用线性回归找到一条最佳拟合直线。 2、回归系数的求解: 设最佳拟合直线为:y(x)=w^T*x,其中回归系数w=(w0,w1,w2.,wn),变量x=(1,x1,x2.,xn),w^T表示w的转置

对于任意一个数据(x(i),y(i)),与最佳拟合直线的误差为:|y(x(i))-y(i)|=|w^T*x(i)-y(i)| 在这里我们用最小二乘法算误差,即:(w^T*x(i)-y(i))^2 而y(x)为最佳拟合直线,意味着所有的点的误差最小。即: 而我们要做就是使所有误差最小的回归参数w 用矩阵可以这样表示: 对w求导,得: 令上式等于0,得: 3、局部加权线性回归: 线性回归有一个问题就是欠拟合,解决这个问题方法就是局部加权线性回归。 我们给预测点附近的每个点都赋予一定的权重,得到的回归系数为: 其中:W为矩阵,除对角线外其他元素均为0 二、python代码的实现 在实现代码前,你需要先建立一个含有数据点的文本,比如ex0.txt,文本格式为: 当然,你也可以代入自己的数据点 1、线性回归: from numpy import * import matplotlib.pyplot as plt def loadDataSet(fileName):

多元线性回归模型实验报告

多元线性回归模型实验报告 13级财务管理 101012013101 蔡珊珊 【摘要】首先做出多元回归模型,对于解释变量作出logx等变换,选择拟合程度最高的模型,然后判断出解释变量之间存在相关性,然后从检验多重线性性入手,由于解释变量之间有的存在严重的线性性,因此采用逐步回归法,将解释变量进行筛选,保留对模型解释能力较强的解释变量,进而得出一个初步的回归模型,最后对模型进行异方差和自相关检验。 【操作步骤】1.输入解释变量与被解释变量的数据 2.作出回归模型

R^2=0.966951 DW=0.626584 F-statictis=241.3763 ②我们令y1=log(consumption),x4=log(people),x5=log(price),x6=log(retained),x7= log(gdp), 作出回归模型

② 发现拟合程度很高,也通过了F检验与T检验。但是我们首先检查模型的共线性 发现x4与x6,x4与x7,x6与x7存在很强的共线性,对模型会造成严重影响。

目前暂用模型y1=10.55028-3.038439x4-0.236518x5+2.647396x6-0.557805x7,我们将陆续进行调整。 3.分别作出各解释变量与被解释变量之间的线性模型

①作出汽车消费量与汽车保有量之间的线性回归模型 R^2=0.956231 DW=0.147867 F-statistic=786.4967

因为prob小于α置信度,则可说明β1不明显为零。经济意义存在 Y1^=4.142917 + 0.761197x6 (8.283960) (28.04455)

线性时间选择中位数

湖南涉外经济学院计算机科学与技术专业《算法设计与分析》课程 线性时间选择(中位数) 实验报告 班级: 学号: 姓名: 教师: 成绩:

2012年5月

【实验目的】 1 掌握线性时间选择的基本算法及其应用 2 利用线性时间选择算法找出数组的第k小的数 3 分析实验结果,总结算法的时间和空间复杂度 【系统环境】 Windows7 旗舰版平台 【实验工具】 VC++6.0英文企业版 【问题描述】 描述:随机生成一个长度为n的数组。数组为随机生成,k由用户输入。在随机生成的自然数数组元素找出这n个数的第k小的元素。 例:A[5]={3,20,50,10,21} k=3,则在数组A中第3小的元素为20 【实验原理】 原理:将所有的数(n个),以每5个划分为一组,共[n/5]组(将不足五个的那组忽略);然后用任意一种排序算法(因为只对五个数进行排序,所以任取一种排序法就可以了,这里我选用冒泡排序),将每组中的元素排好序再分别取每组的中位数,得到[n/5]个中位数;再取这[n/5]个中位数的中位数(如果n/5是偶数,就找它的2个中位数中较大的一个)作为划

分基准,将全部的数划分为两个部分,小于基准的在左边,大于等于基准的放右边。在这种情况下,找出的基准x至少比3(n-5)/10个元素大,因为在每一组中有2个元素小于本组的中位数,中位数处于1/2*[n/5-1],即n/5 个中位数中又有(n-5)/10个小于基准x。同理,基准x也至少比3(n-5)/10个元素小。而当n≥75时,3(n-5)/10≥n/4所以按此基准划分所得的2个子数组的长度都至少缩短1/4。 思路:如果能在线性时间内找到一个划分基准,使得按这个基准所划分出的2个子数组的长度都至少为原数组长度的ε倍(0<ε<1是某个正常数),那么就可以在最坏情况下用O(n)时间完成选择任务。 例如:若ε=9/10,算法递归调用所产生的子数组的长度至少缩短1/10。所以,在最坏情况下,算法所需的 计算时间T(n)满足递归式T(n)≤T(9n/10)+O(n) 。由此可得T(n)=O(n)。 方法:利用函数的相互调用和函数的递归调用实现程序的最终实现,一个主函数,三个子函数。在主函数中只是单独的调用中位数算法的select函数,然后以select为入口进行调用bubble排序函数和partition划分函数。 【源程序代码】 #include #include #include

