当前位置:文档之家› 椭圆的性质练习题

椭圆的性质练习题

椭圆的性质练习题
椭圆的性质练习题

1.已知两椭圆2

28ax y +=和22925100x y +=的焦距相等,则a 的值为( )

A.

9917或

B. 3342或

C. 39217或

D. 394

或 2. 下列关于椭圆

22

1259

x y +=的说法正确的是( ) A.该椭圆的短轴长大于焦距. B.该椭圆只有两个顶点()()5,0,5,0-

C.该椭圆上的点在直线5,3x y =±=±所围成的矩形框里.

D.若点

(),x y 在这个椭圆上,则点(),y x 也在椭圆上.

3. 已知点()

,m n 在椭圆

228324

x y +=上,则

24

m +的取值范围是( )

A.4?-+?

B.4??

C.4?-+?

D. 4?-+?

4.已知点(),P

x y 在椭圆2221x y += )

A.

B.

1 C.

2 D.

12

5.从椭圆短轴的一个端点看长轴两端点的视角为0

120,则此椭圆的离心率是( )

A.

B.

C.

12 D.

6.若焦点在x 轴上的椭圆

22

12x y m

+=的离心率为12,则m 等于( )

A.

B.

3

2

C.

83 D. 23

7.椭圆22221x y a b +=与椭圆22

22(01)x y k k k a b

+=>≠且具有相同的( )

A.长轴长

B.离心率

C.顶点

D.焦点

8.若椭圆

22

149

x y k +=+的离心率为12e =,则k 的值是( ) A.

1

2

B.

8 C.

1142或 D. 1184

9. 椭圆22143x y +=的右焦点到直线y x =的距离是________

10.已知1F ,2F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交于椭圆于A ,B 两点,若Δ2ABF 是

等腰直角三角形,则这个椭圆的离心率是( )

A.

B. 2

C.

1-

D.

11.若点P 和点F 分别为椭圆22

143

x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为( ) A.

2 B.

3 C. 6 D. 8

12..如图,1F ,2F 分别为椭圆

22

221x y

a b

+=的左、右焦点,点P 在椭圆上,Δ2POF

___________

13..已知椭圆22

195

x y +=内有一点()1,1A ,1F ,2F 分别椭圆的左、右焦点,点P 是椭圆上的一点,求

1PA PF +的最大值和最小值是_______________和_______________

14.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点1F ,2F 在x

轴上,离心率为2

.经过点1

F 的直线l 交C 于A ,B 两点,且Δ

2ABF 的周长为16,那么C 的方程式为___________

15..已知点P 在以坐标轴为对称轴的椭圆上,点P

到两焦点的距离分别为3

和3

,过点P 作长轴的的垂线,恰好过椭圆的一个焦点,求椭圆的方程。

16. 椭圆()222210x y a b a b +=>>

的离心率e =

,焦点到椭圆上的点的最短距离为2-圆的标准方程。

17. 求经过点()1,2M ,且与椭圆

22

1126

x y +=有相同的离心率的椭圆的标准方程。

椭圆的特殊性质

一、椭圆的几何性质(以22a x +22 b y =1(a ﹥b ﹥0)为例) 1、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2 tan 2θ?b (2)(S ⊿PF1F2)max = bc (3)当P 在短轴上时,∠F 1PF 2最大 2、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M ,则M 的轨迹是x 2+y 2=a 2 证明:延长1F M 交2F P 于F , 连接OM 由已知有1PF FP =, M 为1F F 中点 ∴212OM FF ==()121 2 PF PF +=a 所以M 的轨迹方程为 222 x y a +=。 3、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切 4、过焦点F 的弦AB , )(2112定值b a BF AF =+ 5、AB 是椭圆的任意一弦,P 是AB 中点,则22 a b K K OP AB -=?(定值) 证明:令()()1122,,,A x y B x y ,()00,P x y 则()1202 x x x += ()1202 y y y += x x

