当前位置:文档之家› 构造函数利用单调性解题

构造函数利用单调性解题

构造函数利用单调性解题
构造函数利用单调性解题

构造函数利用单调性解题

田发胜

由函数单调性的定义容易知道:

(1)若函数)x (f 在区间I 上单调递增,且I x x 21∈,,则2121x x )x (f )x (f

(2)若函数)x (f 在区间I 上单调递减,且I x x 21∈,,则2121x x )x (f )x (f >?<;

(3)若函数)x (f 在区间I 上单调,且I x x 21∈,,则2121x x )x (f )x (f =?=; 根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。下面举例说明这一思想在解题中的若干应用。

一、求值

例1 设x ,y 为实数,且满足?????=-+--=-+-1

)1y (1997)1y (1)1x (1997)1x (33,则=+y x _______。 解:由已知条件,可得:

?????-=-+--=-+-1

)y 1(1997)y 1(1)1x (1997)1x (33 故若设t 1997t )t (f 3+=,则上述条件即为:1)y 1(f )1x (f -=-=-。

又易知函数t 1997t )t (f 3+=在R 上是单调增函数,所以由上式有:y 11x -=-,即:2y x =+。

二、解方程

例2 解方程03x 6x )3x 5(33=++++。

解:原方程变为:

)x x ()3x 5()3x 5(33+-=+++。

设x x )x (f 3+=,则原方程即为:)x (f )3x 5(f -=+,又)x (f )x (f -=-,从而原方程即为:)x (f )3x 5(f -=+。

又易知函数x x )x (f 3+=在R 上单调递增,所以有x 3x 5-=+,解得原方程的解为:2

1x -=。

三、求最值

例3 已知点B (0,6),C (0,2),试在x 轴正半轴上求一点A ,使得∠BAC 最大。 解:设A (a ,0),则a>0,∠BAC=α,易知)2

0(π

∈α,。

因为a 2k a 6k AC AB -=-=

,,所以a

12a 412a a 4k k 1k k tan 2AB AC AB AC

+=+=+-=α。又因为a>0所以34a 12a 2a 12a =?≥+。 所以33tan ≤α,当且仅当32a =时αtan 有最大值为3

3。 又函数α=tan y 在(0,

2π)上是单调递增的,所以α的最大值为633arctan π=。即∠BAC 的最大值为

6

π,此时A (32,0)。

四、比较大小 例4 已知a>1,且x log a y log a a y a x ->-,试比较y x ,的大小。

解:由条件得:y log a x og 1a a y a x +>+。

引入函数t log a )t (f a t +=,则上式即为:

)y (f )x (f >。

易知函数t log a )t (f a t +=在(0,+∞)上是增函数,所以y x >。

五、证明不等式

例5 设a ∈R ,求证:01a a a a 258>+-+-。

证明:当0a ≤或a=1时,不等式显然成立。

当a>1时,函数x a y =在R 上是增函数,

所以a a a a 258>>,,所以01a a a a 258>+-+-;

当1a 0<<时,函数x a y =在R 上是减函数,

所以a 1a a 52>>,

,又0a 8>。 所以01a a a a 258>+-+-

故对一切a ∈R ,不等式01a a a a 258>+-+-成立。

六、求参数范围

例6 已知关于n 的不等式

3

2)1a (log 121n 213n 12n 11n 1a +->+++++++ 对一切大于1的自然数都成立,试求实数a 的取值范围。 解:设)2n N n (n

213n 12n 11n 1)n (f ≥∈+++-+++=, 。

因为0)

2n 2)(1n 2(11n 12n 211n 21)n (f )1n (f >++=+-+++=-+ 所以)n (f 是关于n 的单调增函数且当2n ≥时,+=

≥31)2(f )n (f 12

741=,故而要使32)1a (log 121)n (f a +->对一切2n ≥,n ∈N 恒成立,则需且只需32)1a (log 121127a +->,即1)1a (log a -<-成立即可。 所以a

11a 0<-<,解得:251a 1+<<。 故所求a 的取值范围为

}2

51a 1|a {+<

<。 例7 设函数

n

a n )1n (321lg )x (f x x x x ?+-++++= (a ∈R ,n ∈N ,n ≥2),若当]1(x ,-∞∈时,)x (f 有意义,求a 的取值范围。

