当前位置:文档之家› (完整版)控制工程基础(第一章)

(完整版)控制工程基础(第一章)

(完整版)控制工程基础(第一章)
(完整版)控制工程基础(第一章)

辽宁科技学院教案

课程名称:控制工程基础

任课教师:杨光

开课系部:机械学院

开课教研室:机制

开课学期:2012~2013学年度第1学期

教学内容备注

一、机械工程控制论的研究对象与任务

机械工程控制论研究机械工程中广义系统的动力学问题。

1、系统(广义系统):按一定的规律联系在一起的元素的集合。

2、动力学问题:系统在外界作用(输入或激励、包括外加控制与外界干扰)

下,从一定初始状态出发,经历由其内部的固有特性(由系统的结构与参数所

决定)所决定的动态历程(输出或响应)。这一过程中,系统及其输入、输出三

者之间的动态关系即为系统的动力学问题。

上式中y(t)为微分方程的解,显然它是由系统的初始条件,系统的固有特性,系统的输入及系统与输入之间的关系决定。

对上例,需要研究的问题可归纳为以下三类:

二、控制理论的发展与应用

控制理论是研究自动控制共同规律的技术科学。从1868年马克斯威尔(J.C.Maxwell)提出低阶系统稳定性判据至今一百多年里,自动控制理论的发展可分为四个主要阶段:

第一阶段:经典控制理论(或古典控制理论)的产生、发展和成熟;

第二阶段:现代控制理论的兴起和发展;

第三阶段:大系统控制兴起和发展阶段;

第四阶段:智能控制发展阶段。

经典控制理论:

控制理论的发展初期,是以反馈理论为基础的自动调节原理,主要用于工业控制。第二次世界大战期间,为了设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统等基于反馈原理的军用装备,进一步促进和完善了自动控制理论的发展。

?1868年,马克斯威尔(J.C.Maxwell)提出了低阶系统的稳定性代数判据。

?1895年,数学家劳斯(Routh)和赫尔威茨(Hurwitz)分别独立地提出了高阶系统的稳定性判据,即Routh和Hurwitz判据。

?二战期间(1938-1945年)奈奎斯特(H.Nyquist)提出了频率响应理论 1948年,伊万斯(W.R.Evans)提出了根轨迹法。至此,控制理论发展的第一阶段基本完成,形成了以频率法和根轨迹法为主要方法的经典控制理论。

经典控制理论的基本特征:

(1)主要用于线性定常系统的研究,即用于常系数线性微分方程描述的系统的分析与综合;

(2)只用于单输入,单输出的反馈控制系统;

(3)只讨论系统输入与输出之间的关系,而忽视系统的内部状态,是一种对系统的外部描述方法。

现代控制理论:

由于经典控制理论只适用于单输入、单输出的线性定常系统,只注重系统的外部描述而忽视系统的内部状态。因而在实际应用中有很大局限性。

随着航天事业和计算机的发展,20世纪60年代初,在经典控制理论的基础上,以线性代数理论和状态空间分析法为基础的现代控制理论迅速发展起来。

1954年贝尔曼(R.Belman)提出动态规划理论

1956年庞特里雅金(L.S.Pontryagin)提出极大值原理

1960年卡尔曼(R.K.Kalman)提出多变量最优控制和最优滤波理论

在数学工具、理论基础和研究方法上不仅能提供系统的外部信息(输出量和输入量),而且还能提供系统内部状态变量的信息。它无论对线性系统或非线性系统,定常系统或时变系统,单变量系统或多变量系统,都是一种有效的分析方法。

当今世界,控制技术无处不在,世界随处可见控制与反控制。

控制技术融合了信息技术、工程技术,是多种技术的融合。

三、自动控制系统的基本组成及工作原理

反馈:系统的输出不断地,直接或间接地、全部或部分地返回,并作用于系统,其实质就是信息的传递与交互。

人工控制恒温箱调节过程:

1.观测恒温箱内的温度(被控制量)。

2.与要求的温度(给定值)进行比较,得到温度偏差的大小和方向。

3.根据偏差大小和方向调节调压器,控制加热电阻丝的电流以调节温度回复到要求值。

人工控制过程的实质:检测偏差再纠正偏差。

恒温箱自动控制系统工作原理:

1.恒温箱实际温度由热电偶转换为对应的电压u2

2.恒温箱期望温度由电压u1给定,并与实际温度u2比较得到温度偏差信号?u=u1-u2

3.温度偏差信号经电压、功率放大后,用以驱动执行电动机,并通过传动机构拖动调压器动触头。当温度偏高时,动触头向减小电流的方向运动,反之加大电流,直到温度达到给定值为止,此时,偏差 u=0,电机停止转动。

从恒温箱控制系统功能框图可见:

1.给定量位于系统输入端,称为系统输入量或参考输入量(信号)。

2.被控制量位于系统的输出端,称为系统输出量。

3.输出量(全部或一部分)通过测量装置返回系统的输入端,使之与输入量进行比较,产生偏差(给定信号与返回的输出信号之差)信号。输出量的返回过程称为反馈。返回的全部或部分输出信号称为反馈信号。

综上所述,控制系统的工作原理:

1.检测输出量(被控制量)的实际值

2.将输出量的实际值与给定值(输入量)进行比较得出偏差;

3.用偏差值产生控制调节作用去消除偏差,使得输出量维持期望的输出。

由于存在输出量反馈,上述系统能在存在无法预计扰动的情况下,自动减少系统的输出量与参考输入量(或者任意变化的希望的状态)之间的偏差,故称之为反馈控制。

显然:反馈控制建立在偏差基础上,其控制方式是“检测偏差再纠正偏差”。

这种基于反馈原理,能对输出量与参考输入量进行比较,并力图保持两者之间既定关系的系统。称为反馈控制系统。反馈控制系统具备测量、比较和执行三个基本功能。

注意:这种基于反馈原理,能对输出量与参考输入量进行比较,并力图保持两者之间既定关系的系统。称为反馈控制系统。反馈控制系统具备测量、比较和执行三个基本功能。

四、自动控制系统的分类及对控制系统的基本要求

1.开环控制与闭环控制

实际的控制系统根据有无反馈作用可分为三类:

a.开环控制系统

b.闭环控制系统

c.半闭环控制系统(反馈信号通过系统内部的中间信号获得。)

