当前位置:文档之家› 矩阵的秩与向量组的最大无关组

矩阵的秩与向量组的最大无关组

矩阵的秩与向量组的最大无关组
矩阵的秩与向量组的最大无关组

矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。 “矩阵的秩与向量组的秩一致。矩阵的秩就是其行(或列)向量组的秩。”怎样证明?就当做习题练一练。 设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0 逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。 分析这是格莱姆法则推论,带来的直接判别方法。 (画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0) 逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系? 逻辑2——(“线性无关,延长无关。”定理)—— 已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。 分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k

若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0 ,如何证明“这组常数只能全为0”? 每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。前n 个等式即 c1 a1+ c2a2+ ---+ c k a k = 0 由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。 逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。 (潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。) 逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗? 唯一信息——A的所有r + 1阶子式全为0 分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。(画外音:画个示意图最好。)

矩阵的最大秩分解

矩阵的最大秩分解及其应用 黄爱梅(01数本26号) 摘要:本文给出矩阵m n C ?∈A 分解为两个与A 同秩的因子的积的具体方法,并讨论它的一些 相关应用。 关键词:满秩分解、列满秩、行满秩、初等变换 正文: 定理1:设m n r A C ?∈,则存在矩阵m r r B C ?∈,使得A BC =。 证:设()1112,A A A P =,其中11m r r A C ?∈,它由A 的r 个线性无关列组成,12A 为的其余n r -列所组成的矩阵。n n n P C ?∈为初等列变换矩阵之积。由于12A 的列均为11A 的列的线 性组合,故存在矩阵() r n r D C ?-∈,使得 1211A A D = 于是()()111111,,r A A A D P A I D P == 令()11,,r B A C I D P == 显然有m r r B C ?∈,r n r C C ?∈且A BC =。 矩阵的这种分解,称为最大秩分解(满秩分解) 定理的证明过程给出求B 、C 的方法,可归纳如下: 将A 进行初等变换,化为行标准型,即将A 变为如下形式的矩阵。 001**0**0**000001** 0**0001**000 0A ?? ?????? ?? ?? =?? ?? ?? ???? ???? r 个元素不全为零的行 其中“*”表示不一定为0的元素,在r A 中第个元素为1 外,其余的无素均为0(j r ∈)。于是A 中12,,,r k k k 列的元素组成的阶矩阵就是B 。而在r A 中除去下面的n r -个元素全为0行的外,所得的阶矩阵即为C 。

1求下列向量组的秩与一个极大线性无关组

习题4.3 1.求下列向量组的秩与一个极大线性无关组: (1) []12,1,3,1T α=-, []23,1,2,0T α=-, []31,3,4,2T α=-,[]44,3,1,1T α=-. (2) []11,1,1,1T α=, []21,1,1,1T α=--, []31,1,1,1T α=--,[]41,1,1,1T α=---. (3) []11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14T α=, []41,1,2,0T α=-,[]52,1,5,6T α=. 分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组. 解 (1) []1 23 423141133113301123241000010210000αααα--???????? ---??? ?=??→????????--???? , 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组. (2) []1 23 41111111111110 1011111001111110001αααα--???? ????---??? ?=??→???? ---???? --???? , 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组. (3) []1 234 51031 21 0312130110110121725000104214060 0000ααααα???? ????--? ???=??→???? ??? ? ???? , 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组. 2.计算下列向量组的秩,并判断该向量组是否线性相关. (1) []11,1,2,3,4T α=-,[]23,7,8,9,13T α=-,

矩阵的满秩分解

§4.3矩阵的满秩分解 本节讨论一个复矩阵可以分解为两个与的秩相同的矩阵之积的问题。定义4.3.1设复矩阵的秩为,如果存在两个与的秩相同的复矩阵与,使得,则称此式为复矩阵的满秩分解。 当是满秩矩阵时(行满秩或列满秩)可以分解为单位矩阵与自身的乘积,这个满秩分解叫做平凡分解。 定理4.3.1设复矩阵的秩为,则有满秩分解。 证:因为,对施行初等行变换,可得到阶梯形矩阵, 其中为矩阵,并且;因此存在着有限个阶初等矩阵之积, 记作,有,或者,将矩阵分块为,其中为矩阵,为矩阵,并且,。 则有,其中是列满秩矩阵,是行满秩矩阵。▌ 但是,矩阵的满秩分解不唯一。这是因为若取任意一个阶非奇异矩阵,则有 。 例1、求矩阵的满秩分解。 解:对矩阵进行初等行变换 其中所以,;而,其中 由此可见,所以有。 定义4.3.2设复矩阵的秩为,并且满足以下条件: 1)矩阵的前行中的每一行至少含有一个不为零的元素,并且第一个不为零的元素是1,而后行的元素均为零; 2)如果矩阵的第行的第一个不为零的元素1在第列, 则; 3)矩阵的列是单位矩阵的前列; 则称矩阵为Hermite标准形(最简型)。 由此定义可见,对于任意一个秩为的复矩阵,均可以经过初等行变换将其化为Hermite标准形,而且矩阵的前列元素组成的列向量组线性无关。 定义4.3.3以阶单位矩阵的个列向量为列构成的阶矩阵叫做置换矩阵。其中是的一个全排列。 定理4.3.2设复矩阵的秩为,矩阵的Hermite标准形为,则在矩阵的满秩分解中,可以取矩阵为的列构成的列矩阵,为的前行构成的列矩阵。例2、求矩阵的满秩分解。 解:先求出矩阵的Hermite标准形

