当前位置:文档之家› a-淀粉酶的生产与应用

a-淀粉酶的生产与应用

a-淀粉酶的生产与应用
a-淀粉酶的生产与应用

α-淀粉酶的合成与应用

谷君

摘要:酶, 发酵,生产,合成,应用

关键词:生产应用

一,淀粉酶的产生菌及酶的特性

(1)淀粉酶可由微生物发酵产生,也可从植物和动物中提取,目前I业生产上都以微生物发酵法进行大规模生产淀粉酶。在 1 9 0 8年和 1 9 1 7年德国的 B o k i i n 和 F A

f r o n t [ 日先后由细菌中生产出 d .淀粉酶,用于纺织品脱浆。1 9 3 7年日本的福本口获得了产生a 一淀粉酶的括革杆菌。第二次世界大战后,由干抗生素的发明,使得微生物I业大步前进, 1 9 4 9年Ⅱ - 淀粉酶开始采用深层通风培葬法进行生产。1 9 7 3年耐热性淀粉酶投入了生产r 4 3 。随淀粉酶的用途日蓝扩大,产量日见增多,生产水平也逐步提高。近些年我们国家的酶制剂行业发展较快,从 1 9 6 5年开始应用解淀粉芽孢杆菌B F 一7 6 5 8生产淀粉酶,当时仅无锡酶制剂厂独家生产,近年在国内生产酶制剂的厂家已发展到 l 2 O多个,其中约有 4 O 左右的I厂生产淀粉酶,产品也由单一的常温I业用 d 一淀粉酶,发展到现在有I业用也有食品鼓,既有常温也有耐热的,剂型上有固体的也有液体淀粉酶。酶制剂I业现已成为近代I业生产中不可缺少的组成部门,它对社会的贡献远远超过酶I业本身。

(2)世界上许多国家都以枯草杆菌,地衣芽孢杆菌生产细菌淀粉酶和米曲霉生产的真苗淀粉酶为主要产品,在工业生产中使用的菌种,最初都是从自然中得到的,通过筛选和诱变育种工作,可改变菌种的特性,提高 n 一淀粉酶的活力。O n t t r u p 以地衣芽孢杆苗AT C C 9 7 9 8为出发菌株,用 Y射线, N T G以及 uV反复 7次

诱变,使其 n 一淀粉酶的产量为原苗株的 2 5 倍。A n d r e e v a 等将枯草杆菌孢子悬浮液经 5 0 ℃加热处理 3 0分钟,酶合成速度提高了 2 —2 、 7倍,可见采用诱变育种是行之有效的方法,但也有一定的局限性和缺点,由于发生平顶效应使之育种效果降低,利用转化法改良菌种,在枯草杆菌 n 一淀粉酶的生产苗上已

取得可喜的结果 K a z u m a s a 等采用转化和诱变结合的方法.使 n 一淀粉酶产量比亲株高 l 5 0 0 - -2 0 0 0倍近年来,随生物工程技术的发展,基因工程技术已应用到菌种的改造方面。 P a l v a r 2 等把解淀粉芽孢杆菌n 一淀粉酶基因克隆到枯草芽孢杆菌中,其 n 一淀粉酶活力比其原始的野生型苗株高 5 0 0倍。 H e n a c h a n 又把地衣芽孢杆菌耐热淀粉酶基因克隆到枯草芽孢杆苗中,美国 C P C国

际公冠的 Mo f f c t 研究中心,已获得美国食品药品管理局( F DA) 的批准,可用其研制的基因工程菌生产淀粉酶,这是第一个由 F D A 批准用基因工程菌生产的酶髑剂。。我国在利用基因重组构建耐热性一淀粉酶方面已取得一定的进展,何超刚[ 3 等将脂肪嗜热芽孢杆菌淀粉酶基因质粒带人大肠杆菌,使后者具有生

产高淀粉酶能力。任大明0 将带有淀粉酶基因的克隆片段,在枯草杆菌中得到表达。朱卫民将枯草杆菌 a淀粉酶基因在大肠杆苗中的得表达。

二淀粉酶的纯化和提取

为了提高收率、降低成本,对酶回收所做努力不亚于改进发酵工艺。从发酵液作成酶翩剂所用单元操作主要是固液分离、浓缩、沉淀以及干燥、粉碎。其中固液分离是个关键。由于发酵液固型物呈胶质状,特别是细苗发酵液带阴电荷.固液分离困难,必须通过聚电解质絮凝剂处理,再在硅藻土等助滤剂存在下用板框压滤机过滤工业酶制剂有液体和固体两种形态,液体酶是除菌浓缩液加入稳定剂和防腐剂,再标准化而成。固体酶最简便方法是将浓缩酶液喷雾干燥,或者用盐析和溶剂沉淀的方法。目前我国对 a 一淀粉酶下游工程的研究做了许多工作。王玉华口报导在发酵液中加硫酸铝 0 . 4 7 .再加分子量 2 0 0万的聚丙烯酰胺 2 9 4 mm ol / l絮凝,漏斗中过滤可提高 2 . 9倍。刘叶青”报导用磷酸钙凝胶絮凝一

淀粉酶发酵液,再辅以啊离子高分子絮凝剂进行淀粉酶絮凝提取是可行的。赵铭0 等将发酵液用高分子絮凝剂处理,小型板框压滤机过滤达 l 5 . 9 L / r n b,而不絮凝者无法过撼。

三,淀粉酶的用途及展望

淀粉酶的用途极为广泛,不同来源的淀粉酶,具有不同的性质,不同性质的酶具有不同的用途。黑曲霉酸性淀粉酶适用于制造助消化的药物。米曲霉的口 - 淀粉酶耐热性较差,用于面包工业。糖化塑细菌淀粉酶因产物具有较多的麦芽糖.可用以制造低D值的糖类.而耐热性强的细菌淀粉酶,由于液化完全,用酶量少,操作较容易,适于淀粉液化及棉布退浆、酶法生产葡萄糖以及石油压裂。目前,一淀粉酶已用在淀粉加工业面包工业、发酵工业、饲料制造等。如表 I所示。由于淀粉酶的用途广泛,在市场上一定粉酶是产量最大的酶类之一。

有一定的差距。国外淀粉酶发酵水平达9 0 0 u /mi ,耐高温淀粉酶发酵水平为3 0 0 u /m1 。而我国常温淀粉酶活力为3 O O 一5 0 O U/ml ,耐高温淀粉酶活力仅1 5 0 u /r m,并且我国淀粉酶剂型、品种和生产菌株都很单一。由于我国淀粉资源丰富,淀粉酶应用范围广泛,淀粉酶工业发展也必将促进我国其它工业的迅速发展。为适应匿民经济发展需要,应进一步扩大淀粉酶的产量和品种,