22 1122 22 222211x y a b x y a b ?+=????+=?? ()()()()1212121222 ..0x x x x y y y y a b +-+-?+= ∵ ()()1212AB y y k x x -=-,00OP y k x =, ∴ 2 2A B O P b k k a ?=-。 6、椭圆的长轴端点为A 1、A 2,P 是椭圆上任一点,连结A 1P 、A 2P 并延长,交一准线于N 、M 两点,则M 、N 与对应准线的焦点张角为900 证明:令()221200,,,,,a a M y N y P x y c c ???? ? ????? ,()1,0A a -,()2,0A a ∴()()100200,,,,A P x a y A P x a y =+=-uuu r uuu r 221122,,,a a A M a y A N a y c c ???? =+=- ? ????? uuuu r uuu u r ∵ 由于1A 、P 、M 共线 ,∴ 2 0001210() a y a x a y c y a y x a a c ?++=?=++ ∵ 由于2,,A P N 共线 ,∴ 2 0002220() a y a x a y c y a y x a a c ?--=?=-- ∴ 22 242200012222 000()() a a y a y a y a a c c c y y x a x a x a c ?-?+-==?-+-, ∵ 2222 0002222201x y y b a b x a a +=?=-- ∴ 2422 1222 b a a c y y a c -=-?42b c =-, ∵ 2122,,a F M c y c a F N c y c ? ??=-? ???????? =- ?? ??? uuu r uuu r 4 122b FM FN y y c ??=+uuu r uuu r ∴ 0FM FN ?=u u u r u u u r , ∴ M 、N 与对应准线的焦点张角为900 7、圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定 x

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

高中数学椭圆讲义及例题

7.椭圆 1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2、椭圆的标准方程 1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=; 2).当焦点在y 轴上时,椭圆的标准方程:122 22=+b x a y )0(>>b a ,其中222b a c -=; 注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:22 1x y m n += 或者 mx 2+ny 2=1 。 3、椭圆:122 22=+b y a x )0(>>b a 的简单几何性质 (1)对称性:对于椭圆标准方程122 22=+b y a x )0(>>b a :是 以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对 称中心的中心对称图形,这个对称中心称为椭圆的中心。 (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。 (3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。②椭圆1 22 22=+b y a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点, 坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。 ③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=, b B B 221=。a 和b 分别叫做椭圆的长半轴长和短半轴长。 (4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作a c a c e == 22。②因为)0(>>c a ,所以e 的取值范围是)10(<

椭圆标准方程及其性质知识点大全

【专题七】椭圆标准方程及其性质知识点大全 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 )2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦 点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121 F F PF PF =+,则动点P 的轨迹为线段21F F ; ②若)(2121 F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: ●标准方程是指中心在原点,坐标轴为对称轴的标准位置的椭圆方程。 标准方程 122 22=+b y a x )0(>>b a 12 2 22=+b x a y )0(>>b a 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 c F F 221= c F F 221= 范围 a x ≤, b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长12A A ,12A A =a 2,短轴长12B B ,12B B =b 2

离心率 ①(01)c e e a = << ,②21()b e a =-③2 22b a c -= (离心率越大,椭圆越扁) 1.方程中的两个参数a 与b ,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a ,b ,c 都大于零,其中 a 最大且a 2= b 2+ c 2. 2.方程22 Ax By C +=表示椭圆的充要条件是:ABC ≠0,且A ,B ,C 同号,A ≠ B 。A >B 时,焦点在y 轴上,A <B 时,焦点在x 轴上。 (三)焦点三角形的面积公式:122tan 2 PF F S b θ ?=如图: ●椭圆标准方程为:122 22=+b y a x )0(>>b a ,椭圆焦点三角形:设P 为椭圆上任意一点, 12,F F 为焦点且∠12F PF θ=,则△12F PF 为焦点三角形,其面积为122tan 2 PF F S b θ ?=。 (四)通径 :如图:通径长 2 2b MN a = ●椭圆标准方程:122 22=+b y a x )0(>>b a , (五)点与椭圆的位置关系: (1)点00(,)P x y 在椭圆外?22 00 221x y a b +>;(2)点00(,)P x y 在椭圆上?220220b y a x +=1; (3)点00(,)P x y 在椭圆内?2200 221x y a b +< (六)直线与椭圆的位置关系: ●设直线l 的方程为:Ax+By+C=0,椭圆122 22=+b y a x (a ﹥b ﹥0),联立组成方程 组,消去y(或x)利用判别式△的符号来确定: (1)相交:0?>?直线与椭圆相交;(2)相切:0?=?直线与椭圆相切; M N F x y

椭圆的几何性质知识点归纳及典型

Evaluation Warning: The document was created with Spire.Doc for JA V A. (一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

椭圆的讲义

海豚教育个性化简案 海豚教育个性化教案(真题演练)