系统仅受输入量和扰动量控制;输出端和输入端之间不存在反馈回路;输出量在整个控制过程中对系统的控制不产生任何影响。

a. 开环控制系统

系统仅受输入量和扰动量控制;输出端和输入端之间不存在反馈回路;输出量在整个控制过程中对系统的控制不产生任何影响。

优点:简单、稳定、可靠。若组成系统的元件特性和参数值比较稳定,且外界干扰较小,开环控制能够保持一定的精度。

缺点:精度通常较低、无自动纠偏能力

b. 闭环控制系统

特点:输出端和输入端之间存在反馈回路,输出量对控制过程有直接影响。

闭环的作用:应用反馈,减少偏差。

优点:精度高,对外部扰动和系统参数变化不敏感。

缺点:存在稳定、振荡、超调等问题,系统性能分析和设计麻烦

闭环控制系统的组成

①给定元件:产生给定信号或输入信号。

②反馈元件:测量被控制量(输出量),产生反馈信号。为便于传输,反馈信号通常为电信号。

③比较元件:对给定信号和反馈信号进行比较,产生偏差信号。

④放大元件:对偏差信号进行放大,使之有足够的能量驱动执行元件实现控制功能。

⑤执行元件:直接对受控对象进行操纵的元件;如电动机、液压马达等;

⑥校正元件:用以改善系统控制质量的装置。

校正元件分为串联和并联两种。

控制系统中比较元件、放大元件、执行元件和反馈元件等共同起控制作用,统称为控制器。

实际的控制系统中,扰动总是不可避免的,扰动分为内部扰动和外部扰动,但在控制系统中,扰动集中表现在控制量与被控量的偏差上,因此,可以将控制系统的扰动等效为对控制对象的干扰。

c.半闭环控制系统

特点:反馈信号通过系统内部的中间信号获得。

如何选用开环控制或闭环控制?应当注意以下几个方面:

当系统的输入量能预先知道,并且不存在任何扰动时,采用开环控制比较合适。

当输出量难于测量,或者要测量输出量在经济上不允许时,采用开环系统比较合适。

从成本、功率的角度出发,为了减少系统所需要的成本、功率,在可能情况下应当采用开环控制。

将开环控制与闭环控制适当地结合在一起,通常比较经济,并且能够获得满意的综合性能。

2、输出变化规律分类

(1)恒值控制系统:系统输入量为恒定值。控制任务是保证在任何扰动作用下系统的输出量为恒值。

(2)程序控制系统:输入量的变化规律预先确知,输入装置根据输入的变化规律,发出控制指令,使被控对象按照指令程序的要求而运动。如数控加工系统。

(3)随动系统(伺服系统):输入量的变化规律不能预先确知,其控制要求是输出量迅速、平稳地跟随输入量的变化,并能排除各种干扰因素的影响,准确地复现输入信号的变化规律。如:仿形加工系统、火炮自动瞄准系统等。

3、按系统中传递信号的性质分类

(1)连续控制系统:系统中各部分传递的信号为随时间连续变化的信号。连续控制系统通常采用微分方程描述。

(2)离散(数字)控制系统:系统中某一处或多处的信号为脉冲序列或数字

量传递的系统。离散控制系统通常采用差分方程描述。

4、按线性和非线性分类

线性系统:由线性元件组成,输入输出问具有叠加性和均匀性性质,以线性微分方程来表述。

非线性系统:系统中有非线性元件,输入输出间不具有叠加性和均匀性性质。用非线性微分方程来表述。

5.按元件类型:

机械系统、电气系统、机电系统、液压系统、气动系统、生物系统等。

6.按系统功能:

温度、压力、位置、速度

7.按输入、输出信号的数目:

单输入-单输出系统与多输入-多输出系统

对控制系统的基本要求:

1、稳定性:系统动态过程的振荡倾向及其恢复平衡状态的能力。稳定的系统当输出量偏离平衡状态时,其输出能随时间的增长收敛并回到初始平衡状态。稳定性是控制系统正常工作的先决条件。

控制系统稳定性由系统结构所决定,与外界因素无关。稳定性由控制系统内部储能元件的能量不可能突变所产生的惯性滞后作用所导致。

稳定系统的动态过程

不稳定系统的动态过程

2、精确性:控制精度,以稳态误差来衡量。

稳态误差:系统的调整(过渡)过程结束而趋于稳定状态时,系统输出量的实际值与给定量之间的差值。

控制系统的稳态精度

3、快速性:输出量和输入量产生偏差时,系统消除这种偏差的快慢程度。快速性表征系统的动态性能。

控制系统的快速性

控制工程基础第三章参考答案

第三章 习题及答案 传递函数描述其特性,现在用温度计测量盛在容器内的水温。发现需要时间才能指示出实际水温的98%的数值,试问该温度计指示出实际水温从10%变化到90%所需的时间是多少? 解: 41min, =0.25min T T = 1111()=1-e 0.1, =ln 0.9t h t t T -=-T 21T 22()=0.9=1-e ln 0.1t h t t T -=-, 210.9 ln 2.20.55min 0.1 r t t t T T =-=== 2.已知某系统的微分方程为)(3)(2)(3)(t f t f t y t y +'=+'+'',初始条件2)0( , 1)0(='=--y y ,试求: ⑴系统的零输入响应y x (t ); ⑵激励f (t ) (t )时,系统的零状态响应y f (t )和全响应y (t ); ⑶激励f (t ) e 3t (t )时,系统的零状态响应y f (t )和全响应y (t )。 解:(1) 算子方程为:)()3()()2)(1(t f p t y p p +=++ ) ()e 2 5e 223()()()( ) ()e 2 1e 223()()()( )()e e 2()(2 112233)( )2(; 0 ,e 3e 4)( 34 221e e )( 2x 2222x 212 121221x t t y t y t y t t t h t y t t h p p p p p p H t t y A A A A A A A A t y t t t t t t f f t t t t εεεε------------+=+=+-==-=?+-+= +++= -=??? ?-==????--=+=?+=∴* ) ()e 4e 5()()()( )()e e ()(e )()( )3(2x 23t t y t y t y t t t h t y t t t t t f f εεε------=+=-==* 3.已知某系统的微分方程为)(3)(')(2)(' 3)(" t f t f t y t y t y +=++,当激励)(t f =)(e 4t t ε-时,系统

控制工程基础第3版课后题答案_清华大学出版

控制工程基础课后习题 清华大学出版社 亲抄而不思则殆奥 第一章 1-1 解:(1)B (2) B (3)B (4)A 1-2 解: 优点缺点 开环简单,不存在稳定性问题精度低,不抗干扰 闭环精度高,抗干扰复杂,设计不当易振荡 第二章 2-1 解: (1): F (S) L[( 4t) (t)] L[5 (t )] L[t 1(t)] L[2 1(t )] 0 5 1 2 S 2 S 5 1 2 S 2 S (2): F (S) 3s 2 2(s 5 25) s 1 e (3): F (S) 2 s 1 5t t (4): ) 1( )} F (S) L{[ 4 c os2(t )] 1(t e 6 6 s s 4Se 1 4Se 1 6 6