今后应加强以下几个方面的研究;

1 .口- 淀粉酶下游工程的研究,研制不同等级酶制剂及不同剂型的酶制剂。

2 .加强菌种的筛选和诱变育种工作。

3 .加强基础理论的研究,如菌种产酶的遗传基因控俐酶的形成.这将有助于提高酶产量和开拓酶的途甩。

4. 深入开展酶分子的改造和修饰研究,并在工业和医药去的研究。

参考文献:

(1)张树政酶制剂工业,科学出版社1984

(2)陈响声近代工业微生物上海科学技术出版社 1982

(3)山田浩一食品工业微生物光琳书院 1963

(4)陈琦等微生物学 1958

(5)王桂芬微生物学源 1989

(6)安定华食品与工程发酵 1983

(7)何继春微生物学源 1988

(8)孔倪良微生物学源 1989

(9)胡学智工业微生物 1993

(10)任大月生物工程学 1987

(11)朱学春微生物学 1992

(12)朱卫名微生物学 1992

(13)王玉华食品与发酵 1985

(14)柳叶青华东化工学院 1988

(15)赵佑工业微生物 1987

(16)迟裕森山东食品发酵 1989

(17)杨基础生物工程基础 1987

(整理)α-淀粉酶综述

α-淀粉酶综述 佚名2013-10-06 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

淀粉酶及其应用

淀粉酶及其应用 0 引言 淀粉酶分布非常广泛,是人们经常研究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用。 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。最初,淀粉酶一词用来指可以水解直链淀粉、支链淀粉、肝糖及其降解产品中α-1,4-糖苷键的酶(本菲尔德(Bernfeld),1955年;费希尔(Fisher)和斯坦(Stein),1960年;迈拜克(Myrback)和纽慕勒(Neumuller),1950年)。它们水解相邻葡萄糖单体之间的键,产生带有具体用酶特征的产品。 近年来,人们发现了很多与淀粉及相关多糖结构降解有关的新型酶,并对其进行了研究(鲍伊(Boyer)和英格尔(Ingle),1972年;博诺考尔(Buonocore)等人,1976年;格里芬(Griffin)和福格蒂(Fogarty),1973年;福格蒂(Fogarty)和格里芬(Griffin),1975年)。 (1)有一些微生物源可以劈开这些结构中的α-1,4或α-1,4和/或α-1,6键,人们将现在已经或将来可能对这些微生物源工业化生产有重大影响的酶分为六种(福格蒂(Fogarty)和凯利(Kelly),1979年)。 (2)水解α-1,4键和绕过α-1,6键的酶,比如α-淀粉酶(内作用淀粉酶)。 (3)水解α-1,4键,但不能绕过α-1,6键的酶,比如β-淀粉酶(把麦芽糖当作一个重要的终端产品来生产的外作用淀粉酶)。 (4)水解α-1,4和α-1,6键的酶,比如淀粉葡糖苷酶(葡萄糖淀粉酶)和外作用淀粉酶。 (5)仅水解α-1,6键的酶,比如支链淀粉酶和其它一些脱支酶。 (6)优先水解其它酶对直链淀粉和支链淀粉所起的作用产生的短链低聚糖中α-1,4键的酶,比如α-葡萄糖苷酶。 (7)将淀粉水解为一连串非还原环状口葡糖基聚合物,称为环糊精或塞查丁格(Sachardinger)糊精的酶,比如浸麻芽孢杆菌(Bacillus macerans)淀粉酶(环糊精生成酶)。 1 淀粉 在描述淀粉分解酶的作用方式和性质前,有必要来讨论一下这种天然基一一淀粉的特性。淀粉是所有高等植物中主要储备碳水化合物的。在有些植物中,淀粉占整个未干植物的70%。淀粉是不溶于水的细小颗粒。这些颗粒的大小和形状常常由植物母体决定,具有植物品种的特征。当把淀粉颗粒置于水中加热时,颗粒中的连接氢键变弱,颗粒开始膨胀、凝胶化。最终,它们根据多糖的浓度或形成糊状物或形成弥散现象。淀粉来自于植物,比如玉米、小麦、高梁、稻米的种子,或木薯、马铃薯、竹芋的茎根,或来自于西谷椰子的木髓。玉 米是淀粉的主要商业原料,通过湿磨生产工艺便可获得商品淀粉(博考特(Berkhout),1976年)。直链淀粉和支链淀粉的特性见表1。 表1直链淀粉和支链淀粉的比较 性质 直链淀粉 支链淀粉 基本结构 基本直线 分岔 在水溶液中稳定性 回生 稳定 聚合度 C.103 C.104~105 平均链长 C.103 C.20~25 β淀粉酶水解 87% 54%

淀粉酶生产

淀粉酶生产 淀粉酶类的生产 淀粉酶属于水解酶类,是催化淀粉(包括糖原,糊精)中糖苷键水解的一类酶的统称。它是研究较多,生产最早,产量最大和应用最广泛的一种酶。几乎占整个总产量的50,以上。 根据淀粉酶对淀粉的作用方式不同,淀粉酶可分为四种主要类型,即a-淀粉酶,β-淀粉酶,葡萄糖淀粉酶和异淀粉酶。此外,还有一些应用不是很广泛,生产量不大的淀粉酶,如环状糊精生成酶,及α-葡萄糖苷酶等。 表5—1 淀粉酶的分类 常用名作用特性存在 E.C编号系统名称 不规则地分解淀粉唾液,胰脏,麦芽,α-1,4葡聚糖- α-淀粉酶,液化霉菌,细菌 E.C. 4-葡聚糖水解酶酶,淀粉-1, 4-糖原类物质的α-1 3.2.1.1 糊精酶,内断型4糖苷键 淀粉酶 E.C. α-1,4葡聚糖- Β-淀粉酶,淀粉从非还原性末端甘薯,大豆,大 3.2.1.2 4-麦芽糖水解酶 -1,4-麦芽糖苷以麦芽糖为单位麦,麦芽等高等 酶,外断型淀粉顺次分解淀粉,植物以及细菌等 酶糖原类物质的α微生物 -1,4糖苷键 E.C. α-1,4葡聚糖葡糖化型淀粉酶,从非还原性末端霉菌,细菌,酵 3.2.1.3 萄糖水解酶糖化酶,葡萄糖以葡萄糖为单位母等 淀粉酶,淀粉-1,顺次分解淀粉, 4-葡萄糖苷酶,糖元类物质的α