海豚教育个性化教案

A . 45 B .23 C .22 D .2 1 例2:已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆12 2=+n y m x 的离心率为 例3:在ABC △中,3,2||,300===∠?ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率 e = . 【变式训练】 1. 椭圆的两个焦点把两条准线间距离三等分,则椭圆离心率为( ) A. 63 B.33 C.2 3 D. 不确定 2. 椭圆的一个顶点与两焦点构成等边三角形,则此椭圆的离心率是( ) 3. 以椭圆两焦点为直径的圆交椭圆于四个不同点,顺次连结这四个点和两个焦点,恰好围成一个正六边形,则这个椭圆的离心率等于___________。 2:求离心率的取值范围 例1:已知椭圆12222=+b y a x (0>>b a ),F 1,F 2是两个焦点,若椭圆上存在一点P ,使3 221π =∠PF F ,求 其离心率e 的取值范围。 例2:已知椭圆122 22=+b y a x (0>>b a )与x 轴的正半轴交于A ,0是原点,若椭圆上存在一点M ,使MA ⊥MO , 求椭圆离心率的取值范围。 例3:已知椭圆12222=+b y a x (0>>b a ),以a ,b ,c 为系数的关于x 的方程02 =++c bx ax 无实根,求 其离心率e 的取值范围。 题型四:椭圆的其他几何性质的运用(范围、对称性等) 例1:已知实数y x ,满足12 42 2=+y x ,求x y x -+22的最大值与最小值

圆锥曲线定义、标准方程及性质(精)

圆锥曲线定义、标准方程及性质 一.椭圆 定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。 定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0>b a 取值范围:}{a x a x ≤≤-, }{b y b x ≤≤- 长轴长=a 2,短轴长=2b 焦距:2c 准线方程:c a x 2 ±= 焦半径:)(21c a x e PF +=,)(2 2x c a e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意:涉及焦半径时①用点P 坐标表示,②第一定义,第二定义。) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A += =等等。顶点与 准线距离、焦点与准线距离分别与c b a ,,有关。 (2)21F PF ?中经常利用余弦定理....、三角形面....积公式... 将有关线段1PF 、2PF 、2c , 有关角21PF F ∠结合起来,建立1 PF +2PF 、1 PF ? 2PF 等关系 (3)椭圆上的点有时常用到三角换元:?? ?θ =θ =sin cos b y a x ; (4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相 应的性质。 二、双曲线 (一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。 Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。 (二)图形: (三)性质 方程:12222=-b y a x )0,0(>>b a 122 22=-b x a y )0,0(>>b a 取值范围:}{a x a x x ≤≥或; 实轴长=a 2,虚轴长=2b 焦距:2c

椭圆及其性质

第十章 圆锥曲线 本章知识结构图 第一节 椭圆及其性质 考纲解读 1. 了解圆锥曲线的实际背景及其在刻画现实世界和解决实际问题中的作用. 2. 掌握椭圆的定义,标准方程,几何图形及其简单性质 3. 了解椭圆的简单应用 4. 理解数形结合的思想 命题趋势研究 椭圆是圆锥曲线的重要内容,高考主要考查椭圆的基本性质,椭圆方程的求法,椭圆定义的运用和椭圆中各个量的计算,尤其是对离心率的求解,更是高考的热点问题,在各种题型中均有题型 预测2019年高考对本节考查内容为: (1) 利用标准方程研究几何性质,尤其是离心率的求值及取值范围问题. (2) 利用已知条件求出椭圆的方程,特别是与向量结合求方程更是重点.椭圆的定义,标 准方程和几何性质及直线相交问题的考查以中档题目为主,每年高考分值大多保持在5分. 知识点精讲 曲线与方程 轨迹方程的求法:直接法、定义法、相关点法 圆锥曲线 椭圆 双曲线 抛物线 定义及标准方程 性质 范围、对称性、顶点、焦点、长轴(实轴)、短轴(虚轴)、渐近线(双曲线)、准线(只要求抛物线) 离心率 对称性问题 中心对称 轴对称 点(x 1,y 1) ───────→关于点(a ,b )对称点(2a -x 1,2b -y 1 ) 曲线f (x ,y ) ───────→ 关于点(a ,b )对称曲线f (2a -x ,2b -y ) ? ????A ·x 1+x 22+B ·y 1+y 2 2+C =0y 2-y 1x 2-x 1·(-A B )=-1 特殊对称轴 x ±y +C =0 直接代入法 点(x 1,y 1)与点(x 2,y 2)关于 直线Ax +By +C =0对称