矩阵分解及其简单应用

矩阵分解是指将一个矩阵表示为结构简单或具有特殊性质若干矩阵之积或之和,大体分为三角分解、分解、满秩分解和奇异值分解.矩阵地分解是很重要地一部分内容,在线性代数中时常用来解决各种复杂地问题,在各个不同地专业领域也有重要地作用.秩亏网平差是测量数据处理中地一个难点,不仅表现在原理方面,更表现在计算方面,而应用矩阵分解来得到未知数地估计数大大简化了求解过程和难度. 矩阵地三角分解 如果方阵可表示为一个下三角矩阵和一个上三角矩阵之积,即,则称可作三角分解.矩阵三角分解是以消去法为根据导出地,因此矩阵可以进行三角分解地条件也与之相同,即矩阵地前个顺序主子式都不为,即.所以在对矩阵进行三角分解地着手地第一步应该是判断是否满足这个前提条件,否则怎么分解都没有意义.矩阵地三角分解不是唯一地,但是在一定地前提下,地分解可以是唯一地,其中是对角矩阵.矩阵还有其他不同地三角分解,比如分解和分解,它们用待定系数法来解求地三角分解,当矩阵阶数较大地时候有其各自地优点,使算法更加简单方便.资料个人收集整理,勿做商业用途 矩阵地三角分解可以用来解线性方程组.由于,所以可以变换成,即有如下方程组:资料个人收集整理,勿做商业用途 先由依次递推求得,,……,,再由方程依次递推求得,,……,. 资料个人收集整理,勿做商业用途 必须指出地是,当可逆矩阵不满足时,应该用置换矩阵左乘以便使地个顺序主子式全不为零,此时有:资料个人收集整理,勿做商业用途 这样,应用矩阵地三角分解,线性方程组地解求就可以简单很多了. 矩阵地分解 矩阵地分解是指,如果实非奇异矩阵可以表示为,其中为正交矩阵,为实非奇异上三角矩阵.分解地实际算法各种各样,有正交方法、方法和方法,而且各有优点和不足.资料个人收集整理,勿做商业用途 .正交方法地分解 正交方法解求分解原理很简单,容易理解.步骤主要有:)把写成个列向量(,,……,),并进行正交化得(,,……,);) 单位化,并令(,,……,),(,,……,),其中;). 这种方法来进行分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便.资料个人收集整理,勿做商业用途 .方法地分解 方法求分解是利用旋转初等矩阵,即矩阵()来得到地,()是正交矩阵,并且(()).()地第行第列 和第行第列为,第行第列和第行第列分别为和,其他地都为.任何阶实非奇异矩阵可通过左连乘()矩阵(乘积为)化为上三角矩阵,另,就有.该方法最主要地是在把矩阵化为列向量地基础上找出和,然后由此把矩阵地一步步向上三角矩阵靠近.方法相对正交方法明显地原理要复杂得多,但是却计算量小得多,矩阵()固有地性质很特别可以使其在很多方面地应用更加灵活.资料个人收集整理,勿做商业用途 .方法地分解 方法分解矩阵是利用反射矩阵,即矩阵,其中是单位列向量,是正交矩阵,.可以证明,两个矩阵地乘积就是矩阵,并且任何实非奇异矩阵可通过连乘矩阵(乘积为)化为上三角矩阵,则.这种方法首要地就是寻找合适地单位列向量去构成矩阵,