淀粉葡萄糖苷酶 -1,4糖苷键 E.C. 支链淀粉6-葡聚异淀粉酶,淀粉分解支链淀粉,植物,酵母,细 3.2.1.9 糖水解酶 -1,6-糊精酶,糖元类物质的α菌 R-酶,茁酶多糖-1,6糖苷键 酶,脱支酶 淀粉酶的种类不同,对直链淀粉和支链淀粉的作用方式也不一样。各种不同的淀粉酶对淀粉的作用有各自的专一性。 淀粉是自然界中分布极广的碳水化合物,它是由葡萄糖基相连接聚合而成的,根据连接方式不同一般可将其分为直链淀粉和支链淀粉两种。直链淀粉的葡萄糖基几乎都是以α-1,4键相互连接成的直连,聚合度为100—6000个葡萄糖单位不等,最近研究认为直链淀粉分子中也有极少量的分枝结构存在。支链淀粉则较复杂,除有较多的α-1,4键连接外,还在分子内有α-1,6键连接成树枝状,聚合度也比直链淀粉高。 表5—2 常见淀粉中直链与支链淀粉含量 淀粉品种直链淀粉/, 支链淀粉/, 玉米 27 73 马铃薯 23 77 甘薯 20 80 木薯 17 83 大米 17 83 糯玉米 0 100 糯高粱 0 100 糯米 0 100 5.1α-淀粉酶的生产 α-淀粉酶作用于淀粉时,可以随机的方式从分子内部切开α-1,4葡萄糖苷键而生成糊精和还原糖。其水解位于中间的α-1,4键的概率比水解位于分子末端的概率大,不能水解支链淀粉的α-1,6键,也不能水街紧靠1,6分支点的-α-1,4

万吨α淀粉酶生产车间的设计

万吨α淀粉酶生产车间 的设计 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

8万t/a α-淀粉酶生产车间的设计 摘要:本设计为年产80,000t α-淀粉酶的工厂设计,其通过枯草杆菌液体深层发酵、沉淀法提取达到分离纯化出菌体中α-淀粉酶的目的。本设计分别对α-淀粉酶的性质、用途、工艺流程及生产原理都做了相关的阐述,并对有关的物料和热量也作了相应的衡算,以及对标准设备的选型和计算,还对工艺指标、安全问题和环境保护都做了详细的阐述。通过设计得出结论:年产8万吨α-淀粉酶发酵工厂,共有18个500m3发酵罐,每月均放罐180罐,发酵周期为72小时,总提取率为82%,理论α-淀粉酶产量为吨/罐,实际α-淀粉酶产量为吨/罐。每月应投入生产总成本为3993万元,根据目前市场价格,年利润为万元。 关键词:α-淀粉酶;工厂设计;效益分析;发酵;发酵罐 Plant Design of Sixty thousand t/a α-Amylase Abstract:This project is designed by a factory which produces 60,000t α-Amylase a achieves the aim of filtration and purification of the α-Amylase by using the deep ferment of hay bacillus and settling design not only respectively illustrate the quality,use,technological process and production principle but also make a materials and heat balance,the type selection and calculation of the standard equipment,further more,illustrate the technic

a-淀粉酶发酵的生产工艺

武汉轻工大学 设计α-淀粉酶的发酵生产工艺 系部食品科学与工程学院 专业粮食工程 班级粮工1002 姓名郑开旭 学号100107502 指导教师易阳 2013年6月9日

设计α-淀粉酶发酵的生产工艺 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α- 淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本次设计的淀粉酶发酵,分别以玉米粉为碳源,以豆饼为氮源,以BF-7658枯草芽孢杆菌为生产菌种,同时做出了生产工艺流程图,详细的介绍了α-淀粉酶的生产工艺。 关键词:α-淀粉酶;工艺设计;发酵 正文: α-淀粉酶的生产工艺 1 α-淀粉酶的生产方法 1.1生产方法的选择 枯草杆菌BF7658是我国应用广泛的液化型α-淀粉酶菌种,国内普遍采用深层发酵法生产工业粗酶。我们从BF7658出发,用紫外光及化学药品反复交替诱变,选育适用于固体发酵的新菌体BF7658—1。该菌为短杆状,革兰氏阳性,两端钝园,在肉汁表面可生成菌膜,在培养基上菌落呈乳白色,表面光滑、湿润、略有光泽,用碘液试之,菌落周围呈透明圈。 ?固体培养枯草杆菌BF7658—1生产α-淀粉酶 将菌种接种于马铃薯琼脂斜面,37℃培养三天,然后转接到种子液体培养基上(豆饼粉、玉米粉、酵母膏、蛋白胨火碱、水等),摇瓶培养一定时间,当菌体进入对数生长期时,以0. 5%接种量接入固体培养基(麸皮、米糠、豆饼粉、火碱、水;ph=7左右,常压汽蒸一小时,冷却到38~40℃)在厚层通风制曲箱内,通风保持37~42℃,培养48小时出曲风干。 麸曲用1%食盐水3~4倍浸泡,3小时后过滤,调节滤液pH=8,加硫酸铵溶液沉淀酶,经离心,用浓酒精洗涤脱水,40℃烘干、磨粉即为成品。 ?深层发酵法生产α-淀粉酶