解:要使原函数在]1(,-∞上有意义,应有在∈x ]1(,-∞时

0n

a n )1n (321x x x x >?+-++++ ,即0a n )1n (321x x x x >?+-++++ 成立。 所以])n

1n ()n 3()n 2()n 1

[(a x x x x -++++-> ,]1(x ,-∞∈ (*) 记])n 1n ()n

3()n 2()n 1

[()x (g x x x x -++++-= , 因为每一个)1n 21k ()n

k (x -=-,,, 在]1(,

-∞上都是增函数, 所以)x (g 在]1(,-∞上是增函数,从而它在x=1时取得最大值 )1n (2

1)n 1n n 3n 2n 1()1(g --=-++++-= 所以(*)式等价于)1n (21a -->

也就是a 的取值范围是)}1n (21a |a {-->。

(完整版)高中抽象函数的单调性习题总结,推荐文档

10月2日 抽象函数的单调性 1、对任意都有:,当,又知 ()f x ,x y R ∈()()()f x y f x f y +=+0,()0x f x ><时,求在上的值域. (1)2f =-()f x []3,3x ∈-2、f(x)对任意实数x 与y 都有,当x>0时,f(x)>2 ()()()2f x f y f x y -=--(1)求证:f(x)在R 上是增函数; (2)若f(1)=5/2,解不等式f(2a-3) < 3. 3、已知函数对任意有,当时,f x ()x y R ,∈f x f y f x y ()()()+=++2x >0,,求不等式的解集. f x ()>2f ()35=f a a ()2223--<4、f(x)是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1. (1)求f(1)和f(1/9)的值;(2)证明f(x)在x>0上是减函数; (3)解不等式f(x) + f(2-x) < 2。 5、定义在上函数对任意的正数均有:,且当(0,)+∞()y f x =,a b (()() a f f a f b b =-时,,(I )求的值;(II )判断的单调性, 1x <()0f x >(1)f ()f x 6、若非零函数对任意实数均有,且当时,)(x f b a ,()()()f a b f a f b +=?0x f (1)求证: ;(2)求证:为减函数 (3)当时,解不等()0f x >)(x f 161)4(=f 式4 1)5()3(2≤ -?-x f x f 7、已知是定义在[-1,1]上的奇函数,且,若任意的,总有 ()f x (1)1f =[1,1]a b ∈-、. ()(()())0a b f a f b ++>(1)判断函数在[-1,1]上的单调性,并证明你的结论;(2)解不等式:()f x ;(3)若对所有的恒成立,其中 (1)(12)f x f x -<-2()21f x m pm -+≤[1,1]x ∈-

自己整理抽象函数单调性及奇偶性练习及答案

1、已知f x ()的定义域为R ,且对任意实数x ,y 满足f xy f x f y ()()()=+,求 证:f x ()是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, f x ()<0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2)>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >. (1)求(0)f 的值; (2)求证: ()f x 在R 上是单调减函数;