(5) : F (S) 0 0 6 2s 2s e e 6 S S (6): )] F (S) L[ 6 c os(3t 45 90 ) 1(t 4 L[ 6cos3(t ) 1(t )] 4 4 S 6Se 6Se 2 S 4 2 3 S 2 S 4 9 6t t t e 6 t t t (7): ( ) [ cos8 1( ) 0.25 sin 8 1( )] F S L e S 6 2 S 8 (S 6) 2 2 2 S 2 S 2 8 (S 6) 8 12 100 (8): F (S) 2 s 6 2 5 9e 2 s 2 s 20 (s 20) 9 2-2 解: 1 e e t 1 2 2t 3t (1): ) ( 2 ) 1( ) f (t) L ( S 2 S 3 1 (2): sin 2 1( ) f (t) t t 2 1 t (3): sin 2 ) 1( ) f (t) e (cos 2t t t 2 s e 1 e t 1 t (4): ) 1( 1) f (t) L ( S 1 t t 2t t (5): ( ) ( 2 2 ) 1( ) f t te e e

机械控制工程基础第五章练习习题及解答

题型:选择题 题目:关于系统稳定的说法错误的是【】 A.线性系统稳定性与输入无关 B.线性系统稳定性与系统初始状态无关 C.非线性系统稳定性与系统初始状态无关 D.非线性系统稳定性与系统初始状态有关 分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。 答案:C 习题二 题型:填空题 题目:判别系统稳定性的出发点是系统特征方程的根必须为或为具有负实部的复数,即系统的特征根必须全部在是系统稳定的充要条件。 分析与提示:判别系统稳定性的出发点是系统特征方程的根必须为负实数或为具有负实部的复数,即系统的特征根必须全部在复平面的左半平面是系统稳定的充要条件。 答案:负实数、复平面的左半平面 习题三 题型:选择题 题目:一个线性系统稳定与否取决于【】 A.系统的结构和参数 B.系统的输入 C.系统的干扰 D.系统的初始状态 分析与提示:线性系统稳定与否取决于系统本身的结构和参数。 答案:A 习题四 题型:填空题 题目:若系统在的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统是稳定的 分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统是稳定的;反之,若系统的零输入响应发散,则系统是不稳定的。 答案:初始状态 习题五 题型:填空题 题目:系统的稳定决定于的解。 分析与提示:系统的稳定决定于特征方程的解。 答案:特征方程

题型:填空题 题目:胡尔维兹(Hurwitz )判据、劳斯(Routh )判据又称为 判据。 分析与提示:胡尔维兹(Hurwitz )判据、劳斯(Routh )判据,又称为代数稳定性判据。 答案:代数稳定性 习题二 题型:填空题 题目:利用胡尔维兹判据,则系统稳定的充要条件为:特征方程的各项系数均为 ;各阶子行列式都 。 分析与提示:胡尔维兹判据系统稳定的充要条件为:特征方程的各项系数均为正;各阶子行列式都大于零。 答案:正、大于零 习题三 题型:计算题 题目:系统的特征方程为 010532234=++++s s s s 用胡尔维兹判据判别系统的稳定性。 分析与提示:利用胡尔维兹判据,其各阶系数均大于零,计算子行列式。 答案:(1)特征方程的各项系数为 10,5,3,1,201234=====a a a a a 均为正值。 (2) 0131>==?a 0714232 4 132<-=-== ?a a a a a a a a 不满足胡尔维兹行列式全部为正的条件,所以系统不稳定 习题四 题型:计算题 题目:单位反馈系统的开环传递函数为 ()()() 125.011.0++= s s s K s G 利用胡尔维兹判据求使系统稳定的K 值范围。 分析与提示:利用胡尔维兹判据,其各阶系数均大于零,计算子行列式,反求出K 的范围。 答案:系统的闭环特征方程为 ()()0125.011.0=+++K s s s

控制工程基础第三章参考答案(供参考)

第三章 习题及答案 传递函数描述其特性,现在用温度计测量盛在容器内的水温。发现需要时间才能指示出实际水温的98%的数值, 试问该温度计指示出实际水温从10%变化到90%所需的时间是多少? 解: 41min, =0.25min T T = 2.已知某系统的微分方程为)(3)(2)(3)(t f t f t y t y +'=+'+'',初始条件2)0( , 1)0(='=--y y ,试求: ⑴系统的零输入响应y x (t ); ⑵激励f (t ) (t )时,系统的零状态响应y f (t )和全响应y (t ); ⑶激励f (t ) e 3t (t )时,系统的零状态响应y f (t )和全响应y (t )。 解:(1) 算子方程为:)()3()()2)(1(t f p t y p p +=++ 3.已知某系统的微分方程为)(3)(')(2)(' 3)(" t f t f t y t y t y +=++,当激励)(t f =)(e 4t t ε-时,系统的全响应)()e 6 1e 27e 314()(42t t y t t t ε-----=。试求零输入响应y x (t )与零状态响应y f (t )、自由响应与强迫响应、暂态响应与稳态响应。 解: 4. 设系统特征方程为:0310126234=++++s s s s 。试用劳斯-赫尔维茨稳定判据判别该系统的 稳定性。 解:用劳斯-赫尔维茨稳定判据判别,a 4=1,a 3=6,a 2=12,a 1=10,a 0=3均大于零,且有 所以,此系统是稳定的。 5. 试确定下图所示系统的稳定性. 解:210 110(1)(1)(). ()210(21) 1(1) s s s s a G s s s s s s s +++=?=?+++ 系统稳定。 满足必要条件,故系统稳定。 6.已知单位反馈系统的开环传递函数为) 12.001.0()(2++= s s s K s G ξ,试求系统稳定时,参数K 和ξ的取值关系。 解:2()(0.010.21)0D s s s s k ξ=+++=