a-淀粉酶的生产与应用

α-淀粉酶的合成与应用 谷君 摘要:酶, 发酵,生产,合成,应用 关键词:生产应用 一,淀粉酶的产生菌及酶的特性 (1)淀粉酶可由微生物发酵产生,也可从植物和动物中提取,目前I业生产上都以微生物发酵法进行大规模生产淀粉酶。在 1 9 0 8年和 1 9 1 7年德国的 B o k i i n 和 F A f r o n t [ 日先后由细菌中生产出 d .淀粉酶,用于纺织品脱浆。1 9 3 7年日本的福本口获得了产生a 一淀粉酶的括革杆菌。第二次世界大战后,由干抗生素的发明,使得微生物I业大步前进, 1 9 4 9年Ⅱ - 淀粉酶开始采用深层通风培葬法进行生产。1 9 7 3年耐热性淀粉酶投入了生产r 4 3 。随淀粉酶的用途日蓝扩大,产量日见增多,生产水平也逐步提高。近些年我们国家的酶制剂行业发展较快,从 1 9 6 5年开始应用解淀粉芽孢杆菌B F 一7 6 5 8生产淀粉酶,当时仅无锡酶制剂厂独家生产,近年在国内生产酶制剂的厂家已发展到 l 2 O多个,其中约有 4 O 左右的I厂生产淀粉酶,产品也由单一的常温I业用 d 一淀粉酶,发展到现在有I业用也有食品鼓,既有常温也有耐热的,剂型上有固体的也有液体淀粉酶。酶制剂I业现已成为近代I业生产中不可缺少的组成部门,它对社会的贡献远远超过酶I业本身。 (2)世界上许多国家都以枯草杆菌,地衣芽孢杆菌生产细菌淀粉酶和米曲霉生产的真苗淀粉酶为主要产品,在工业生产中使用的菌种,最初都是从自然中得到的,通过筛选和诱变育种工作,可改变菌种的特性,提高 n 一淀粉酶的活力。O n t t r u p 以地衣芽孢杆苗AT C C 9 7 9 8为出发菌株,用 Y射线, N T G以及 uV反复 7次 诱变,使其 n 一淀粉酶的产量为原苗株的 2 5 倍。A n d r e e v a 等将枯草杆菌孢子悬浮液经 5 0 ℃加热处理 3 0分钟,酶合成速度提高了 2 —2 、 7倍,可见采用诱变育种是行之有效的方法,但也有一定的局限性和缺点,由于发生平顶效应使之育种效果降低,利用转化法改良菌种,在枯草杆菌 n 一淀粉酶的生产苗上已 取得可喜的结果 K a z u m a s a 等采用转化和诱变结合的方法.使 n 一淀粉酶产量比亲株高 l 5 0 0 - -2 0 0 0倍近年来,随生物工程技术的发展,基因工程技术已应用到菌种的改造方面。 P a l v a r 2 等把解淀粉芽孢杆菌n 一淀粉酶基因克隆到枯草芽孢杆菌中,其 n 一淀粉酶活力比其原始的野生型苗株高 5 0 0倍。 H e n a c h a n 又把地衣芽孢杆菌耐热淀粉酶基因克隆到枯草芽孢杆苗中,美国 C P C国 际公冠的 Mo f f c t 研究中心,已获得美国食品药品管理局( F DA) 的批准,可用其研制的基因工程菌生产淀粉酶,这是第一个由 F D A 批准用基因工程菌生产的酶髑剂。。我国在利用基因重组构建耐热性一淀粉酶方面已取得一定的进展,何超刚[ 3 等将脂肪嗜热芽孢杆菌淀粉酶基因质粒带人大肠杆菌,使后者具有生 产高淀粉酶能力。任大明0 将带有淀粉酶基因的克隆片段,在枯草杆菌中得到表达。朱卫民将枯草杆菌 a淀粉酶基因在大肠杆苗中的得表达。

葡萄糖淀粉酶生产工艺图

葡萄糖淀粉酶生产工艺图 淀粉糖是指以淀粉为原料经水解、精制或再经深加工而获得的糖制品。淀粉分子是由成千上万个葡萄糖分子(C6H12O6)连接而成,一个葡萄糖分子有6个碳原子,与下一个葡萄糖分子相连时有三种连法:一是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连;二是第6个碳原子与下一个葡萄糖分子的第1个碳原子相连;三是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连,同时第6个碳原子与另一个葡萄糖分子的第1个碳原子相连。全部葡萄糖分子都以第一种连法连接的是直链淀粉,自然界很少存在;全部葡萄糖分子都以第二种连法连接无法形成长链,形不成淀粉;葡萄糖分子以三种连法混合连成的淀粉分子是自然界存在的淀粉的主流,其中以第三种连法连接的部位形成支叉,所以叫支链淀粉。 果糖与葡萄糖一样都是单糖,果糖的分子式也是C6H12O6,属于葡萄糖的同分异构体,通过异构酶的作用,葡萄糖的醛基变成酮基即得到果糖。蔗糖、麦芽糖及异麦芽糖都属于双糖,一个葡萄糖的第4个碳原子另一个葡萄糖分子的第1个碳原子相连即为麦芽糖,一个葡萄糖的第6个碳原子另一个葡萄糖分子的第1个碳原子相连即为异麦芽糖,而蔗糖则由一个葡萄糖分子与一个果糖分子连接而成。三个葡萄糖分子相连而成的三糖有麦芽三糖和潘糖。4~8个葡萄糖连成的短链糖品叫低聚糖,9个以上葡萄糖连成的中分子物质叫做糊精,其甜味已经不明显,大量的葡萄糖连在一起就形成了淀粉或者形成更大分子量的纤维素。 以淀粉为原料选用不同的酶来水解或控制不同的水解程度可以得到不同的淀粉糖品。以诺维信酶制剂为例: 1、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE6~10,经精制和喷雾干燥后可以制得糊精制品; 2、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE40~50,可以获得食品行业常用的葡萄糖浆; 3、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE99.5~101,可以得到葡萄糖含量97%以上的糖液。经过精制后在50℃以下结晶可以制取一水结晶葡萄糖,在50℃以上结晶可以制取无水结晶葡萄糖; 4、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用真菌淀粉酶FUNGAMYL 800L糖化到DE45~48,可以获得麦芽糖含量50~55%的普通麦芽糖浆; 5、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用β-淀粉酶Novozym WBA和普鲁兰酶Promozyme(适于水解糖链的支叉部位)糖化到DE43~46,可以获得麦芽糖含量60%以上的高麦芽糖浆或芽糖含量70%以上的超高麦芽糖浆。 以葡萄糖为原料,经固定化异构酶Sweetzyme IT异构化可以获得糖分组成中果糖约占42%的F42果葡糖浆,F42果葡糖浆经色谱分离可以获得糖分组成中果糖最多约占90%的F90超高果糖浆,F90超高果糖浆还可以通过结晶制得结晶果糖。 以葡萄糖为原料,经高压加氢可以制得山梨醇,通过结晶可以制得结晶山梨醇。

α-淀粉酶的研究及应用[文献综述]