高中数学知识点总结_椭圆及其性质

椭圆及其性质 1.方程 12 2 =+ n y m x 表示椭圆?m >0,n >0,且m ≠n ;2 a 是m ,n 中之较大者,焦点 的位置也取决于m ,n 的大小。 [举例] 椭圆 14 2 2 =+ m y x 的离心率为 2 1,则m = 解析:方程中4和m 哪个大哪个就是2a ,因此要讨论;(ⅰ)若04,则,42=b m a =2 , ∴4-=m c , ∴e = m m 4 -= 21 ,得m =316 ;综上:m =3或m = 3 16 。 [巩固]若方程:x 2+ay 2=a 2 表示长轴长是短轴长的2倍的椭圆,则a 的允许值的个数是 A 1个 B .2个 C.4个 D.无数个 2.椭圆 12 22 2=+ b y a x 关于x 轴、y 轴、原点对称;P(x,y)是椭圆上一点,则|x|≤a,|y|≤b , a-c ≤|PF|≤a+c ,(其中F 是椭圆的一个焦点),椭圆的焦点到短轴端点的距离为a ,椭圆的焦准距为 c b 2 ,椭圆的通经(过焦点且垂直于长轴的弦)长为2 a b 2 ,通经是过焦点最短的弦。 [举例1] 已知椭圆 12 22 2=+ b y a x (a >0,b >0)的左焦点为F ,右顶点为A ,上顶点为B ,若 BF ⊥BA,则称其为“优美椭圆”,那么“优美椭圆”的离心率为 。 解析:|AB|2=a 2+b 2,|BF|=a ,|FA|=a +c ,在Rt ⊿ABF 中,(a +c )2=a 2+b 2+a 2 化简得: c 2+a c -a 2=0,等式两边同除以a 2得:012 =-+e e ,解得:e = 2 15-。 注:关于a ,b ,c 的齐次方程是“孕育”离心率的温床。 [举例2] 已知椭圆 12 22 2=+ b y a x (a >0,b >0)的离心率为 5 3,若将这个椭圆绕着它的右焦 点按逆时针方向旋转 2 π 后,所得的新的椭圆的一条准线的方程为y =3 16,则原来椭圆的方 程是 。 解析:原来椭圆的右焦点为新椭圆的上焦点,在x 轴上,直线y = 3 16为新椭圆的上准线, 故新椭圆的焦准距为3 16,∴原来椭圆的焦准距也为3 16,于是有: c b 2 =3 16 ①,

(完整版)抛物线及其性质知识点大全

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

椭圆性质总结及习题

椭 圆 一.考试必“背” 1 椭圆的两种定义: ①平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 ②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集 M={P| e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2 标准方程: (1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= 注意:①在两种标准方程中,总有a >b >0,22b a c -= 并且椭圆的焦点总在长轴上; ②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A < B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。 3.参数方程 :椭圆122 22=+b y a x )0(>>b a 的参数方程 ?? ?==θθ s i n c o s b y a x )(为参数θ 4.性质:对于焦点在x 轴上,中心在原点:12 2 22=+b y a x (a >b >0)有以下性质: 坐标系下的性质: ① 范围:|x|≤a ,|y|≤b ; ② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0); ③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ; (a 半长轴长,b 半短轴长); ④ 准线方程:c a x 2± =;或c a y 2 ±= ⑤ 焦半径公式:P (x 0,y 0)为椭圆上任一点。|PF 1|=左r =a+ex 0,|PF 2|=右r =a-ex 0; |PF 1|=下r =a+ey 0,|PF 2|=上r =a-ey 0;c a PF c a PF -=+=min max ,