抽象函数解题方法与技巧

抽象函数解题方法与技巧 函数的周期性: 1、定义在x ∈R 上的函数y=f(x),满足f(x+a)=f(x-a)(或f(x-2a)=f(x))(a >0)恒成立,则y=f(x)是周期为2a 的周期函数; 2、若y=f(x)的图像关于直线x=a 和x=b 对称,则函数y=f(x)是周期为2|a-b|的周期函数; 3、若y=f(x) 的图像关于点(a,0)和(b,0)对称,则函数y=f(x)是周期为2|a-b|的周期函数; 4、若y=f(x) 的图像有一个对称中心A(a,0)和一条对称轴x=b (a ≠b ),则函数y=f(x)是周期为4|a-b|的周期函数; 5、若函数y=f(x)满足f(a+x)=f(a-x),其中a>0,且如果y=f(x)为奇函数,则其周期为4a ;如果y=f(x)为偶函数,则其周期为2a ; 6、定义在x ∈R 上的函数y=f(x),满足f(x+a)=-f(x)()1()f x a f x ??+= ???或()1()f x a f x ??+=- ???或,则y=f(x)是周期为2|a|的周期函数; 7、若()()()1 1 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为4a 的周期函数; 8、若()() ()11 f x f x a f x -+= +在x ∈R 恒成立,其中a>0,则y=f(x)是周期为2a 的周期函数。 (7、8应掌握具体推导方法,如7) 函数图像的对称性: 1、若函数y=f(x)满足f(a+x)=f(b-x),则函数y=f(x)的图像关于直线2 a b x +=对称; 2、若函数y=f(x)满足f(x)=f(2a-x)或f(x+a)=f(a-x),则函数y=f(x)的图像关于直线x=a 对称; 3、若函数y=f(x)满足f(a+x)+f(b-x)=c ,则y=f(x)的图像关于点,2 2a b c +?? ??? 成中心对称图形; 4、曲线f(x,y)=0关于点(a,b )的对称曲线的方程为f(2a-x,2b-y)=0; 5、形如()0,ax b y c ad bc cx d += ≠≠+的图像是双曲线,由常数分离法 d ad ad a x b b a c c c y d d c c x c x c c ??+-+-+ ???==+????++ ? ???? ?知:对称中心是点,d a c c ??- ???; 6、设函数y=f(x)定义在实数集上,则y=f(x+a)与y=f(b-x)的图像关于直线2b a x -=对称; 7、若函数y=f(x)有反函数,则y=f(a+x)和y=f -1(x+a)的图像关于直线y=x+a 对称。 一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x) ()()()()()()()1 1 11212112()() 11 f x f x a f x f x a f x f x a f x f x f x --+-+-+====--++++

抽 象 函 数 的 解 题 方 法

解 抽 象 函 数 的 常 用 方 法 抽象函数是指没有给出具体解析式的函数。此类函数试题既能全面地考查学生对函数概念的理解及性质的代数推理和论证能力,又能综合考查学生对数学符号语言的理解和转化能力,以及对一般和特殊关系的认识,因此备受命题者的青睐,成为高考热点。然而,由于抽象函数本身的抽象性、隐蔽性,大多数学生在解决这类问题时,感到束手无策。 我在多年的教学中,积累了一些解题方法,供大家参考. 一、 利用线性函数模型 在中学数学教材中,大部分抽象函数是以具体函数为背景构造出来的,解题时最根本点是将抽象函数具体化,这种方法虽不能代替具体证明,但却能找到这些抽象函数的解题途径,特别是填空题、选择题,直接用满足条件的特殊函数求解,得出答案即可。常见的抽象函数模型有: 例1、函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且f (1)=2, f (x )在区间[-4,2]上的值域为 。 0a a ≠且

解析:由题设可知,函数f (x )是正比例()y kx k =为常数的抽象函数,由f (1)=2可求得 k=2,∴ f (x )的值域为[-8,4]。 例2、已知函数f (x )对任意,x y R ∈,满足条件()()()2f x y f x f y +=+-,且当x >0时, f (x )>2,f (3)=5,求不等式2(22)3f a a --的解。 分析:由题设条件可猜测:f (x )是y =x +2的抽象函数,且f (x )为单调增函数,如果 这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设1221,0x x x x -则,∵当x >0时,f (x )>2,∴21()2f x x -,则 , 即,∴f (x )为单调增函数。 ∵, 又∵f (3)=5,∴f (1)=3。∴2(22) (1)f a a f --,∴2221a a --, 解得不等式的解为-1 < a < 3。 例3、定义在R上的函数()y f x =,对任意的12,x x 满足12x x ≠时都有12()()f x f x ≠,且有 ()()()f x y f x f y +=成立。求: (1)f (0); (2)对任意值x ,判断f (x )值的正负。 分析:由题设可猜测f (x )是指数函数()(01)x f x a a a =≠且的抽象函数, 从而猜想f (0)=1且f (x )>0。 解:(1)令y =0代入()()()f x y f x f y +=,则()()(0)f x f x f =, ∴[]()1(0)0f x f -=。若f (x )=0,则对任意12x x ≠,有12()()0f x f x ==,

专题:抽象函数的单调性与奇偶性的证明.