毕业论文文献综述 生物工程 α-淀粉酶的研究及应用 淀粉酶是一种水解酶,是目前发酵工业上应用最广泛的一类酶。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。因α-淀粉酶作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖,而β-淀粉酶从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链生成分子量比较大的极限糊精,且α-淀粉酶分布更广泛,已是一种十分重要的酶制剂,α-淀粉酶大量应用于粮食加工、食品工业、酿造、发酵、和医药行业等,它占了整个酶制剂市场份额的25%左右[1]。目前工业生产上都以微生物发酵法大规模生产α-淀粉酶。但随着社会需求的增大,工业生产对α-淀粉酶的需求量也越来越大,急需寻找满足生产需要的具新型特征的酶制剂。因此本文主要讨论以α-淀粉酶为代表的淀粉酶的研究及应用。 1 α-淀粉酶的研究 1.1 α-淀粉酶分离纯化方法的研究 高纯度α-淀粉酶是一种重要的水解淀粉类酶制剂,可用于研究酶反应机理和测定生化反应平衡常数等。分离纯化α-淀粉酶的方法很多,一般都是依据酶分子的大小、形状、电荷性质、溶解度、稳定性、专一性结合位点等性质建立的。要得到高纯度的α-淀粉酶,往往需要将各种方法联合使用。盐析沉淀、凝胶过滤层析、离子交换层析、疏水作用层析、亲和层析和电泳等,是蛋白质分离纯化的主要方法。用吸附树脂法、40%乙醇从α-淀粉酶发酵液中分离高活性α-淀粉酶,用离子交换法和透析法对初酶液进行脱盐处理,最后用DEAE-纤维素纯化α-淀粉酶,所得酶活力为60153U/g,酶活性回收率为66.04%[2]。另通过乙醇沉淀、离子交换层析和凝胶过滤层析等方式,从白曲霉菌A. kawachii的米曲粗抽出液中,分离纯化到两个耐酸性α-淀粉酶比活性极高的组分。用疏水吸附法和DEAE-cellulose(二乙氨基乙基-纤维素)柱层析法分离纯化α-淀粉酶,所得酶活力为110 000 U/g。用硫酸铵沉淀和垂直板制备凝胶电泳对地衣芽孢杆菌A. 4041耐高温α-淀粉酶进行分离纯化,得到3种电泳均一的组分。通过超滤、浓缩、脱盐和聚丙烯酰胺垂直板凝胶电泳,对利用基因工程菌生产的重组超耐热耐酸性α-淀粉酶进行纯化,得到电泳纯级的超耐热耐酸性α-淀粉酶,纯化倍数为11. 7,活力回收率为29. 8%[3]。但上述方法存在的共同问题是,连续操作和规模放大都比较困难。双水相技术具有处理容量大、能耗低、易连续化操作和工程放大等优点。应用双水相系统PEG/磷酸盐分离

α-淀粉酶

根据淀粉酶对淀粉的水解方式不同,可将其分为α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶和异淀粉酶等。其中,α-淀粉酶(α-1,4-葡聚糖-4-葡聚糖苷酶)多是胞外酶,其作用于淀粉时可从分子内部随机地切开淀粉链的α-1,4糖苷键,而生成糊精和还原糖,产物的末端残基碳原子构型为α-构型,故称α-淀粉酶。 α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中,当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。它可以由微生物发酵制备,也可以从动植物中提取。不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。 目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。如在淀粉加工业中,微生物α-淀粉酶已成功取代了化学降解法;在酒精工业中能显著提高出酒率。其应用于各种工业中对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。相对地,关于α-淀粉酶抑制剂国内外也有很多研究报道,α-淀粉酶抑制剂是糖苷水解酶的一种。它能有效地抑制肠道内唾液及胰淀粉酶的活性,阻碍食物中碳水化合物的水解和消化,降低人体糖份吸收、降低血糖和血脂的含量,减少脂肪合成,减轻体重。有报道表明,α-淀粉酶可以帮助改善糖尿病患者的耐糖量。 α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶,其最早的商业化应用在1984年,作为治疗消化紊乱的药物辅助剂。现在,α-淀粉酶已广泛应用于食品、清洁剂、啤酒酿造、酒精工业和造纸工业。 在焙烤工业中的应用: α-淀粉酶用于面包加工中可以使面包体积增大,纹理疏松;提高面团的发酵速度;改善面包心的组织结构,增加内部组织的柔软度;产生良好而稳定的面包外表色泽;提高入炉的急胀性;抗老化,改善面包心的弹性和口感;延长面包心储存过程中的保鲜期 在啤酒酿造中的应用: 啤洒是最早用酶的酿造产品之一,在啤洒酿造中添加α-淀粉酶使其较快液化以取代一部分麦芽,使辅料增加,成本降低,特别在麦芽糖化力低,辅助原料使用比例较大的场合,使用α-淀粉酶和β-淀粉酶协同麦芽糖化,可以弥补麦芽酶系不足,增加可发酵糖含量,提高麦汁率,麦汁色泽降低,过滤速度加快,提高了浸出物得率,同时又缩短了整体糊化时间。在酒精工业中的应用: 在玉米为原料生产酒精中添加α-淀粉酶低温蒸煮的新工艺,每生产1t酒精可节煤 224.42kg。又可减少冷却用水,提高出酒率8.8%,酒精成品质量也有显著提高。酒精生产应用耐高温α-淀粉酶。采用中温95℃~105℃蒸煮,既可有效地杀死原料中带来的杂菌,降低入池酸度和染菌机率,又可保护原材料中的淀粉组织不被破坏,形成焦糖或其它物质而损失,从而提高原料利用率 在造纸工业中的应用: 当代造纸工业中,造纸用化学品在提高纸品质量、增加纸品功能、提高生产效率和降低生产成本等方面发挥着极为重要的作用。由于淀粉与造纸用植物纤维素结构相近,相互间有良好的亲和作用,资源广泛,廉价易得,尤其是经变性处理的淀粉,能赋予纸张优异的性能,因此各类变性淀粉在造纸中广泛用于湿部添加、层间喷雾、表面施胶和涂布粘合。α-淀粉酶可以生产涂布粘合用变性淀粉