第四章 矩阵分解

矩阵分析
第四章 矩阵分解
§4.1: 矩阵的满秩分解 §4.2: 矩阵的正交三角分解 §4.3: 矩阵的奇异值分解 §4.4: 矩阵的极分解 §4.5: 矩阵的谱分解
矩阵分解前言
矩阵分解定义: 将一个已知矩阵表示为另一些较为简单或 较为熟悉的矩阵的积(或和)的过程称为矩阵分解. 例:(1)对任意n阶正规矩阵A,存在酉阵U∈Un×n使 A=Udiag(λ1,…,λn)U*, 其中λ1,…,λn为A的所有特征值的任一排列. (2)对任意n阶正定矩阵A,存在可逆阵Q∈Cnn×n使A=Q*Q,或存 在唯一正定阵B使A=BB. 矩阵分解意义:有利于研究已知的矩阵. 例如,利用正定阵A的平方根B为正定阵可证: 对任意Hermite阵H,AH或HA都有实特征值.
1
( AH~(A1/2)-1AHA1/2=A1/2HA1/2∈Hn×n )
2
初等变换与初等矩阵(p73)
三类初等变换: (行(列)变换←→左(右)乘) (1)将矩阵A的两行互换等价于用第一类初等矩阵P(i,j)左 乘A; (2)将矩阵A的第i行乘以k≠0等价于用第二类初等矩阵 P(i(k))=diag(1,…,1,k,1,…,1)左乘A. (3)将矩阵A的第j行乘以k≠0后再加到第i行等价于左乘第 三类初等矩阵P(i,j(k)).
P (i , j ) =
?1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 1 1 0 1 1
初等变换与初等矩阵举例
?1 ?? 1 4 7 ? ? 1 4 7 ? ? 0 1 ?? 2 5 8 ? = ? 3 6 9 ? ; ? ?? ? ? ? ? 1 0 ?? 3 6 9 ? ? 2 5 8 ? ? ?? ? ? ? ?1 4 7??1 ? ? 1 7 4? ? 2 5 8?? 0 1? = ? 2 8 5? ? ?? ? ? ? ? 3 6 9?? 1 0? ? 3 9 6? ? ?? ? ? ?
?1 ??1 4 7? ? 1 4 7 ? ? ?? ? ? ? 0.2 ? ? 2 5 8 ? = ? 0.4 1 1.6 ? ; ? ? 1?? 3 6 9 ? ? 3 6 9 ? ? ?? ? ? ?
?1 4 7??1 ? ? 1 4 7 / 9? ? ?? ? ? ? ? 2 5 8?? 1 ? = ? 2 5 8/9? ? 3 6 9?? 1/ 9 ? ? 3 6 1 ? ? ?? ? ? ?
---- i ---- j
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1?
P (i , j ( k )) =
?1 ? ? ? ? ? ? ? ? ? ?
1
k 1
? ? ? ? ---? ? ? ---? ? ? 1?
i j
3
?1 ?? 1 2 3? ? 1 2 3 ? ? ?? ? ? ? ? ?4 1 ? ? 4 5 6 ? = ? 0 ?3 ?6 ? ; ? 1?? 7 8 9? ? 7 8 9 ? ? ?? ? ? ?
?3 ? ? 1 2 0 ? ? 1 2 3??1 ? ?? ? ? ? ? 4 5 6?? 1 ? = ? 4 5 ?6 ? ?7 8 9?? 1 ? ? 7 8 ?12 ? ? ?? ? ? ?
4
初等变换与初等矩阵的性质
3类初等矩阵都是可逆的(行列式不为0). 将A依次作初等矩阵P1,…,Pr对应的行(列)初等变换等价 于左(右)乘A以可逆矩阵Pr…P1(P1…Pr). 可适当选第一类初等矩阵的乘积P使PA(AP)的行(列)是A 的行(列)的任意排列; 可适当选第三类初等矩阵 P(i,j(k))中的k使P(i,j(k))A的(i,j)元变为0; 可适当选第二类初等矩阵P(i(k))中的k使P(i(k))A的非 零(i,i)元变为1. 存在初等矩阵的乘积P和Q,使PAQ= ,其中r=rankA.
初等变换与初等矩阵的性质续
命题:设A∈Crm×n前r列线性无关,则用初等行变换可把A变为
? Er ? ? 0 ?1 ? ? D? ? = ? ? 0 ? ? ? ? ? ? 1 1 * * * * *? ? *? *? ? *? ? ? ? ?
一般地,?A∈Crm×n都存在m,n阶可逆阵P和Q使PAQ=
5
证:因前r列线性无关,故用第一类初等矩阵左乘可使A的 (1,1)元≠0. 再用第二类初等矩阵左乘可使a11=1; 最后用若干第三类初等矩阵左乘可使A的第一列=e1. 因前2列线性无关,故新的第2列与e1线性无关且≠0, 故用第一类行变换可使(2,2)元≠0,…可使A的第2列=e2. ….可使A的第r列=er.此时空白处必为0元.
安徽大学 章权兵
1

实验矩阵的秩与向量组的极大无关组

项目五 矩阵运算与方程组求解 实验2 矩阵的秩与向量组的极大无关组 实验目的 学习利用Mathematica 求矩阵的秩,作矩阵的初等行变换; 求向量组的秩与极大无关组. 基本命令 1. 求矩阵M 的所有可能的k 阶子式组成的矩阵的命令:Minors[M,k]. 2. 把矩阵A 化作行最简形的命令:RowReduce[A]. 3. 把数表1,数表2, …,合并成一个数表的命令:Join[list1,list2,…]. 例如输入 Join[{{1,0,-1},{3,2,1}},{{1,5},{4,6}}] 则输出 {{1,0,-1},{3,2,1},{1,5},{4,6}} 实验举例 求矩阵的秩 例2.1 (教材 例2.1) 设,815073*********???? ? ??-------=M 求矩阵M 的秩. 输入 Clear[M]; M={{3,2,-1,-3,-2},{2,-1,3,1,-3},{7,0,5,-1,-8}}; Minors[M,2] 则输出 {{-7,11,9,-5,5,-1,-8,8,9,11},{-14,22,18,-10,10,-2, -16,16,18,22},{7,-11,-9,5,-5,1,8,-8,-9,-11}} 可见矩阵M 有不为0的二阶子式. 再输入 Minors[M,3] 则输出 {{0,0,0,0,0,0,0,0,0,0}} 可见矩阵M 的三阶子式都为0. 所以.2)(=M r