特殊模型 抽象函数 正比例函数f(x)=kx (k≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f (x)f(y) [或) y (f )x (f )y x (f = ] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y )=f(x )f(y) [) y (f )x (f )y x (f = -或 对数函数 f(x )=lo ga x (a 〉0且a≠1) f(xy)=f(x )+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x )=si nx f (x)=cosx f(x+T )=f(x ) 正切函数 f(x )=tanx )y (f )x (f 1)y (f )x (f )y x (f -+= + 余切函数 f(x)=co tx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 1。已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。 证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……① 在①中令y =0则2(0)f =2(0)f ∵(0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。 2.奇函数()f x 在定义域(-1,1)内递减,求满足2 (1)(1)0f m f m -+-<的实数m 的取值范围。 解:由2 (1)(1)0f m f m -+-<得2 (1)(1)f m f m -<--,∵()f x 为函数,∴2 (1)(1)f m f m -<- 又∵()f x 在(—1,1)内递减,∴2 21111110111m m m m m -<--? 3。如果()f x =2 ax bx c ++(a 〉0)对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小 解:对任意t 有(2)2)f t f t +=-∴x =2为抛物线y =2 ax bx c ++的对称轴 又∵其开口向上∴f (2)最小,f (1)=f (3)∵在[2,+∞)上,()f x 为增函数 ∴f (3)〈f (4),∴f (2)〈f (1)〈f (4) 4。 已知函数f (x )对任意实数x,y ,均有f(x +y )=f (x )+f (y ),且当x >0时,f (x)>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。 分析:由题设可知,函数f (x )是的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。 解:设,∵当 ,∴ , ∵, ∴ ,即,∴f (x )为增函数. 在条件中,令y =-x ,则,再令x =y=0,则f (0)=2 f (0),∴f (0)=0,故f(-x)=f (x ),f(x )为奇函数, ∴f (1)=-f (-1)=2,又f (-2)=2 f (-1)=-4, ∴f(x )的值域为[-4,2]。

抽象函数的解题方法与技巧窍门

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract:: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords: abstract function; property; evaluation; analytic method; problem solving skills; 1.提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的

抽象函数的单调性

抽象函数的单调性 抽象函数的含义:没有解析式的函数,在考试中抽象函数始终作为一大难点出现在考生面前。思路:添项法。 类型:一次函数型,幂函数型,指数函数型,对数函数型。 或 例1、() f x对任意,x y R ∈都有:()()() f x y f x f y +=+,当0,()0 x f x >< 时,判断() f x在R上的单调性。 ()()() () ()()上是增函数 在 解: R x f x f x f x x f x x x x x x f x f x f x x f x f x x x f x f x f x x R x x ) ( ,0 ) ( ,0 ) ( ) ( ) ( ) ( , , 2 1 2 1 2 1 2 1 2 1 2 2 2 1 2 2 2 1 2 1 2 1 2 1 < - ∴ < - > - ∴ > - = - + - = - + - = - < ∈ ? 例2、f(x)对任意实数x与y都有()()()2 f x f y f x y -=--,当x>0时,f(x)>2 (1)求证:f(x)在R上是增函数;(2)若f(1)=5/2,解不等式f(2a-3) < 3 () () 2 5 2 3 2 ) ( )2( )3 2( 3 )2( 2 )1 2( )1( )2( ,1 ,2 2 ) ( ) ( ,0 2 ) ( 2 ) ( ,0 , 2 ) ( ) ( , 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 > > - ∴ < - ∴ = ∴ - - = - = = ∴ > - > - - ∴ > > > - > - - = - > ∈ < ? a a R x f f a f f f f f y x R x f x f x f x x f x f x x x x x x x f x f x f x x R x x 解得 上是增函数 在 又 原不等式可化为 则 )令 ( 上是增函数 在 则 时, 当 ) 解:( 【专练】:1、已知函数f x()对任意x y R ,∈有f x f y f x y ()()() +=++ 2,当x>0时,f x()>2,f()35 =,求不等式f a a () 2223 --<的解集。 2、定义在R上的函数f(x)满足:对任意x,y∈R都有()()() f x y f x f y -=-,且当0,()0 x f x << 时 (1)求证f(x)为奇函数; (2)若f(k·3x)+f(3x-9x-2)<0对任意x∈R恒成立,求实数k的取值范围.