年产400t中性淀粉酶的生产工艺设计

年产400吨中性淀粉酶生产工艺设计 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本次设计的淀粉酶发酵厂,分别以玉米粉为碳源,以豆饼为氮源,以BF-7658枯草芽孢杆菌为生产菌种,采用深层发酵法,提取工艺采用盐析法,年产400吨淀粉酶。做出了生产工艺流程图,进行了物料衡算,设计了发酵罐和种子罐的尺寸和车间的布置和结构,同时绘制了该厂区的总平面布置图、带控制点的工艺流程图、工艺管道及仪表流程图图例。 关键词:α-淀粉酶;生产工艺设计;深层发酵法 1 绪论 淀粉酶简述 淀粉酶广泛存在于动物、植物和微生物中,在食品、发酵、纺织和造纸等工业中均有应用,尤其在淀粉加工业中,微生物淀粉酶更是应用广泛并已成功取代了化学降解法;同时,它们也可以应用于制药和精细化工等行业。 α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶。现在,α-淀粉酶已广泛应用于食品、清洁剂、啤酒酿造、酒精工业、纺织退浆和造纸工业,对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中,当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。它可以由微生物发酵制备,也可以从动植物中提取。不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。有报道表明,α-淀粉酶可以帮助改善糖尿病患者的耐糖量。这一领域研究自2O世纪8O年代和9O年代十分活跃,但目前α-淀粉酶抑制剂的研究工作仍处于基础阶段,至今仍未得到有效合理的开发应用。但是随着科技的发展、研究的深入,α-淀粉酶将会得到更加广泛的应用。 2 α-淀粉酶的性质 α-淀粉酶的结构 目前,已对很多不同种类和来源的α-淀粉酶(黑曲霉、米根霉、人和猪胰腺、人唾液腺、大麦种子和地衣芽孢杆菌)的晶体结构进行了X-射线衍射研究,并得到了高分辨率的晶体结构图。研究表明所有α-淀粉酶均为分子量在50ku左右的单体,由经典的三个区域(A、B、C)组成:中心区域A由一个(β/α)8圆筒构成;区域B由一个小的β-折叠突出于β3和α3之间构成;而C-末端球型区域C则由一个Greek-key基序组成,为该酶的活性部位,负责正确识别底物并与之结合。为保持α-淀粉酶的结构完整性和活性,至少需要一个能与之紧密结合的Ca2+,而Cl-往往是α-淀粉酶的变构激活因子,并且在所有Cl-依赖性的α-淀粉酶中,组成催化三联体的残基都是严格保守的[10]。 α-淀粉酶的性质 早在1967年,Jones 和Varner就对小麦中α-淀粉酶的活性进行了研究[11]。不同来源的α-淀粉酶的酶学和理化性质有一定的区别,它们的性质对在其工业应用中的应用影响也较大,在工业生产中要根据需要使用合适来源的酶,因此对淀粉酶性质的研究也显得比较重

a-淀粉酶的简介

淀粉酶【拼音:diàn-fěn méi;英文:Amylase】是一种水解酶,是目前发酵工业上应用最广泛的一类酶。淀粉酶一般作用于可溶性淀粉、直链淀粉、糖原等α-1,4-葡聚糖,水解α-1,4-糖苷键的酶。根据作用的方式可分为α-淀粉酶(EC3.2.1.1.)与β-淀粉酶(EC3.2.1.2.)。 α-淀粉酶广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。微生物的酶几乎都是分泌性的。此酶以Ca2+为必需因子并作为稳定因子,既作用于直链淀粉,亦作用于支链淀粉,无差别地切断α-1,4-链。因此,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖。另一方面在分解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。一般分解限度以葡萄糖为准是35-50%,但在细菌的淀粉酶中,亦有呈现高达70%分解限度的(最终游离出葡萄糖)。 β-淀粉酶与α-淀粉酶的不同点在于从非还原性末端逐次以麦芽糖为单位切断α-1,4-葡聚糖链。主要见于高等植物中(大麦、小麦、甘薯、大豆等),但也有报告在细菌、牛乳、霉菌中存在。对于象直链淀粉那样没有分支的底物能完全分解得到麦芽糖和少量的葡萄糖。作用于支链淀粉或葡聚糖的时候,切断至α-1,6-键的前面反应就停止了,因此生成分子量比较大的极限糊精。从上述的α-淀粉酶和β-淀粉酶的作用方式,分别提出α-1,4-葡聚糖-4-葡萄糖水解酶(α-1,4-glucan 4-glucanohydrolase)和α-1,4-葡聚糖-麦芽糖水解酶(α -1,4-glucan maltohydrolase)的名称等而被使用。 α-淀粉酶是一种内切葡萄糖苷酶,属于淀粉酶α-淀粉酶催化水解淀粉会使淀粉黏度迅速下降,所以又称为液化淀粉酶。 理化性质:米黄色、灰褐色粉末。能水解淀粉中的α-1,4,葡萄糖苷键。能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶。作用温度范围60~90℃,最适宜作用温度为60~70℃,作用pH值范围5.5~7.0,最适pH值为6.0。Ca2+具有一定的激活、提高淀粉酶活力的能力,并且对其稳定性的提高也有一定效果。可催化水解α-1,4-糖苷键,但只能催化水解直链淀粉,生成α-麦芽糖和少量葡萄糖。主要存在于人的唾液和胰脏中,也存在于麦芽、蟑螂涎腺、芽胞杆菌、枯草杆菌、黑曲霉和米曲霉中。可由米曲霉、嗜酸性普鲁士蓝杆菌、淀粉液化杆菌、地衣芽孢杆菌和枯草杆菌分别经发酵、精制、干燥而得。

α_淀粉酶在食品工业应用研究

α-淀粉酶在食品行业的应用研究 摘要:α-淀粉酶作为淀粉酶的一种,广泛应用于工业生产,在食品、医药、造纸、酿造以及饲料等工业中发挥着越来越重要的作用。文章综述了α-淀粉酶的酶学性质和在食品工业的应用,以及对α-淀粉酶未来发展的思考,如何进一步研究,使其应用价值得到更好的发挥。 关键词:淀粉酶;α-淀粉酶;应用;展望。 1概述 淀粉酶(amylase,Amy,AMS),广泛存在于自然界,几乎所有的植物、动物和微生物都含有淀粉酶。依据对淀粉作用方式的不同分为:α-淀粉酶、β-淀粉酶、葡萄糖淀粉酶、支链淀粉酶和异淀粉酶等;而根据淀粉酶来源的不同又可以分为:细菌淀粉酶、真菌淀粉酶、动物淀粉酶和植物淀粉酶[1]。 其中,α-淀粉酶(α-amylase)属于葡萄糖水解酶家族13(GH13),国际酶学分类编号为 EC 3.2.1.1[2],能随机切开淀粉、糖原等大分子部的α-1,4-葡萄糖苷键,将其水解成糊精、低聚糖和葡萄糖等一系列小分子[3,4],使淀粉黏度迅速下降。由于产物的末端残疾C原子为α 构型,故称α-淀粉酶[5]。不同来源的α-淀粉酶性质有一定的区别,工业上主要是应用真菌和细菌产生的α-淀粉酶。 2α-淀粉酶性质 由于α-淀粉酶来源广泛,其酶学和理化性质会有一定区别,为了满足不同工业生产需要,需要充分了解所使用α-淀粉酶的来源以及其性质,主要有以下三个方面: 2.1温度和pH值 不同温度和pH值条件下,α-淀粉酶的活力会有所不同,只有在最适温度和pH值条件下,酶的稳定性最好,其活力最强,才能更好地发挥作用[6,7]。 2.2底物 和其他酶类一样,α-淀粉酶也具有底物特异性,不同来源的淀粉酶反应底