控制工程基础第4章习题解答

若系统输入为不同频率ω的正弦函数t A ωsin ,其稳态输出相应为)sin(?ω+t B ,求该系统的频率特性 解:由频率特性的定义有:? ωj e A B j G =)((P119) ---------------------------------------------------------------------------------------------------------------------- 试求下列系统的幅频特性)(ωA 、相频特性)(ω?、实频特性)(ωu 、虚频特性)(ωv (P120, 121) 1 305 )(+= s s G 解:1 305 1305)(+= += ωωωj s j G j )(ωA = 1 90051 3052 += +ωωj )(ω?=1 30arctan )130()5(1 305 ω ωω-=+∠-∠=+∠ j j )(ωj G 可以展开为实部与虚部的形式,即:1 90015051305 )(2+-= += ωω ωωj j j G 所以,实频特性)(ωu = 1 90052 +ω 虚频特性)(ωv =1 9001502+-ωω ---------------------------------------------------------------------------------------------------------------------- 设系统的闭环传递函数为:1 ) 1()(12++=s T s T K s G B ,当输入信号为t R t x i ωsin )(=,试求该系 统的稳态输出。 解:系统的频率特性函数为: ()()) () arctan (arctan 21221212)() 1()1(1 )1(1 )1()(12ωωωω ωωωωωωj G j B T T j j B B e j G e T T K j T j T K s T s T K j G ∠-?=?++= ++= ++= 系统的对于特定频率的输入信号,其稳态输出为:(P118) )](sin[)()(ωωωj G t j G X t x B B i oss ∠+??= 因此,对于该系统,有: ()())]arctan (arctan sin[) 1()1()(122 122ωωωωωT T t T T K R t x oss -+?++?=

控制工程基础程第四章习题答案

2007机械工程控制基础第四章习题答案 第4章 频率特性分析 4.1什么是系统的频率特性? 答:对于线性系统,若输入为谐波函数,则其稳态输出一定是同频率的谐波函数,将输出的幅值与输入的幅值之比定义为系统的幅频特性,将输出的相位之差定义为系统的相频特性。系统的幅频特性和相频特性简称为系统的频率特性。 4.4若系统输入为不同频率ω的正弦t A ωsin ,其稳态输出相应为)sin(?ω+t B 。求该系统的频率特性。 解:由系统频率特性的定义知:?ωj e A B j G = )( 4.5已知系统的单位阶跃响应为)0(8.08.11)(94≥+-=--t e e t x t t o ,试求系统的幅频特性与 相频特性。 解:由已知条件得:s s X i 1)(=,9 8 .048.11)(+++-=s s s s X o 得系统传函为:) 9)(4(36)()()(++== s s s X s X s G i o 得系统频率特性:) 9)(4(36 )(ωωωj j j G ++= ,其中 幅频特性为:2 2 811636 )()(ω ωωω+?+= =j G A 相频特性为:9 arctan 4 arctan )(ω ω ω?--=4.6由质量、弹簧、阻尼组成的机械系统如图(4.6)所示。已知m=1kg ,k 为弹簧刚度,c 为阻尼系数。若外力tN t f 2sin 2)(=,由实验得到系统稳态响应为)2 2sin(π -=t x oss 。试确定k 和c 。 解:由系统结构知系统的动力学方程为: 当m=1时,得系统传函为: k cs s s G ++= 2 1 )(,得系统频率特性为: ω ωωjc k j G +-= 21 )(。 图(题4.6)

机械控制工程基础第三章 复习题及答案

题目:时间响应由和两部分组成。 分析与提示:时间响应由瞬态响应和稳态响应两部分组成。 答案:瞬态响应、稳态响应 题目:系统的输出量从初始状态到稳定状态的响应过程,称为。 分析与提示:瞬态响应,指系统在某一输入信号作用下,系统的输出量从初始状态到稳定状态的响应过程。 答案:瞬态响应 题目:系统的时间响应可从两方面分类,按振动性质可分为与。 分析与提示:系统的时间响应可从两方面分类,按振动性质可分为自由响应与强迫响应。 答案:自由响应、强迫响应 题目:系统的时间响应可从两方面分类,按振动来源可分为与。 分析与提示:系统的时间响应可从两方面分类,按振动性质可分为自由响应与强迫响应;按振动来源可分为零输入响应(即由“无输入时系统的初态”引起的自由响应)与零状态响应(即仅由输入引起的响应)。 答案:零输入响应、零状态响应 题目:系统微分方程的特解就是系统由输入引起的输出(响应),工程上称为。 分析与提示:初始条件及输入信号产生的时间响应就是微分方程的全解。包含通解和特解两个部分。通解完全由初始条件引起的,它是一个瞬态过程,工程上称为自然响应 (如机械振动中的自由振动)。特解只由输入决定,特解就是系统由输入引起的输出(响应),工程上称为强迫响应 (如机械振动中的强迫振动)。 答案:强迫响应 题目:系统的瞬态响应不仅取决于系统本身的特性,还与外加的形式有关。 分析与提示:系统的瞬态响应不仅取决于系统本身的特性,还与外加输入信号的形式有关。 答案:输入信号 题目:单位阶跃信号???<>=000t t t u 1)(的拉氏变换为【 】 A 、 s 1 B 、21 s C 、1 D 、s 分析与提示:熟练掌握典型信号的拉氏变换。B 为单位斜坡信号的拉氏变换,C 为单位冲击信号的拉是变换。 答案:A 题目:选取输入信号应当考虑以下几个方面,输入信号应当具有,能够反映系统工作的大部分实际情况。 分析与提示:选取输入信号应当考虑以下几个方面,输入信号应当具有典型性,能够反映系统工作的大部分实际情况。 答案:典型性 题目:选取输入信号时,输入信号的形式应当尽可能。 分析与提示:选取输入信号时,输入信号的形式应当尽可能简单。 答案:简单 题目:是使用得最为广泛的常用输入信号。 分析与提示:单位脉冲函数、单位阶跃函数、单位斜坡函数、单位抛物线函数 都为常用输入信号时,单位脉冲函数是使用得最为广泛的常用输入信号。 答案:单位脉冲函数 题目:设一阶系统的传递函数为 5 23 +s ,则其时间常数和增益分别是【】 A . 2,3 B .2,3/2 C . 2/5,3/5 D . 5/2,3/2

(完整版)控制工程基础(第一章)

辽宁科技学院教案 课程名称:控制工程基础 任课教师:杨光 开课系部:机械学院 开课教研室:机制 开课学期:2012~2013学年度第1学期

教学内容备注 一、机械工程控制论的研究对象与任务 机械工程控制论研究机械工程中广义系统的动力学问题。 1、系统(广义系统):按一定的规律联系在一起的元素的集合。 2、动力学问题:系统在外界作用(输入或激励、包括外加控制与外界干扰) 下,从一定初始状态出发,经历由其内部的固有特性(由系统的结构与参数所 决定)所决定的动态历程(输出或响应)。这一过程中,系统及其输入、输出三 者之间的动态关系即为系统的动力学问题。 上式中y(t)为微分方程的解,显然它是由系统的初始条件,系统的固有特性,系统的输入及系统与输入之间的关系决定。 对上例,需要研究的问题可归纳为以下三类:

二、控制理论的发展与应用 控制理论是研究自动控制共同规律的技术科学。从1868年马克斯威尔(J.C.Maxwell)提出低阶系统稳定性判据至今一百多年里,自动控制理论的发展可分为四个主要阶段: 第一阶段:经典控制理论(或古典控制理论)的产生、发展和成熟; 第二阶段:现代控制理论的兴起和发展; 第三阶段:大系统控制兴起和发展阶段; 第四阶段:智能控制发展阶段。 经典控制理论: 控制理论的发展初期,是以反馈理论为基础的自动调节原理,主要用于工业控制。第二次世界大战期间,为了设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统等基于反馈原理的军用装备,进一步促进和完善了自动控制理论的发展。 ?1868年,马克斯威尔(J.C.Maxwell)提出了低阶系统的稳定性代数判据。 ?1895年,数学家劳斯(Routh)和赫尔威茨(Hurwitz)分别独立地提出了高阶系统的稳定性判据,即Routh和Hurwitz判据。 ?二战期间(1938-1945年)奈奎斯特(H.Nyquist)提出了频率响应理论 1948年,伊万斯(W.R.Evans)提出了根轨迹法。至此,控制理论发展的第一阶段基本完成,形成了以频率法和根轨迹法为主要方法的经典控制理论。 经典控制理论的基本特征: (1)主要用于线性定常系统的研究,即用于常系数线性微分方程描述的系统的分析与综合; (2)只用于单输入,单输出的反馈控制系统; (3)只讨论系统输入与输出之间的关系,而忽视系统的内部状态,是一种对系统的外部描述方法。 现代控制理论: 由于经典控制理论只适用于单输入、单输出的线性定常系统,只注重系统的外部描述而忽视系统的内部状态。因而在实际应用中有很大局限性。 随着航天事业和计算机的发展,20世纪60年代初,在经典控制理论的基础上,以线性代数理论和状态空间分析法为基础的现代控制理论迅速发展起来。 1954年贝尔曼(R.Belman)提出动态规划理论 1956年庞特里雅金(L.S.Pontryagin)提出极大值原理 1960年卡尔曼(R.K.Kalman)提出多变量最优控制和最优滤波理论 在数学工具、理论基础和研究方法上不仅能提供系统的外部信息(输出量和输入量),而且还能提供系统内部状态变量的信息。它无论对线性系统或非线性系统,定常系统或时变系统,单变量系统或多变量系统,都是一种有效的分析方法。 当今世界,控制技术无处不在,世界随处可见控制与反控制。 控制技术融合了信息技术、工程技术,是多种技术的融合。

机械控制工程基础第五章 练习习题及 解答

习题一 题型:选择题 题目:关于系统稳定的说法错误的就是【】 A.线性系统稳定性与输入无关 B.线性系统稳定性与系统初始状态无关 C.非线性系统稳定性与系统初始状态无关 D.非线性系统稳定性与系统初始状态有关 分析与提示:线性系统稳定性与输入无关;非线性系统稳定性与系统初始状态有关。 答案:C 习题二 题型:填空题 题目:判别系统稳定性的出发点就是系统特征方程的根必须为或为具有负实部的复数,即系统的特征根必须全部在就是系统稳定的充要条件。 分析与提示:判别系统稳定性的出发点就是系统特征方程的根必须为负实数或为具有负实部的复数,即系统的特征根必须全部在复平面的左半平面就是系统稳定的充要条件。 答案:负实数、复平面的左半平面 习题三 题型:选择题 题目:一个线性系统稳定与否取决于【】 A.系统的结构与参数 B.系统的输入 C.系统的干扰 D.系统的初始状态 分析与提示:线性系统稳定与否取决于系统本身的结构与参数。 答案:A 习题四 题型:填空题 题目:若系统在的影响下,响应随着时间的推移,逐渐衰减并回到平衡位置,则称该系统就是稳定的 分析与提示:若系统在初始状态的影响下(零输入),响应随着时间的推移,逐渐衰减并趋向于零(回到平衡位置),则称该系统就是稳定的;反之,若系统的零输入响应发散,则系统就是不稳定的。 答案:初始状态 习题五 题型:填空题 题目:系统的稳定决定于的解。 分析与提示:系统的稳定决定于特征方程的解。 答案:特征方程 习题一 题型:填空题 题目:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据又称为判据。 分析与提示:胡尔维兹(Hurwitz)判据、劳斯(Routh)判据,又称为代数稳定性判据。 答案:代数稳定性 习题二

控制工程基础考卷带答案复习资料

控制工程基础考卷带答案复习资料

一、填空题:(每空1分,共20分) 1.对控制系统的基本要求一般可归结为_________稳定性,准确性,快速性____、____________、___________。 2.自动控制系统对输入信号的响应,一般都包含两个分量,即一个是瞬态响应分量,另一个是____________响应分量。 3.在闭环控制系统中,通过检测元件将输出量转变成与给定信号进行比较的信号,这个信号称为_________________。 4.若前向通道的传递函数为G(s),反馈通道的传递函数为H(s),则闭环传递函数为__________________ 。 5 函数f(t)=的拉氏变换式是 _________________ 。 6 开环对数频率特性的低频段﹑ 中频段﹑ 高频段分别表征了系统的 稳定性,动态特性,抗干扰能力 ﹑ ﹑ 。 7.Bode 图中对数相频特性图上的-180°线对应于奈奎斯特图中的___________。 8.已知单位反馈系统的开环传递函数为: 20 ()(0.51)(0.041) G s s s = ++求出系统在单位阶跃输入时的稳 态误差为 。 9.闭环系统稳定的充要条件是所有的闭环极点 t e 63-

均位于s 平面的______半平面。 10.设单位反馈控制系统的开环传递函数为 10()1 G s s = +,当系统作用有x i (t ) = 2cos(2t - 45?)输入 信号时,求系统的稳态输出为_____________________。 11.已知传递函数为2 ()k G s s =,则其对数幅频特性 L (ω)在零分贝点处的频率数值为_________ 。 12 在系统开环对数频率特性曲线上,低频段部分主要由 环节和 决定。 13.惯性环节的传递函数11+Ts ,它的幅频特性的数学式是__________,它的相频特性的数学式是____________________。 14.已知系统的单位阶跃响应为()1t t o x t te e --=+-,则 系统的脉冲脉冲响应为__________。 一、填空题 (每空1分,共20分): 1 稳定性,准确性,快速性;2 稳态;3 反馈; 4 ) ()(1) (s H s G s G ±;5 3 ()6 F s s = + 6 稳定性,动态特性,抗干扰能力; 7 负实轴; 8 1 21 9 右半平面; 10