抽象函数常见解法及意义总结

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0 x x f x x x +≥?=?--

抽象函数的解题方法与技巧

抽象函数的解题方法与技巧 摘要:抽象函数是没有具体的解析式,只给出它的一些特征、性质或一些特殊关系式的函数。因而显得特别抽象。所以解决抽象函数问题需要从函数的本质出发,考虑其定义,性质,加之解决抽象函数问题时常用的技巧——赋值法,换元法等。尽可能使抽象函数变得不再抽象。 关键词:抽象函数;性质;求值;解析式 ;解题方法;技巧 Problem-solving methods and skills of abstract functions Xue Jie School of Mathematics and Statistics, Southwest University, Chongqing 400715, China Abstract :: abstract function is not analytic type specific, given only the function characteristics, its nature or some special relationship. So it is especially abstract. So to solve the abstract function problems need from the view of function essence, considering its definition, nature, and solve the abstract function problems commonly used techniques -- assignment method, substitution method etc.. As far as possible to make the abstract function is no longer abstract. Keywords : abstract function; property; evaluation; analytic method; problem solving skills; 1. 提出问题的背景 抽象函数问题是函数中的一类综合性较强的问题,这类问题通过对函数性质结构的代数表述,能够综合考查学生对于数学符号语言的理解和接受能力,考查对函数性质的代数推理和论证能力,考查学生的抽象思维和对知识的灵活运用能力,考查学生对于一般和特殊关系的认识,因而成为近几年高考命题的热点。由于抽象函数问题只给出函数所满足的一般性质或运算法则,没有明确的表示形式,因其抽象性和综合型,对学生而言有较大的难度。因此有必要对抽象函数的解题方法和技巧进行归纳总结。 2. 抽象函数的知识点 (1)定义域:函数的定义域指自变量x 的取值范围。所以对抽象函数()x f ,()[]x g f 而言,其定义域均指的是x 的取值范围。对于()[]x g f 和()[]x h f ,其中()x g 和()x h 的地位是等价的,故取值范围是一样的。 (2)值域:函数的值域指函数值的取值范围。那么具有相同对应关系的两个抽象函数 ()[]x g f 和()[]x h f ,它们的值域是相同的。

函数单调性地判断或证明方法

函数单调性的判断或证明方法. ( 1)定义法。用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、 配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。 例 1. 判断函数在(-1,+∞ )上的单调性,并证明. 解:设- 10, x2+ 1>0. ∴当 a>0 时, f(x 1) - f(x 2)<0 ,即 f(x 1)0 ,即 f(x 1)>f(x ∴函数 y= f(x) 在 ( - 1,+∞ ) 上单调递减. 2),2), 例 2.证明函数在区间和上是增函数;在上为减函数。(增两端,减中间) 证明:设,则 因为,所以, 所以,

所以 所以 设 则, 因为, 所以 所以 所以 , 同理,可得 (2)运算性质法 . ①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数, 增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增 +增=增;减 +减 =减;增 -减=增,减 -增=减) ②若. ③当函数 ④ 函数 . 二者有相 反的单调性。 ⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。( 3)图像法 . 根据函数图像的上升或下降判断函数的单调性。 例 3. 求函数的单调区间。 解:

抽象函数问题的解题策略

抽象函数问题的解题策略Last revision on 21 December 2020

抽象函数问题的解题策略 一、利用特殊模型 有些抽象函数问题,用常规解法很难解决,但与具体函数“对号入座”后,问题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一般不能用此法. 例1 若函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y), f(-2)=f(1)≠0,则g(1)+g(-1)= . 解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型, 又f(-2)=f(1)≠0, 则可取x x f 3 2sin )(π= 于是 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y), f(-3)=8,则不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型, 又 f(-3)=8, 则可取 ∵f(x)f(x-2)< ∴2)21()21(-x x <2561, 即22)21(-x <8)2 1(, ∴ 2x-2 >8, 解不等式,得 x>5, ∴ 不等式的解集为 {x|x >5}. 二、利用函数性质 函数的特征是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所表明的函数的性质,灵活进行等价转化,抽象函数问题才能峰回路 转、化难为易. 1. 利用单调性 例3 设f(x)是定义在(0,+∞)上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2. 解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1, ∴ 2=1+1=f(3)+f(3)=f(9), 由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9), ∵ 函数f(x)是定义在(0,+∞)上的增函数, 则 ∴ 不等式解集为 {x|80, x-8>0, x(x-8)≤9, 8