α-淀粉酶生产重要参数

α-淀粉酶发酵的生产工艺设计 摘要: α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。对α-淀粉酶性质及其应用进行了相关综述。 关键词:α-淀粉酶;生产工艺设计;性质;应用 Abstract:α-amylases are universally distributed throughout the animal,plant and microbial kingdoms.They can hydrolyse starch molecules to give diverse products including dextrins and progressively smaller polymers composed of glUcose units.α-amylases are one of the most popular and important form of industrial amylases.These enzymes are applied in baking industry,the processing of starch,ferm entation,brewing industry,textile and paper industries.The present review highlights the properties and applications ofα-Amylases. Key words:α-amylase;properties;applications 1 绪论 1.1α-淀粉酶性质简述 1.1.1α-淀粉酶简述 α-淀粉酶广泛存在于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物中[1]。米黄色、灰褐色粉末。能水解淀粉中的α-1,4,葡萄糖苷键。能将淀粉切断成长短不一的短链糊精和少量的低分子糖类,从而使淀粉糊的黏度迅速下降,即起到降低稠度和“液化”的作用,所以此类淀粉酶又称为液化酶.也是工业生产中应用最为广泛的酶制剂之一[2]。作用温度范围60~90℃,最适宜作用温度为60~70℃,作用pH值范围5.5~7.0,最适pH值为6.0。Ca2+具有一定的激活、提高淀粉酶活力的能力,并且对其稳定性的提高也有一定效果。可催化水解α-1,4-糖苷键,但只能催化水解直链淀粉,生成α-麦芽糖和少量葡萄糖[3]。主要

真菌α-淀粉酶的研究和应用

真菌α-淀粉酶的研究和应用 16120901 20092348 王德美 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。α-淀粉酶在现代淀粉糖浆、焙烤制品、啤酒酿制及生料酒精等行业已得到广泛的应用。随着现代制糖工业与发酵工业的发展及其对真菌α-淀粉酶的使用需求,使得真菌α-淀粉酶在现代工业酶制剂中占有重要地位。对真菌α-淀粉酶的研究和利用,为满足国内市场需求、调整我国酶制剂工业结构和带动相关食品或发酵行业的发展等具有重要意义。 关键词:真菌α-淀粉酶,可发酵性糖,固态发酵,冷冻沉析,食品应用 1.真菌α-淀粉酶的结构及其催化机制 1.1真菌α-淀粉酶的结构 与大多数α-淀粉酶类似,真菌α-淀粉酶通常含有三个结构域,分别称为A、B和C。结构域A为酶的催化反应中心区域,其典型结构为(a/b)8TIM-桶状结构,结构域B和结构域C基本上位于结构域A得到对立两端【1】。其中,Ca2+的保守结合位点位于结构域A和结构域B之间的表面区域,而大多数情况下Ca2+的存在对于α-淀粉酶家族保持其酶活力和稳定性是必须的。结构域B位于TIM-桶状结构域的第三个β-折叠和第三个α-螺旋之间,该区域富含不规则的β-片层结构,在不同的淀粉酶中的大小和结构差异较大,被认为与α-淀粉酶的第五特异性有关。同时,通过定点突变或随机突变结果表明,该部位在淀粉酶中核能相对比较脆弱,与α-淀粉酶的总体稳定性关联密切,其中部分氨基酸的改变对酶的pH稳定性和热稳定性影响较为显著。结构域C形成α-淀粉酶蛋白质羧基端,并含有α-淀粉酶家族所特有的希腊钥匙β-sandwich结构,通常认为其通过将结构域A的疏水区域与溶剂相隔离以稳定催化区域或TIM桶状结构【2】。 1.2真菌α-淀粉酶的催化机制 通过X-射线晶体结构、化学修饰和定点突变等手段,表明Asp206、Glu230和Asp2973个氨基酸可能是α-淀粉酶、家族的核心催化位点【3】。在α-淀粉酶的催化过程中,酶首先固定住异头物(α-构象),然后通过双替换反应进行催化。在第一个替换过程中,酶的酸性基团(Glu230)使糖苷中的氧原子质子化,并使碳和氧的链接键断裂,形成一种鎓盐转换状态,继而在第二个替换过程中由蛋白的亲质子酸性基团对糖的异头物中心进行攻击,形成β-糖基和酶复合的一种临时状态,继而底物的糖基配基离开活性位点。 2.真菌α-淀粉酶的分类 在目前已报道的文献中,各种真菌来源的α-淀粉酶可以粗略的按酶学性质或作用条件将真菌α-淀粉酶分为3种类型:

α-淀粉酶的生产工艺设计

α-淀粉酶的发酵生产工艺 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α-淀粉酶已广泛应用 于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。 1.菌种的选育 1. 1 细菌的分离与初步鉴定: 将土壤系列稀释,把10-3 、10-4、10-5分别涂布到淀粉培养基上,27℃倒置培养2天,将长出的菌落接入斜面。将细菌从斜面接种到淀粉培养基培养2天,用碘液染色,记录透明圈大小和菌落直径,计算D/d值。保菌供下次实验用。 1.2 紫外线诱变育种: 取活化后的菌种配成菌悬液、稀释;倒淀粉培养基平板,将菌悬液涂布其表面;用紫外线处理平板0、2min、4min、6min、8min、10min,每个处理2次重复;放到黑暗中倒置培养,37℃培养48h,分别计数诱变组和对照组平板上的菌落数,并计算致死率;加入碘液,分别测量诱变组和对照组菌落的透明圈直径和菌落直径,计算D/d值;将D/d值最大的菌种保存到斜面培养基上。 1.3 诱变方法以及变异菌株的筛选 ①诱变出发菌株在完全培养基中培养至对数生长期后期。 ②以NTG为诱变剂,按一定处理剂量(μg/ml),在一定pH值的缓冲液中30℃恒温振荡处理1~4 h。 ③经高速离心分离,移植于液体完全培养基进行后培养。 ④经稀释涂布在含有1%淀粉BY固体培养基上,经24 h培养形成小菌落。