机械控制工程基础第四章习题解答

题目:线性定常系统对正弦信号(谐波输入)的 称为频率响应。 答案:稳态响应 题目:频率响应是系统对_____________的稳态响应;频率特性G(jω)与传递函数G(s)的关系为____________。 答案:正弦输入、s=ωj 题目:以下关于频率特性、传递函数和单位脉冲响应函数的说法错误的是【 】 A . ω ωj s s G j G ==)()( B . [])()(t F s G ω= C . [])()(t L s G ω= D . [])()(t F j G ωω= 分析与提示:令传递函数中ωj s =即得频率特性;单位脉冲响应函数的拉氏变换即得 传递函数;单位脉冲响应函数的傅立叶变换即为频率特性。 答案:B 题目:以下说法正确的有 【 】 A .时间响应只能分析系统瞬态特性 B .系统的频率特性包括幅频特性和相频特性,它们都是频率ω的函数 C .时间响应和频率特性都能揭示系统动态特性 D .频率特性没有量纲 E .频率特性反映系统或环节对不同频率正弦输入信号的放大倍数和相移 分析与提示:时间响应可分析系统瞬态特性和稳态性能;频率特性有量纲也可以没有量纲,其量纲为输出信号和输入信号量纲之比。 答案:B 、C 、E 题目:通常将 和 统称为频率特性。 答案:幅频特性、相频特性 题目:系统的频率特性是系统 响应函数的 变换。 答案:脉冲、傅氏 题目:频率响应是系统对_____________的稳态响应;频率特性G(jω)与传递函数G(s)的关系为____________。 答案:正弦输入、s=ωj 题目:已知系统的单位阶跃响应为()()0,8.08.1194≥+-=--t e e t x t t o ,试求系统的幅 频特性和相频特性。 分析与提示:首先由系统的输入输出得到系统传递函数;令s=ωj 即可得到频率特性,进而得到幅频特性和相频特性。 答案:由已知条件有 ()()9 18.0418.11, 1 +++-= =s s s s X s s X o i 传递函数为 ()()()()() 9436++== s s s X s X s G i o 则系统的频率特性为 ()()() 9436 ++= ωωωj j j G

控制工程基础第3版课后题答案-清华大学出版

控制工程基础课后习题 清华大学出版社 亲 抄而不思则殆奥 第一章 1-1 解:(1)B (2) B (3)B (4)A 1-2 解: 第二章 2-1 解: (1): )](12[)](1[)](5[)]()4[()(t L t t L t L t t L S F ?+?++=δδ S S S S 215215022++=++ += (2): ) 25(253)(2++=s s S F (3): 11)(2++=-s e S F s π (4): )}(1)6(1)]6(2cos 4{[)(5t e t t L S F t ?+-?- =-ππ 5144512 426226+++=+++=--S s Se S s Se s s π π (5): S e S e S F s s 226600)(--+=+++=

(6): )]4(1)90453cos(6[)(π- ?--=t t L S F 9 636)]4(1)4(3cos 6[24224+=+=-?-=--S Se S Se t t L S S ππππ (7): )](18sin 25.0)(18cos [)(66t t e t t e L S F t t ?+?=-- 100 1288)6(28)6(622222+++=++++++=S S S S S S (8): 99)20(52022)(262++++++ =-s e s s S F s π 2-2 解: (1): )(1)2()3 221()(321t e e S S L t f t t ?+-=+++-=--- (2): )(12sin 2 1)(t t t f ?= (3): )(1)2sin 2 12(cos )(t t t e t f t ?+= (4): )1(1)1()(11 -?=-=---t e S e L t f t s (5): )(1)22()(2t e e te t f t t t ?-+-=--- (6): )(1215sin 15158))2 15()21(21515158()(2221t t e S L t f t ?=++?=-- (7): )(1)3sin 3 13(cos )(t t t t f ?+= 2-3 解: (1) 对原方程取拉氏变换,得: S S X x S SX x Sx S X S 1)(8)]0()([6)0()0()(2=+-+--?? 将初始条件代入,得: 61)()86(1)(86)(6)(22++=++= +-+-S S S X S S S S X S SX S S X S

机械控制工程基础习题集_第5章

第5章 系统的稳定性 一、填空题 1.稳定系统其自由运动模态随时间增加而逐渐(消失) 2.对于二阶系统,加大增益将使系统的(稳定性)变差。 3.若闭环系统的特征式与开环传递函数)()(s H s G 的关系为)()(1)(s H s G s F +=,则 )(s F 的零点就是(系统闭环极点) 。 4.Ⅰ型系统跟踪阶跃信号的稳态误差为(0)。 5.线性定常系统的偏差信号就是误差信号的条件为(反馈传递函数H(s)=1)。 6.控制系统含有的积分个数多,开环放大倍数大,则系统的(稳态性能)愈好。 7.降低系统的增益将使系统的稳态精度(变差)。 8.闭环系统稳定的充分必要条件是其开环极坐标曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的(开环极点)数。 9.统在前向通路中含有积分环节将使系统的稳定性严重(变差)。 10.系统开环频率特性的相位裕量愈大,则系统的(稳定性)愈好。 11.控制系统的误差是期望输出与(实际输出)之差。 12.降低系统的增益将使系统的(快速性或稳态性)变差。 三、名词解释题 1.穿越:是开环极坐标曲线穿过实轴上(-∞,-1)的区间。 2.相位裕度:在系统的开环幅频特性等于1时,其相应的相频特性距离-180°的相位差。或:极坐标曲线在幅值穿越频率处的相頻特性距离-180°的相位差。 3.幅值裕度:相頻穿越频率处开环幅频特性的倒数。 4.劳斯判据:利用系统闭环特征方程的系数建立劳斯系数表,根据劳斯表中第1列系数的符号变化判断系统稳定性即:劳斯表中第1列系数无符号变化则系统处于稳定状态,否则系统处于临界稳定或不稳定状态。 5.奈奎斯特稳定判据:闭环系统稳定的充分必要条件是其开环极坐标频率特性曲线逆时针围绕点(-1,j0)的圈数等于落在S 平面右半平面的开环极点数。 四、简答题 1.简述闭环特征函数的特点。 答:1)特征函数的零点就是系统的闭环极点;2)特征函数的极点就是系统的开环极点; 3)特征函数的分子和分母的阶次相同;4)特征函数与系统开环传递函数只差常数1。 2.简述积分、微分及惯性环节对最小相位系统稳定性的影响。