抽象函数单调性及奇偶性练习及答案

1、已知的定义域为R ,且对任意实数x ,y 满足,求 证:是偶函数。 2、已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x,y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1),f(-1)的值; (2)判断f(x)的奇偶性,并说明理由. 3、函数f(x)对任意x ?y ∈R,总有f(x)+f(y)=f(x+y),且当x>0时, <0, f(3)=-2. (1)判断并证明f(x)在区间(-∞,+∞)上的单调性; (2)求f(x)在[-3,3]上的最大值和最小值. 4、已知函数f (x )在(-1,1)上有定义,f (2 1)=-1,当且仅当0

(1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; 6、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1; (2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 7、已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2) 判断函数()f x 的单调性,并证明. 8、函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任 意,x y R ∈,有()[()]y f xy f x =;③1 ()13 f >.

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

抽象函数的单调性专题

抽象函数的单调性专题突破 或例1、 ()f x 对任意,x y R ∈都有:()()()f x y f x f y +=+,当0,()0x f x ><时,又知(1)2f =-,求()f x 在 []3,3x ∈-上的值域。 例2、()f x 对任意实数x 与y 都有 ()()()2f x f y f x y -=--,当0x >时,()2f x > (1)求证:()f x 在R 上是增函数; (2)若5 (1)2 f = ,解不等式(23)3f a -< 【专练】:1、已知函数f x ()对任意x y R ,∈有f x f y f x y ()()()+=++2,当x >0时,f x ()>2,f ()35=, 求不等式f a a ()2 223--<的解集。 2、定义在R 上的函数()f x 满足:对任意x ,y ∈R 都有 ()()()f x y f x f y -=-,且当0,()0x f x <<时 (1)求证()f x 为奇函数; (2)若f(k ·3x )+f(3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

或例1、()f x 是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1. (1) (1)f 和1()9 f 的值;(2)证明f(x)在x>0上是减函数;(3)解不等式f(x) + f(2-x) < 2。 例2、定义在(0,)+∞上函数()y f x =对任意的正数,a b 均有:()()()a f f a f b b =-,且当1x <时,()0f x >,(I )求(1)f 的值;(II )判断()f x 的单调性, 【专练】:1、定义在(0,)+∞上的函数f(x)对任意的正实数,x y 有)()()(y f x f y x f -=且当01x <<时, ()0f x <. 求:(1))1(f 的值. (2)若1)6(=f ,解不等式2)1()3(<-+x f x f ;

赋值法解答抽象函数的赋值

赋值法解答抽象函数问题的赋值技巧与策略 函数是高中数学的重要内容,也是高考的热点.对于没有明确给出具体表达式的函数,称之为抽象函数.解答抽象函数问题的方法较多,其中用赋值法进行解答就是一种行之有效的方法.赋值主要从以下方面考虑:①令x=…、﹣2、﹣1、0、1、2…等特殊值求抽象函数的函数值;②令x=x 2,y=x 1或y=1 x 1,且x 10、y>0时,恒有f(xy)=f(x)+f(y). (1)求证:当x>0时,f(1 x )=﹣f(x);(2)若x>1时恒有f(x)<0,求证:f(x)必有反函数; 解析:(1)在f(xy)=f(x)+f(y)中,令x=y=1,得f(1)=0,又令y=1x ,得f(x)+f(1x )=f(x ·1 x )= f(1)=0, ∴当x>0时,f(1 x )=﹣f(x); (2)设x 1>0、x 2>0且x 11,∴f(x 2x 1)<0,又在f(xy)=f(x)+f(y)中,令x= x 2,y=1 x 1 , ∴f(x 2·1x 1)=f(x 2)+f(1x 1).由(1)得,f(1x 1)=﹣f(x 1),∴f(x 2 x 1 )=f(x 2)﹣f(x 1) <0,∴f(x 2)0时,f(x)>0.试判

抽象函数的单调性专题突破(20191224050241)