⑤把单菌落分别移植于含2%淀粉BY液体培养基中,30℃培养36 h。 ⑥用2#定性滤纸制成5 mm disc(小圆纸片),并用2%琼脂BY培养基灭菌后加入较大剂量青霉素(抑菌)。倒入200 mm×300mm长方形不锈钢玻璃培养皿中,冷却凝固。然后把5 mm disc 纸顺序放在培养基表面。 ⑦用微量注射器分别吸取培养液,移植到相应的disc上。把disc培养皿经37℃,24h分别培养。 ⑧把KI-I2液用喷雾器均匀分布在disc培养皿培养基的表面上,并挑出淀粉水解圈大的disc,用相对应的1 ml培养液接种摇瓶,进行发酵测定酶活力。把各种斜面菌株经活化培养,接种于1%淀粉培养基的三角瓶中,进行摇瓶比较实验。将菌株作逐一对比,从中筛选出酶活较高的产酶菌株。经菌种诱变选育α-淀粉酶高产菌株为诱变的出发菌株,经NTG反复多次处理,并经淀粉水解圈初筛和摇瓶复筛,来选育α-淀粉酶高产菌株。 经NTG反复多次处理,α-淀粉酶活力有较大幅度提高。在经5次NTG处理之后,其变异株α-淀粉酶活达到34 200 (U/ml),较出发菌株提高了4.2倍以上,说明该诱变处理及选育方法是行之有效的。经NTG处理所得的变异菌株的产酶稳定性较差,必须经反复多次单菌落分离和摇瓶比较,逐渐筛选出产酶稳定性好的菌株。 2 培养基的优化配制 2.1培养基的制作 (1)培养基的类型 培养基的种类很多,可以根据组成、状态和用途等进行分类,按照用途可以分成孢子培养基,种子培养基和发酵培养基。微生物大规模发酵设计主要用到孢子,种子和发酵培养基这三种类型。 (2)孢子培养基

淀粉酶类的生产

淀粉酶类的生产 淀粉酶属于水解酶类,是催化淀粉(包括糖原,糊精)中糖苷键水解的一类酶的统称。它是研究较多,生产最早,产量最大和应用最广泛的一种酶。几乎占整个总产量的50%以上。根据淀粉酶对淀粉的作用方式不同,淀粉酶可分为四种主要类型,即a-淀粉酶,β-淀粉酶,葡萄糖淀粉酶和异淀粉酶。此外,还有一些应用不是很广泛,生产量不大的淀粉酶,如环状糊精生成酶,及α-葡萄糖苷酶等。 表5—1 淀粉酶的分类 E.C编号系统名称常用名作用特性存在 E.C. 3.2.1.1 α-1,4葡聚糖- 4-葡聚糖水解酶 α-淀粉酶,液化 酶,淀粉-1,4- 糊精酶,内断型 淀粉酶 不规则地分解淀粉 糖原类物质的α-1 4糖苷键 唾液,胰脏,麦芽, 霉菌,细菌 E.C. 3.2.1.2α-1,4葡聚糖- 4-麦芽糖水解酶 Β-淀粉酶,淀粉 -1,4-麦芽糖苷 酶,外断型淀粉 酶 从非还原性末端 以麦芽糖为单位 顺次分解淀粉, 糖原类物质的α -1,4糖苷键 甘薯,大豆,大 麦,麦芽等高等 植物以及细菌等 微生物 E.C. 3.2.1.3α-1,4葡聚糖葡 萄糖水解酶 糖化型淀粉酶, 糖化酶,葡萄糖 淀粉酶,淀粉-1, 4-葡萄糖苷酶, 淀粉葡萄糖苷酶 从非还原性末端 以葡萄糖为单位 顺次分解淀粉, 糖元类物质的α -1,4糖苷键 霉菌,细菌,酵 母等 E.C. 3.2.1.9支链淀粉6-葡聚 糖水解酶 异淀粉酶,淀粉 -1,6-糊精酶, R-酶,茁酶多糖 酶,脱支酶 分解支链淀粉, 糖元类物质的α -1,6糖苷键 植物,酵母,细 菌 淀粉酶的种类不同,对直链淀粉和支链淀粉的作用方式也不一样。各种不同的淀粉酶对淀粉的作用有各自的专一性。 淀粉是自然界中分布极广的碳水化合物,它是由葡萄糖基相连接聚合而成的,根据连接方式不同一般可将其分为直链淀粉和支链淀粉两种。直链淀粉的葡萄糖基几乎都是以α-1,4键相互连接成的直连,聚合度为100—6000个葡萄糖单位不等,最近研究认为直链淀粉分子中也有极少量的分枝结构存在。支链淀粉则较复杂,除有较多的α-1,4键连接外,还在分子内有α-1,6键连接成树枝状,聚合度也比直链淀粉高。

测定α-淀粉酶活力的方法

实验五激活剂、抑制剂、温度及PH对酶活性的影响 一、目的要求通过实验加深对酶性质的认识,了解测定α-淀粉酶活力的方法。 二、实验原理 酶是生物体内具有催化作用的蛋白质,通常称为生物催化剂。酶催化的反应称为酶促反应。生物催化剂催化生化反应时具有:催化效率好、有高度的专一性、反应条件温和、催化活力与辅基,辅酶,金属离子有关等特点。 能提高酶活力的物质,称为激活剂。激活剂对酶的作用有一定的选择性,其种类多为无机离子和简单的有机化合物。使酶的活力中心的化学性质发生变化,导致酶的催化作用受抑制或丧失的物质称为酶抑制剂。氯离子为唾液淀粉酶的激活剂,铜离子为其抑制剂。应注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则为该酶的抑制剂。如氯化钠达到约30%浓度时可抑制唾液淀粉酶的活性。 酶促反应中,反应速度达到最大值时的温度和PH值称为某种酶作用时的最适温度和PH值。温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低。同样,反应中某一PH范围内酶活力可达最高,在最适PH的两侧活性骤然下降,其变化趋势呈钟形曲线变化。 食品级α-淀粉酶是一种由微生物发酵生产而制备的微生物酶制剂,主要由枯草芽孢杆菌、黑曲霉、米曲霉等微生物产生。但不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对淀粉的水解程度,以及产物的性质等均有差异。α-淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的α-1,4糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称α-淀粉酶为液化淀粉酶。α-淀粉酶不能水解淀粉支链的α-1,6糖苷键,因此最终水解产物是麦芽糖、葡萄糖和α-1,6键的寡糖。 本实验通过淀粉遇碘显蓝色,糊精按其分子量的大小遇碘显紫蓝、紫红、红棕色,较小的糊精(少于6个葡萄糖单位)遇碘不显色的呈色反应,来追踪α-淀粉酶作用于淀粉基质的水解过程,从而了解酶的性质以及动力学参数。 三、激活剂和抑制剂对唾液淀粉酶活力的影响 (一)试剂及材料

相关主题
文本预览
相关文档 最新文档