例2.2 已知矩阵???? ? ??----=1t 0713123123M 的秩等于2, 求常数t 的值. 左上角的二阶子式不等于0. 三阶子式应该都等于0. 输入 Clear[M]; M={{3,2,-1,-3},{2,-1,3,1},{7,0,t,-1}}; Minors[M,3] 输出为 {{35-7t,45-9t,-5+t}} 当5=t 时, 所有的三阶子式都等于0. 此时矩阵的秩等于2. 例2.3 (教材 例2.2) 求矩阵???????? ??-----322 4211631095114047116的行最简形及其秩. 输入 A={{6,1,1,7},{4,0,4,1},{1,2,-9,0},{-1,3,-16,-1},{2,-4,22,3}} MatrixForm[A] RowReduce[A]//MatrixForm 则输出矩阵A 的行最简形 ???????? ??-0000000010000510 01 01 根据矩阵的行最简形,便得矩阵的秩为3. 矩阵的初等行变换 命令RowfReduce[A]把矩阵A 化作行最简形. 用初等行变换可以求矩阵的秩与矩阵的逆. 例2.4 设,41311221222832A ???? ? ??--=求矩阵A 的秩. 输入

矩阵的满秩分解

§矩阵的满秩分解 本节讨论一个n m ?复矩阵A 可以分解为两个与A 的秩相同的矩阵之积的问题。 定义设n m ?复矩阵A 的秩为r ,如果存在两个与A 的秩相同的复矩阵F 与G ,使得FG A =,则称此式为复矩阵A 的满秩分解。 当A 是满秩矩阵时(行满秩或列满秩)A 可以分解为单位矩阵与A 自身的乘积,这个满秩分解叫做平凡分解。 定理设n m ?复矩阵A 的秩为r 0>,则A 有满秩分解。 证:因为0>=r rankA ,对A 施行初等行变换,可得到阶梯形矩阵???? ??=0G B , 其中G 为n r ?矩阵,并且0>=r rankG ;因此存在着有限个m 阶初等矩阵之积, 记作P ,有B PA =,或者B P A 1-=,将矩阵1-P 分块为()S F P =-1 ,其中F 为r m ?矩阵,S 为)(r n m -?矩阵,并且r rankF =,r n rankS -=。 则有()FG G S F B P A =??? ? ??==-01 ,其中F 是列满秩矩阵,S 是行满秩矩阵。 ▌ 但是,矩阵A 的满秩分解不唯一。这是因为若取任意一个r 阶非奇异矩阵D ,则有 G F G D FD FG A ~~))((1===-。 例1、 求矩阵???? ? ??----=122211212101A 的满秩分解。 解:对矩阵A 进行初等行变换

()???? ??==???? ? ??--→????? ??----=0111000001130200012101100122201011210012101G B I A 其中???? ??-=30202101G 所以????? ??-=000030202101B ,???? ? ??-=111011001P ;而()S F P =????? ??--=-1120110011 ,其中???? ? ??--=121101F 由此可见,所以有()???? ? ??--==???? ??==-12110101FG G S F B P A ???? ??-30202101。 定义设n m ?复矩阵H 的秩为r ()0>r ,并且满足以下条件: 1)矩阵H 的前r 行中的每一行至少含有一个不为零的元素,并且第一个不为零的元素是1,而后r m -行的元素均为零; 2)如果矩阵H 的第i 行的第一个不为零的元素1在第i j 列()r i ,,2,1 =, 则r j j j <<< 21; 3)矩阵H 的r j j j ,,,21 列是单位矩阵m I 的前r 列; 则称矩阵H 为Hermite 标准形(最简型)。 由此定义可见,对于任意一个秩为r 的n m ?复矩阵A ,均可以经过初等行变换将其化为Hermite 标准形H ,而且矩阵H 的前r 列元素组成的列向量组线性无关。 定义以n 阶单位矩阵n I 的n 个列向量n e e e ,,,21 为列构成的n 阶矩阵() n j j j e e e P ,,,21 =叫做置换矩阵。其中n j j j ,,,21 是n ,,2,1 的一个全排列。 定理设n m ?复矩阵A 的秩为r ()0>r ,矩阵A 的Hermite 标准形为H ,则在矩阵A 的满秩分解FG A =中,可以取矩阵F 为A 的r j j j ,,,21 列构成的

几类特殊矩阵的满秩分解及其应用.doc

目录 0 引言 (1) 1 预备知识 (1) 2 几类特殊矩阵满秩分解 (2) 2.1酉对称矩阵的满秩分解 (2) 2.2行(列)对称矩阵的满秩分解 (3) 2.3行(列)反对称矩阵的满秩分解 (4) 2.4全对称矩阵中具有轴对称结构矩阵的满秩分解 (4) 2.5广义延拓矩阵的满秩分解 (5) 3 矩阵的满秩分解的应用 (6) 3.1利用矩阵A的满秩分解求广义逆矩阵 (6) 3.1.1 利用矩阵A的满秩分解求广义逆矩阵-A (6) 3.1.2 利用矩阵A的满秩分解求M-P广义逆矩阵 A (7) 3.2线性方程组的极小最小二乘问题 (8) 参考文献 致谢