控制工程基础考试试题

清华大学本科生考试试题专用纸 考试课程控制工程基础(A卷) 2006 年 6月 14日1. 设有一个系统如图1所示,k1=1000N/m, k2=2000N/m, D=10N/(m/s),当系统受到输入信号的作用时,试求系统的稳态输出。(15分) 图1 2. 设一单位反馈系统的开环传递函数为 现有三种串联校正装置,均为最小相位的,它们的对数幅频特性渐近线如图2所示。 若要使系统的稳态误差不变,而减小超调量,加快系统的动态响应速度,应选取哪种校正装置?系统的相角裕量约增加多少?(10分)

(a) (b) (c) 图2 3. 对任意二阶环节进行校正,如图3,如果使用PD控制器,K P, K D均为实数,是否可以实现闭环极点的任意配置?试证明之。(15分) 图3 4. 一个未知传递函数的被控系统,先未经校正,构成单位反馈闭环。经过测试,得知闭环系统的单位阶跃响应如图4所示。 是多少?(5分) 问:(1) 系统的开环低频增益K (2) 如果用主导极点的概念用低阶系统近似该系统,试写出其近似闭环传递函数;(5分) (3)如果采用PI形式的串联校正,K 在什么范围内时,对原 I 开环系统相位裕量的改变约在之间?(5分)

图4 5.已知计算机控制系统如图所示,采用数字比例控制,其中K>0。设采样周期T=1s 图5 (1)试求系统的闭环脉冲传递函数; (5分) (2)试判断系统稳定的K值范围; (5分) (3)当系统干扰时,试求系统由干扰引起的稳态误差。 (5分) 6.针对本学期直流电动机位置伺服系统教学实验,基本原理图见图6,其中,电枢控制式直流电动机电枢电阻为1.7Ω,电感为3.7mH,反电势系数Ce为0.2 13V/(rad/s),力矩系数Cm为0.213Nm/A,等效到电动机轴上的总转动惯量为3 92×10-6Nms2,设R =470KΩ,α=0.9,速度调节器传递函数为6,电流调节器传递 2

控制工程基础第5章习题解答

5.7 系统的传递函数方框图如图所示,已知25.0,1.021==T T , 试求: (1)系统稳定时K 值的取值范围; 解: 由题意可以写出系统的闭环传递函数为: ()()()()K s s T T s T T K s T s T s K s T s T s K s G B ++++=+++++=2213212121)(11111)( 系统的特征方程为:0)(221321=++++K s s T T s T T 即:04040141)(232 121221213=+++=++++K s s s T T K s T T s T T T T s 由特征方程写出 根据Routh 判据,系统闭环稳定的充要条件为: ? ??>>-040040560K K 即: 014>>K 5.9试根据下面开环频率特性,使用Nyquist 判据分析相应的闭环系统的稳定性 ()()1 10110)(++=ωωωωj j j j G K 解:使用Nyquist 判据要求画出开环频率特性)(ωj G K 的Nyquist 轨迹 )(ωj G K 的幅频特性函数与虚频特性函数分别为:

)1100()1(10 )(22++=ωωωωj G K 1 10arctan 1arctan 20)(ωωπω--- =∠j G K 将)(ωj G K 表示成下式: )1100)(1() 10100(110)1100)(1(10 )101)(1()(22222++-+-=++?--?-=ωωωωωωωωωωωj j j j j G K 可得其实频特性函数与虚频特性函数分别为: )1100)(1(110)}(Re{22++-=ωωωω ωj G K )1100)(1() 10100()}(Im{222++-=ωωωωωj G K 考虑ω的几个特殊值 当0=ω: ∞=)(ωj G 2 )(πω-=∠j G 当∞=ω: 0)(=ωj G πω2 3)(-=∠j G 由于当ω从0变化至∞,)(ωj G ∠从2π-变化至2 3π-,因此该系统的Nyquist 轨迹必然从复平面的第三象限移动至第二象限,也即轨迹必然与负实轴相交。 令0)1100)(1()10100()}(Im{222=++-= ωωωωωj G K ,即101=ω 此时: 9) 110)(11.0(110)1100)(1(110)}(Re{22-≈++-=++-=ωωωω ωj G K 即Nyquist 轨迹与负实轴相交点为(-9,j0) 由此可以做出)(ωj G K 的Nyquist 轨迹图,如下:

《控制工程基础》第三章习题解题过程及答案

3-1 已知某单位反馈系统的开环传递函数为1 )(+=Ts K s G k ,试求其单位阶跃响应。 解法一,采用拉氏反变换: 系统闭环传递函数为:()()()()1()1k k G s C s K s R s G s Ts K Φ=== +++ 输入为单位阶跃,即:1()R s s = 故:1()()()1 1K A B C s s R s K Ts K s s s T =Φ= ?=+ ++++ 可由待定系数法求得:,11 K K A B K K ==-++ 所以,1111 ()()111K K K K K C s K K s K s s s T T ++=-=-+++++ 对上式求拉氏反变换: 1 ()(1)1 k t T K c t e K +-=-+ 解法二,套用典型一阶系统结论: 由式(3-15),已知典型一阶系统为:()1 ()()1 C s s R s Ts Φ= =+ 由式(3-16),其单位阶跃响应为:1()1t T c t e -=- 若一阶系统为()()()1 C s K s R s Ts Φ==+,则其单位阶跃响应为:1()(1)t T c t K e -=- 现本系统闭环传递函数为:()()(1)()()1()1(1)11 k k G s C s K K K K s R s G s Ts K Ts K T s ' +Φ===== '++++++ 其中,,11 T K T K K K ''= =++ 所以,1 1()(1)(1)1 k t t T T K c t K e e K +--' '=-=-+ 采用解法二,概念明确且解题效率高,计算快捷且不易出错,应予提倡。 3-2 设某温度计可用一阶系统表示其特性,现在用温度计测量容器中的水温,当它插入恒温水中一分钟时,显示了该温度的98%,试求其时间常数。又若给容器加热,水温由0℃按10℃/min 规律上升,求该温度计的测量误差。 解: (1)由题意知,误差为2%,因此调节时间:41min s t T ==,即时间常数T : 1 0.25min 15sec 4 s T t ===