精品资料欢迎下载 抽象函数的单调性专题突破 一类:一次函数型函数满足: () () ()f a b f a f b k 或 () ()()f a b f a f b k 例1、 ()f x 对任意,x y R 都有:() () ()f x y f x f y ,当0,() 0x f x 时,又知(1) 2f ,求()f x 在 3,3x 上的值域。 例2、f(x)对任意实数x 与y 都有()()()2f x f y f x y ,当 x>0时,f(x)>2 (1)求证:f(x) 在R 上是增函数; (2)若f(1)=5/2,解不等式f(2a-3) < 3 【专练】:1、已知函数f x ()对任意x y R ,有f x f y f x y ()()()2,当x 0时,f x () 2,f ()35, 求不等式f a a () 2 223的解集。 2、定义在R 上的函数f(x)满足:对任意 x ,y ∈R 都有 ()()()f x y f x f y ,且当0,()0 x f x 时(1)求证f(x)为奇函数; (2)若f(k ·3x )+f(3x -9 x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围. 二类:对数函数型函数满足: ()()() f a b f a f b 或 () ()() a f f a f b b 例1、f(x)是定义在x>0的函数,且f(xy) = f(x) + f(y);当x>1时有f(x)<0;f(3) = -1. (1)求f(1)和f(1/9)的值;(2)证明f(x)在x>0上是减函数;(3)解不等式f(x) + f(2-x) < 2 。 例2、定义在(0,)上函数()y f x 对任意的正数,a b 均有:() () ()a f f a f b b ,且当1x 时,()0f x , (I )求(1)f 的值;(II )判断()f x 的单调性, 【专练】:1、定义在(0, )上的函数 f(x)对任意的正实数 ,x y 有)() ()( y f x f y x f 且当0 1x 时, ()0f x . 求:(1) )1(f 的值. (2)若1) 6(f ,解不等式2)1 () 3(x f x f ; 2、函数()f x 的定义域是 0x 的一切实数,对定义域内的任意 12,x x 都有1212()()()f x x f x f x ,且当1 x 时() 0,(2)1f x f 又,(1)求证:()f x 是偶函数;(2)()f x 在(0,)上是增函数( 3)解不等式

抽象函数问题的解题策略

抽象函数问题的解题策略 一、利用特殊模型 有些抽象函数问题,用常规解法很难解决,但与具体函数“对号入座”后,问题容易迎刃而解.这种方法多用于解填空题、选择题、解答题的解题后的检验,但解答题的解答书写过程一般不能用此法. 例1 若函数f(x)与g(x)在R 上有定义,且f(x-y)=f(x)g(y)-g(x)f(y), f(-2)=f(1)≠0,则g(1)+g(-1)= . 解 因为 f(x-y)=f(x)g(y)-g(x)f(y), 这是两角差的正弦公式模型, 又f(-2)=f(1)≠0, 则可取x x f 3 2sin )(π= 于是 f(-1-1)=f(-1)g(1)-g(-1)f(1) 例2 设函数f(x)是定义在R 上的减函数,且满足f(x+y)=f(x)f(y), f(-3)=8,则不等式f(x)f(x-2)< 的解集为 . 解 因为函数f(x)满足f(x+y)=f(x)f(y),这是指数函数模型, 又 f(-3)=8, 则可取 ∵f(x)f(x-2)< ∴2)2 1()21(-x x <2561, 即22)21(-x <8)2 1(, ∴ 2x-2 >8, 解不等式,得 x>5, ∴ 不等式的解集为 {x|x>5}. 二、利用函数性质 函数的特征是通过函数的性质反映出来的,抽象函数也不例外,只有充分利用题设条件所表明的函数的性质,灵活进行等价转化,抽象函数问题才能峰回路 转、化难为易. 1. 利用单调性 例3 设f(x)是定义在(0,+∞)上的增函数,满足f(xy)=f(x)+f(y), f(3)=1,解不等式f(x)+f(x-8)≤2. 解 ∵ 函数f(x)满足f(xy)=f(x)+f(y), f(3)=1, ∴ 2=1+1=f(3)+f(3)=f(9), 由f(x)+f(x-8)≤2,得 f[x(x-8)]≤f(9), ∵ 函数f(x)是定义在(0,+∞)上的增函数, 则 ∴ 不等式解集为 {x|80, x-8>0, x(x-8)≤9, 8

相关主题
文本预览
相关文档 最新文档