赵爱霞 (天水师范学院数学与统计学院, 甘肃天水741001) 摘要介绍了五类特殊矩阵,即酉对称矩阵、行(列)对称矩阵、行(列)反对称矩阵、全对称矩阵及广义延拓矩阵,的满秩分解和求解方法,并说明了满秩分解在求广义逆中的应用. 关键词酉对称矩阵;行(列)对称矩阵; 行(列)反对称矩阵;全对称矩阵;广义延拓矩阵;广义逆矩阵;满秩分解. Full Rank Decomposition and Application for some kinds of Special Matrix ZHAO Aixia (School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001) Abstract The formulas and methods, for full rank decompositions of five kinds of special matrices, such as unitary symmetric matrix, row (column) symmetric matrix,row (column) negative symmetric matrix, full symmetric matrix, are given, Moreover, we show the importance of the full rank decomposition in finding generalized inverse of matrix, Key words unitary symmetric matrix, row (column) symmetric matrix,row (column) negative symmetric matrix, full symmetric matrix, generalized inverse matrix, generalized continuation matrix, full rank decomposition.

向量组的等价及向量组的秩

向量组的等价及向量组的秩 一 基本概念 1 设T 是由若干个n 维向量构成的集合,向量12,,,r T ααα∈L ,若有 (1)12,,,r αααL 线性无关; (2)T 中任一向量都可由12,,,r αααL 线性表示。 那么,则称12,,,r αααL 是T 的一个极大无关组。称r 为T 的秩数,若T 无极大无关组,即T 不含非零向量时,称T 的秩数为0。T 的秩数记为()R T 。 2设有n 维向量组Ⅰ:12,,,s αααL 与n 维向量组Ⅱ:12,,,t βββL 。如果Ⅰ中任一向量都可由Ⅱ中向量线性表示,反之Ⅱ中任一向量都可由Ⅰ中向量线性表示,那么则称向量组Ⅰ与Ⅱ等价。 3 矩阵A 的行向量组的秩数称为A 的行秩数;A 的列向量组的秩数称为A 的列秩数。A 的行秩数记为行秩A ;A 的列秩数记为列秩A 。 二 主要结论 1 简化行阶梯形矩阵的性质 (1)主列构成的向量组线性无关; (2)每一非主列均可由前面的主列线性表示;从而若有非主列,则其列向量组必线性相关。 (3)主列构成的向量组即为列向量组的一个极大无关组;从而列秩数等于主列的个数。 2 对矩阵A 进行行的初等变换不改变A 的列向量组的线性关系。 3 个数大于维数的向量组必线性相关;特别有,n +1个n 维向量必线性相关。 4 设向量组12,,,s αααL 中任一向量都可由向量12,,,t βββL 线性表示。那么,如果s t >,则向量组12,,,s αααL 必线性相关。 等价陈述即其逆否命题为:设向量组12,,,s αααL 中任一向量都可由向量12,,,t βββL 线性表示。那么,如果向量组12,,,s αααL 线性无关,则必有s t ≤。 推论1:向量组T 的极大无关组中所含向量个数被T 所唯一确定。即T 的任意两个极大无关组中所含向量个数相等。 推论2:设向量组(Ⅰ)中任一向量都可由(Ⅱ)中向量线性表示,则R (Ⅰ)≤ R (Ⅱ)。 推论3:等价的向量组的秩数相等。 5 对任意矩阵A 均有,行秩A =列秩A =R (A )。

求向量组的秩与极大无关组(修改整理)-向量组的极大无关组与秩

求向量组的秩与最大无关组 一、对于具体给出的向量组,求秩与最大无关组 1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵 【定理】矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等) ①把向量组的向量作为矩阵的列(或行)向量组成矩阵A; ②对矩阵A进行初等行变换化为阶梯形矩阵B; ③阶梯形B中非零行的个数即为所求向量组的秩. 【例1】求下列向量组a1=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩. 解1:以a1,a2,a3为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求. 因为阶梯形矩阵的列秩为2,所以向量组的秩为2. 解2:以a1,a2,a3为行向量作成矩阵A,用初等行变换将A化为 阶梯形矩阵后可求. 因为阶梯形矩阵的行秩为2,所以向量组的秩为2. 2、求向量组的最大线性无关组的方法 方法1 逐个选录法 给定一个非零向量组A:α1, α2,…, αn ①设α1≠ 0,则α1线性相关,保留α1 ②加入α2,若α2与α1线性相关,去掉α2;若α2与α1线性无关,保留α1,α2;

③依次进行下去,最后求出的向量组就是所求的最大无关组 【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T T ααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1 取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。 所以最大无关组为a 1,a 2 方法2 初等变换法 【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立. 向量组:α1=(1,2,3)T , α2=(-1,2,0)T , α3=(1,6,6)T 由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换 ①把向量组的向量作为矩阵的列向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③A 中的与B 的每阶梯首列对应的向量组,即为最大无关组. 【例3】求向量组 :α1=(2,1,3,-1)T , α2=(3,-1,2,0)T , α3=(1,3,4,-2)T , α4=(4,-3,1,1)T 的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。 解 以α1,α2,α3,α4为列构造矩阵A , 并实施初等行变换化为行阶梯形矩阵求其秩:

第6讲-矩阵分解

第6讲 矩阵分解 内容:1. 矩阵的三角分解 2. 矩阵的满秩分解 3. 矩阵的QR 分解 4. 矩阵的Schur 定理 5. 矩阵的谱分解和奇异值分解 矩阵分解指将一个矩阵写成结构比较简单的或性质比较熟悉的另一些矩阵的乘积.它在控制理论和系统分析等领域有广泛应用. §1 矩阵的三角分解 定义 1.1 称? ???????????==?nn n n n n ij a a a a a a a A 00 0)(22211211为上三角矩阵,T A B =为下三角矩阵.特别地,称A (或T A )的对角元素为1 的上(下)三角矩阵为单位上(下)三角矩阵.三角矩阵是一类特殊的矩阵,具有特殊的性质. 1.Gauss 消元法 n 元线性方程组?? ???? ?=+++=+++=+++n n nn n n n n n b a a a b a a a b a a a ξξξξξξξξξ 22112 122221211 1212111 ,其矩阵形式 b Ax =,

其中:????????????==?nn n n n n n n ij a a a a a a a a a a A 2 12222111211)(,[]T n x ξξξ,,,21 =,[]T n b b b b ,,,21 =. 采用按自然顺序选主元素进行消元.假定化A 为上三角矩阵的过程未用到行和列交换,按自然顺序进行消元,即进行行倍加初等变换,使 ????????????=nn n n n n a a a a a a a a a A 212222111211→?????? ????? ?nn n n n c c c c a a a 22221121100→ ?????? ????? ?nn n n e c c a a a 00022211211, 其中顺序主子式:0111≠=?a ,,,00 22 12112 ≠= ?c a a 01≠?-n .称这种 对A 的元素进行的消元过程为Gauss 消元法. 2.矩阵的三角分解 定义 1.2 如果方阵A 可分解成一个下三角矩阵L 和一个上三角矩阵R 的乘积,则称A 可作三角分解或LR 分解,当L 是单位下三角矩阵时,则称此分解为A 的杜利特(Doolittle )分解;当R 是单位上三角矩阵时,则称此分解为A 的克劳特(Crout )分解.如果方阵A 可分解成LDR A =,其中L 是单位下三角矩阵,D 是对角矩阵,R 是单位上三角矩阵,则称A 可作LDR 分解. 定理 1.1 n 阶矩阵A 有三角分解LR 或LDR 的充要条件是A 的顺序主子式不为零,即0≠?r , (1,,2,1-=n r ).n 阶非奇异矩阵A 有三角分解LR 或LDR 的充要条件是A 的顺序主子式都不为零,即0≠?r ,(n r ,,2,1 =).

求矩阵的秩的步骤

将该矩阵转换为行梯形矩阵,然后矩阵的秩等于非零行的数量。 在步骤矩阵中,选择了1,3行和3,4列。由元素在其交点处形成的二阶子矩阵的行列式是矩阵A的二阶子矩阵。 行等级是A的线性独立行的最大数量。也就是说,如果将矩阵视为行向量或列向量,则等级是这些行向量或列向量的等级,即包含在其中的向量数最大独立组。 扩展数据: 证明: 由AB构造的块矩阵和n阶恒等式en | AB O | | O En | A将以下两个矩阵相乘并相乘,然后将它们加到上两个矩阵中 | AB A | | 0 En |

相乘-B,在左侧矩阵中添加两个块 | 0 A | | -B En | 因此,R(AB)+ n = R(第一个矩阵)= R(最后一个矩阵)> = R(a)+ R(b) 即R(a)+ R(b)-N <= R(AB) 在数学中,矩阵是根据矩形阵列排列的一组复数或实数。最早的矩阵是由等式的系数和常数组成的方阵。这个概念最早是由19世纪的英国数学家凯利(Kelly)提出的。 矩阵是高等代数以及统计分析等应用数学中的常用工具。[2]在物理学中,矩阵应用于电路科学,力学,光学和量子物理学;在计算机科学中,矩阵还用于3D动画中。矩阵运算是数值分析领域中的重要问题。将矩阵分解为简单矩阵的组合,可以在理论上和实际应用中简化矩阵的运算。对于一些广泛使用的特殊形式的矩阵,例如稀疏矩阵和准对角线矩阵,有特定的快速算法。关于矩阵理论的发展和应用,请参考矩阵理论。在天体物理学,量子力学等领域,将存在无穷维矩阵,这是矩阵的一种概括。

数值分析的主要分支致力于矩阵计算的有效算法的开发,这已经是一个世纪以来的主题,并且是一个不断扩展的研究领域。矩阵分解法简化了理论和实际计算。为特定矩阵结构(例如稀疏矩阵和近角矩阵)定制的算法可加快有限元方法和其他计算的速度。在行星理论和原子理论中存在无限矩阵。无穷矩阵的一个简单示例是函数的泰勒级数的导数算子矩阵[3]