非线性规划理论和算法

非线性最优化理论与算法 第一章引论 本章首先给出了一些常见的最优化问题和非线性最优化问题解的定义,并且根据不同的条件对其进行了划分。接着给出了求解非线性优化问题的方法,如图解法等,同时又指出一个好的数值方法应对一些指标有好的特性,如收敛速度与二次终止性、稳定性等。随后给出了在非线性最优化问题的理论分析中常用到的凸集和凸函数的定义和有关性质。最后给出了无约束优化最优性条件。 第二章线搜索方法与信赖域方法 无约束优化的算法有两类,分别是线搜索方法和信赖域方法。本章首先给出了两种线搜索方法即精确线搜索方法和非精确线搜索方法。线搜索方法最重要的两个要素是确定搜索方向和计算搜索步长,搜索步长可确保下降方法的收敛性,而搜索方向决定方法的收敛速度。 精确线搜索方法和非精确线搜索方法 对于精确线搜索方法,步长ακ满足 αk=arg min ?x k+αd k α≥0 这一线搜索可以理解为αk是f(x k+αd k)在正整数局部极小点,则不论怎样理解精确线搜索,它都满足正交性条件: d k T??(x k+αk d k)=0 但是精确搜索方法一般需要花费很大的工作量,特别是当迭代点远离问题的解时,精确的求解问题通常不是有效的。而且有些最优化方法,其收敛速度并不依赖于精确搜索过程。对于非精确搜索方法,它总体希望收敛快,每一步不要求达到精确最小,速度快,虽然步数增加,则整个收敛达到快速。书中给出了三种常用的非精确线搜索步长规则,分别是Armijo步长规则、Goldstein步长规则、Wolfe步长规则。第一个步长规则的不等式要求目标函数有一个满意的下降量,第二个不等式控制步长不能太小,这一步长规则的第二式可能会将最优步长排除在步长的候选范围之外,也就是步长因子的极小值可能被排除在可接受域之外。但Wolfe步长规则在可接受的步长范围内包含了最优步长。在实际计算时,前两种步长规则可以用进退试探法求得,而最后一种步长规则需要借助多项式插值等方法求得。紧接着,又介绍了Armijo和Wolfe步长规则下的下降算法的收敛性。 信赖域方法 线性搜索方法都是先方向再步长,即先确定一个搜索方向d k,然后再沿着这个搜索方向d k选择适当的步长因子αk,新的迭代点定义为x k+1=x k+αk d k。与线搜索方法不同,信赖域方法是先步长再方向,此方法首先在当前点附近定义目标函数的一个近似二次模型,然后利用目标函数在当前点的某邻域内与该二次模型的充分近似,取二次模型在该邻域内的最优值点来产生下一迭代点。它把最优化

线 性 规 划 算 法 详 解

SHA256算法原理详解 1. SHA256简介 SHA256是SHA-2下细分出的一种算法 SHA-2,名称来自于安全散列算法2(英语:Secure Hash Algorithm 2)的缩写,一种密码散列函数算法标准,由美国国家安全局研发,属于SHA 算法之一,是SHA-1的后继者。 SHA-2下又可再分为六个不同的算法标准 包括了:SHA-224、SHA-256、SHA-384、SHA-512、SHA-512-224、SHA-512-256。 这些变体除了生成摘要的长度、循环运行的次数等一些微小差异外,算法的基本结构是一致的。 回到SHA256上,说白了,它就是一个哈希函数。 哈希函数,又称散列算法,是一种从任何一种数据中创建小的数字“指纹”的方法。散列函数把消息或数据压缩成摘要,使得数据量变小,将数据的格式固定下来。该函数将数据打乱混合,重新创建一个叫做散列值(或哈希值)的指纹。散列值通常用一个短的随机字母和数字组成的字符串来代表。 对于任意长度的消息,SHA256都会产生一个256bit长的哈希值,称作消息摘要。 这个摘要相当于是个长度为32个字节的数组,通常用一个长度为64的十六进制字符串来表示

来看一个例子: 干他100天成为区块链程序员,红军大叔带领着我们,fighting! 这句话,经过哈希函数SHA256后得到的哈希值为: A7FCFC6B5269BDCCE571798D618EA219A68B96CB87A0E21080C2E758D23E 4CE9 这里找到了一个SHA256在线验证工具,可以用来进行SHA256哈希结果的验证,后面也可以用来检验自己的SHA256代码是否正确。用起来很方便,不妨感受下。 2. SHA256原理详解 为了更好的理解SHA256的原理,这里首先将算法中可以单独抽出的模块,包括常量的初始化、信息预处理、使用到的逻辑运算分别进行介绍,甩开这些理解上的障碍后,一起来探索SHA256算法的主体部分,即消息摘要是如何计算的。 2.1 常量初始化 SHA256算法中用到了8个哈希初值以及64个哈希常量 其中,SHA256算法的8个哈希初值如下: h0 := 0x6a09e667 h1 := 0xbb67ae85 h2 := 0x3c6ef372 h3 := 0xa54ff53a h4 := 0x510e527f h5 := 0x9b05688c

相关主题
文本预览
相关文档 最新文档