控制工程基础---第四章传递函数

第四章传递函数 第一节传递函数 一、定义:系统初始状态为零,系统输出与输入的拉氏变换之比。 ) () ()]([)]([)()()()(s R s Y t r L t y L s G s G t y t r = =,则为,系统传递函数 、系统输入、输出分别为 二、求法: 1、由微分方程求取。 若系统的微分方程为 ) ()()()()()()()(01) 1(1) (01) 1(1)(t x b t x b t x b t x b t y a t y a t y a t y a m m m m n n n n +'+++=+'+++---- 对微分方程的两端求拉氏变换 11 1011 1011 1011 1011 1011 1)() ()() ()() ()() ()()()()()()()(a s a s a s a b s b s b s b s X s Y s G s X b s b s b s b s Y a s a s a s a s X b s sX b s X s b s X s b s Y a s sY a s Y s a s Y s a n n n n m m m m m m m m n n n n m m m m n n n n +++++++==+++=++++++++=++++------------

例1:系统微分方程为)()() ()(2 2t f t kx dt t dx c dt t x d m =++,求系统的传递函数。 解:由给定的微分方程, k cs m s s F s X s G s F s X k cs m s s F s kX s csX s X m s t f t kx dt t dx c dt t x d m ++= ==++=++=++2222 21 )()()()()()()()()()()()() ()( 例2:求R-C 电路的传递函数。 解: 1 1 )()()()1()()()(00000+= =+=+=+Rcs s G s U s U Rcs s U s U s RcsU u u dt du Rc i i i 三、性质 1、系统的传递函数取决于系统的本身,与系统的输入、输出及其它外界因素无关。 2、对于实际的物理系统,m n ≥ 四、概念 1、零点、极点: 零点:系统传递函数分子s 多项式为零的根。 极点:系统传递函数分母s 多项式为零的根。 2、传递系数: 值定义为传递系数)0(G 。 3、特征方程:传递函数分母s 多项式。 4、阶:系统特征方程s 的最高指数。 例3、以例1、例2的结果为例。 第二节典型环节及其传递函数

控制工程基础_课后答案

控制工程基础习题解答 第一章 1-5.图1-10为张力控制系统。当送料速度在短时间内突然变化时,试说明该控制系统的作用情况。画出该控制系统的框图。 由图可知,通过张紧轮将张力转为角位移,通过测量角位移即可获得当前张力的大小。 当送料速度发生变化时,使系统张力发生改变,角位移相应变化,通过测量元件获得当前实际的角位移,和标准张力时角位移的给定值进行比较,得到它们的偏差。根据偏差的大小调节电动机的转速,使偏差减小达到张力控制的目的。 框图如图所示。 1-8.图1-13为自动防空火力随动控制系统示意图及原理图。试说明该控制系统的作用情况。 题1-5 框图 电动机 给定值 角位移 误差 张力 - 转速 位移 张紧轮 滚轮 输送带 转速 测量轮 测量元件 角位移 角位移 (电压等) 放大 电压 测量 元件 > 电动机 角位移 给定值 电动机 图1-10 题1-5图

该系统由两个自动控制系统串联而成:跟踪控制系统和瞄准控制系统,由跟踪控制系统 获得目标的方位角和仰角,经过计算机进行弹道计算后给出火炮瞄准命令作为瞄准系统的给定值,瞄准系统控制火炮的水平旋转和垂直旋转实现瞄准。 跟踪控制系统根据敏感元件的输出获得对目标的跟踪误差,由此调整视线方向,保持敏感元件的最大输出,使视线始终对准目标,实现自动跟踪的功能。 瞄准系统分别由仰角伺服控制系统和方向角伺服控制系统并联组成,根据计算机给出的火炮瞄准命令,和仰角测量装置或水平方向角测量装置获得的火炮实际方位角比较,获得瞄准误差,通过定位伺服机构调整火炮瞄准的角度,实现火炮自动瞄准的功能。 控制工程基础习题解答 第二章 2-2.试求下列函数的拉氏变换,假定当t<0时,f(t)=0。 (3). ()t e t f t 10cos 5.0-= 解:()[][ ] ()100 5.05 .010cos 2 5.0+++= =-s s t e L t f L t (5). ()?? ? ? ?+ =35sin πt t f 图1-13 题1-8图 敏感 元件 定位伺服机构 (方位和仰角) 计算机指挥仪 目标 方向 跟踪环路 跟踪 误差 瞄准环路 火炮方向 火炮瞄准 命令 - - 视线 瞄准 误差 伺服机构(控制绕垂直轴转动) 伺服机构(控制仰角) 视线 敏感元件 计算机 指挥仪

控制工程基础123章答案

第一章绪论 内容提要 一、基本概念 1.控制:由人或用控制装置使受控对象按照一定目的来动作所进行的操作。 2.输入信号:人为给定的,又称给定量。 3.输出信号:就是被控制量。它表征对象或过程的状态和性能。 4.反馈信号:从输出端或中间环节引出来并直接或经过变换以后传输到输入端比较元件中去的信号,或者是从输出端引出来并直接或经过变换以后传输到中间环节比较元件中去的信号。 5.偏差信号:比较元件的输出,等于输入信号与主反馈信号之差。 6.误差信号:输出信号的期望值与实际值之差。 7.扰动信号:来自系统内部或外部的、干扰和破坏系统具有预定性能和预定输出的信号。 二、控制的基本方式 1.开环控制:系统的输出量对系统无控制作用,或者说系统中无反馈回路的系统,称为开环控制系统。 2.闭环控制:系统的输出量对系统有控制作用,或者说系统中存在反馈回路的系统,称为闭环控制系统。 三、反馈控制系统的基本组成 1.给定元件:用于给出输入信号的环节,以确定被控对象的目标值(或称给定值)。 页脚内容1

2.测量元件:用于检测被控量,通常出现在反馈回路中。 3.比较元件:用于把测量元件检测到的实际输出值经过变换与给定元件给出的输入值进行比较,求出它们之间的偏差。 4.放大元件:用于将比较元件给出的偏差信号进行放大,以足够的功率来推动执行元件去控制被控对象。 5.执行元件:用于直接驱动被控对象,使被控量发生变化。 6.校正元件:亦称补偿元件,它是在系统基本结构基础上附加的元部件,其参数可灵活调整,以改善系统的性能。 四、控制系统的分类 (一)按给定信号的特征分类 1. 恒值控制系统 2. 随动控制系统 3. 程序控制系统 (二)按系统的数学描述分类 1. 线性系统 2. 非线性系统 (三)按系统传递信号的性质分类 1. 连续系统 页脚内容2

相关主题
文本预览
相关文档 最新文档