向量组的等价及向量组的秩

向量组的等价及向量组的秩 一 基本概念 1 设T 是由若干个n 维向量构成的集合,向量12,,,r T ααα∈ ,若有 (1)12,,,r ααα 线性无关; (2)T 中任一向量都可由12,,,r ααα 线性表示。 那么,则称12,,,r ααα 是T 的一个极大无关组。称r 为T 的秩数,若T 无极大无关组,即T 不含非零向量时,称T 的秩数为0。T 的秩数记为()R T 。 2设有n 维向量组Ⅰ:12,,,s ααα 与n 维向量组Ⅱ:12,,,t βββ 。如果Ⅰ中任一向量都可由Ⅱ中向量线性表示,反之Ⅱ中任一向量都可由Ⅰ中向量线性表示,那么则称向量组Ⅰ与Ⅱ等价。 3 矩阵A 的行向量组的秩数称为A 的行秩数;A 的列向量组的秩数称为A 的列秩数。A 的行秩数记为行秩A ;A 的列秩数记为列秩A 。 二 主要结论 1 简化行阶梯形矩阵的性质 (1)主列构成的向量组线性无关; (2)每一非主列均可由前面的主列线性表示;从而若有非主列,则其列向量组必线性相关。 (3)主列构成的向量组即为列向量组的一个极大无关组;从而列秩数等于主列的个数。 2 对矩阵A 进行行的初等变换不改变A 的列向量组的线性关系。 3 个数大于维数的向量组必线性相关;特别有,n +1个n 维向量必线性相关。 4 设向量组12,,,s ααα 中任一向量都可由向量12,,,t βββ 线性表示。那么,如果s t >,则向量组12,,,s ααα 必线性相关。 等价陈述即其逆否命题为:设向量组12,,,s ααα 中任一向量都可由向量12,,,t βββ 线性表示。那么,如果向量组12,,,s ααα 线性无关,则必有s t ≤。 推论1:向量组T 的极大无关组中所含向量个数被T 所唯一确定。即T 的任意两个极大无关组中所含向量个数相等。 推论2:设向量组(Ⅰ)中任一向量都可由(Ⅱ)中向量线性表示,则R (Ⅰ)≤ R (Ⅱ)。 推论3:等价的向量组的秩数相等。 5 对任意矩阵A 均有,行秩A =列秩A =R (A )。

求矩阵的秩的步骤

矩阵: 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考《矩阵理论》。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。 数值分析的主要分支致力于开发矩阵计算的有效算法,这是一个已持续几个世纪以来的课题,是一个不断扩大的研究领域。矩阵分解方法简化了理论和实际的计算。针对特定矩阵结构(如稀疏矩阵和近角矩阵)定制的算法在有限元方法和其他计算中加快了计算。无限矩阵发生在行星理论和原子理论中。无限矩阵的一个简单例子是代表一个函数的泰勒级数的导数算子的矩阵。 矩阵方法: 《矩阵方法》是“高等数学模块化系列教材”之一,是适合于经济管理、理工类各专业的公共课教材。《矩阵方法》只讲解矩阵的概念、矩阵的运算和矩阵的简单应用,计划18课时,1学分。《矩阵方法》分为两章和两个附录。 序言:

中国高等教育在“十一五”期间的一个主题是走向内涵发展的道路。对每个高等职业技术学院来讲,最重要的任务除了要建设一支具有相当水平的师资队伍,要构建一个对人才培养必须具备的高效的产学研结合体系之外,就是要有一个与高职定位相吻合的高等职业技术课程技术。这其中,基础课,特别是数学课是我们不可能回避、又是极为重要的课程。 在高等教育的精英阶段发展起来的高等专科学校,数学课遵循的是“必需、够用”的原则。当时,数学基本上就是“微积分”、“线性代数”、“概率论与数理统计”三门课,学时也都在150~200学时之间,内容基本上是本科生内容的简化。当高等教育进入大众化阶段后,高等职业技术学院的定位和学生生源发生了很大的变化。我们培养的人才是社会上各类岗位的技能型、应用型人才,而学生的数学基础明显薄弱,单凭主观想象和判断来对数学内容进行取舍遇到许多矛盾。因此,数学课的改革便成为高职教育的重要课题。.“必需、够用”在这种新形势下如何赋予新的内涵,并在此方针下进行数学课的改革是非常重要的。我们以为“必需、够用”不能以数学自身的学科系统来衡量,不能由数学教师的爱好来决定,也不能由学校统一规定课程的学时和内容。“必需、够用”要由每个专业的职业岗位需求来决定,要由每个专业的专业要求来决定,要由学生的实际基础来决定。为此,近几年来,我们进行了数学课的实用化、小型化、模块化的改革探索。这套系列教材便是这种改革的阶段性成果。

向量组的秩和最大线性无关组

向量组的秩和最大线性无关组 引例:对于方程组 12312312 321221332x x x x x x x -+=-??+-=??-+=-? 容易发现其有效方程的个数为2个,因为第3个方程可由第1个方程减去第2个方程得到(或者第3个方程是第1个方程和第2个方程的线性组合); 由于本章的内容是用向量的关系来研究方程组解的情况,进而从方程组3个方程对应的3个向量来说“有用”(或者也可以说成等价有效)的最少的向量是2个。 因此,对于一个给定的向量组,其中“有用”(或者也可以说成等价有效)的最少的向量应该有多少个呢?在此我们提出最大线性无关组的概念: 最大线性无关组:在s ααα,,,21Λ中,存在ip i i ααα,,,21Λ满足: (1)ip i i ααα,,,21Λ线性无关; (2)在ip i i ααα,,,21Λ中再添加一个向量就线性相关。 则称ip i i ααα,,,21Λ是s ααα,,,21Λ的一个最大线性无关组, 注: Ⅰ、不难看出条件(2)等价的说法还有s ααα,,,21Λ中任一向量均可由ip i i ααα,,,21Λ线性表示;或者亦可以说成s ααα,,,21Λ中任意1p +个向量均线性相关; Ⅱ、从最大线性无关组的定义可以看出最大线性无关组与原先的向量组可以相互线性表示,进而最大线性无关组与原先的向量组是等价的(即

有效的最少的方程构成的方程组与原先的方程组是等价的); Ⅲ、从上面的方程组可以看出同解的有效方程组可以是第1、2两个方程构成,也可以是第2、3两个方程构成(因为第1个方程可以看成第2、3两个方程的和),因此从其对应的向量组来说,向量组的最大线性无关组是不唯一的; Ⅳ、可以发现,虽然同解的有效方程组的形式可以不一样,但是同解的有效方程组中所含的方程的个数是唯一的,即从其对应的向量组来说,最大线性无关组虽然不唯一,但是最大线性无关组中所含向量的个数唯一的。这是从数的角度反映了向量组的性质,在此给出向量组的秩的概念: 向量组的秩:称最大线性无关组中所含向量的个数为向量组的秩,如上面定义中ip i i ααα,,,21Λ是s ααα,,,21Λ的一个最大线性无关组,则称 s ααα,,,21Λ的秩为p ,记为12(,,,)s R p ααα=L 。 例:求向量组123(3,6,4,2,1),(2,4,3,1,0),(1,2,1,2,3),T T T ααα=-=--=-- 4(1,2,1,3,1)T α=-的秩及一个最大线性无关组,并将其余的向量用最大线性无关组表示。 分析:容易发现用定义的形式很难求秩和最大线性无关组,为此我们从方程组和矩阵之间的关系以及方程组和向量组之间的关系可以得到,向量组的秩及其最大线性无关组应该与其对应的矩阵的秩以及矩阵的最高阶非零子式之间有某种关系,为此我们给出: 定理:矩阵的秩等于其行向量组的秩,也等于其列向量组的秩. 略证:设A 的秩为r ,则在A 中存在r 阶子式0r D ≠,从而r D 所在的r 列线性无关,又A 中的所有的1r +阶子式10r D +=,因此A 中的任意1r +个列向量

求向量组的秩与极大无关组(修改整理)

求向量组的秩与最大无关组 一、 对于具体给出的向量组,求秩与最大无关组 1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵 【定理】 矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等) ①把向量组的向量作为矩阵的列(或行)向量组成矩阵A ; ②对矩阵A 进行初等行变换化为阶梯形矩阵B ; ③阶梯形B 中非零行的个数即为所求向量组的秩. 【例1】 求下列向量组a 1=(1, 2, 3, 4),a 2 =( 2, 3, 4, 5),a 3 =(3, 4, 5, 6)的秩. 解1:以a 1,a 2,a 3为列向量作成矩阵A ,用初等行变换将A 化为阶梯形矩阵后可求. 因为阶梯形矩阵的列秩为2,所以向量组的秩为2. 解2:以a 1,a 2,a 3为行向量作成矩阵A ,用初等行变换将A 化为 阶梯形矩阵后可求. 因为阶梯形矩阵的行秩为2,所以向量组的秩为2. 2、求向量组的最大线性无关组的方法 方法1 逐个选录法 给定一个非零向量组A :1, 2,…, n ①设1 0,则1线性相关,保留 1 ②加入2,若2与 1线性相关,去掉2;若2与 1线性无关,保留1 ,2; ③依次进行下去,最后求出的向量组就是所求的最大无关组 【例2】求向量组:()()()1231,2,12,3,14,1,1,,,T T T ααα=-=-=-的最大无关组 解:因为a 1非零,故保留a 1 取a 2,因为a 1与a 2线性无关,故保留a 1,a 2 取a 3,易得a 3=2a 1+a 2,故a 1,a 2 ,a 3线性相关。 所以最大无关组为a 1,a 2 方法2 初等变换法 【定理】 矩阵A 经初等行变换化为B ,则B 的列向量组与A 对应的列向量组有相同的线性相关性. 证明从略,下面通过例子验证结论成立. 向量组:1=(1,2,3)T , 2=(-1,2,0)T , 3=(1,6,6)T 由上可得,求

相关主题
文本预览
相关文档 最新文档