椭圆的基本性质

课题:12.4椭圆的基本性质(二课时) 教学目标: 1、掌握椭圆的对称性,顶点,范围等几何性质. 2、能根据椭圆的几何性质对椭圆方程进行讨论,在此基础上会画椭圆的图形. 3、学会判断直线与椭圆的位置,能够解决直线与椭圆相交时的弦长问题,中点问题等. 4、在对椭圆几何性质的讨论中,注意数与形的结合与转化,学会分类讨论、数形结合等数学思想和探究能力的培养;培养探究新事物的欲望,获得成功的体验,树立学好数学的信心. 教学重点:椭圆的几何性质及初步运用 教学难点:直线与椭圆相交时的弦长问题和中点问题 教学过程: 一.课前准备: 1、 知识回忆 (1) 椭圆和圆的概念 (2) 椭圆的标准方程 2、课前练习 1) 圆的定义: 到一定点的距离等于______的图形的轨迹。 椭圆的定义: _______________________________的图形的轨迹。 2) 椭圆的标准方程: 1。焦点在x 轴上____________( ) 2。焦点在y 轴上____________( ) 若125 162 2=+y x ,则椭圆的长轴长________短半轴长__________,焦点为____________,顶点坐标为__________,焦距为______________ 二.教学过程设计 一、引入课题 “曲线与方程”是解析几何中最重要最基本的内容其中有两类基本问题:一是由曲线求方程,二是由方程画曲线.前面由椭圆定义推导出椭圆的标准方程属于第一类问题,本节课将研究第二类问题,由椭圆方程画椭圆图形,为使列表描点更准确,避免盲目性,有必要先对椭圆的范围、对称性、顶点进行讨论. 二、讲授新课 (一) 对称性 问题1:观察椭圆标准方程的特点,利用方程研究椭圆曲线的对称性? x -代x 后方程不变,说明椭圆关于y 轴对称; y -代y 后方程不变,说明椭圆曲线关于x 轴对称; x -、y -代x ,y 后方程不变,说明椭圆曲线关于原点对称; 问题2:从对称性的本质上入手,如何探究曲线的对称性? 以把x 换成-x 为例,如图在曲线的方程中,把x 换

椭圆定义及性质整合

椭圆定义及性质的应用 一、椭圆的定义 椭圆第一定义 第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距. ★过点1F 作12PF F ?的P ∠的外角平分线的垂线,垂足为Q ,则Q 的轨迹方程为222 x y a +=. 推导过程:延长1F Q 交2F P 于M ,连接OQ , 由已知有PQ 为1MF 的中垂线,则1PF PM =,Q 为1 F M 中点,212OQ F M ==()121 2 PF PF +=a ,所以Q 的轨迹方程为 222 x y a +=.(椭圆的方程与离心率学案第5题) 椭圆第二定义 第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<

推导过程: 2 200 a PF ed e x a ex c ?? ==-=- ? ?? ;同理得 10 PF a ex =+. 简记为:左加右减a在前.由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数. (离心率、焦点弦问题)例1:(2010全国卷Ⅱ理数12题)已知椭圆 22 22 :1(0) x y C a b a b +=> >的离心率为 3 ,过右焦点F且斜率为(0) k k>的直线与C相交于,A B两点.若3 AF FB = u u u r u u u r ,则k=() A.1 D.2 B【解析】解法一:1122 (,),(,) A x y B x y,∵3 AF FB = u u u r u u u r ,∴12 3 y y =-,∵ 2 e=,设2, a t c ==,b t=,∴222 440 x y b +-=,直线AB方程为x my =.代入消去x,∴222 (4)0 m y b ++-=,∴ 2 1212 22 , 44 b y y y y m m +=-=- ++ ,则 2 2 22 22 2,3 44 b y y m m -=--=- ++ ,解得2 1 2 m=,则k= 0 k>. 解法二:设直线l为椭圆的右准线,e为离心率,过,A B别作11 , AA BB垂直于l, 11 , A B为垂足,过B作BH垂直于1 AA与H,设BF m =,由第二定义得, 11 , AF BF AA BB e e ==,由3 AF FB = u u u r u u u r ,得 1 3m AA e =, 2m AH e =,4 AB m =,则 2 1 cos 42 m AH e BAH AB m e ∠====,则sin BAH ∠=tan BAH ∠=,则k=0 k>.故选B. (离心率、焦点弦问题)例2:倾斜角为 6 π 的直线过椭圆)0 (1 2 2 2 2 > > = +b a b y a x 的左焦点F,交椭圆于,A B 两点,且有3 AF BF =,求椭圆的离心率.

椭圆常见性质

椭圆常见性质 1. 11 || 1PF e d =< 2.PT 平分12PF F ?在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3.以焦点弦PQ 为直径的圆必与对应准线相离. 4.以焦点半径1PF 为直径的圆必与长轴为直径的圆内切. 5.设12,A A 为椭圆的左,右顶点,则12PF F ?在边2PF (或1PF )上的旁切圆,必与12A A 所在的直线切与2A (或1A ). 6.椭圆焦点三角形的旁切圆必切长轴于非焦顶点同侧的长轴端点. 7.椭圆两焦点到椭圆焦点三角形旁切圆的切线长为定值a+c 与a-c . 8.椭圆焦点三角形的非焦顶点到其内切圆的切线长为定值a-c . 9.椭圆焦点三角形中,内心将内点与非焦顶点连线段分成定比c . 10.椭圆焦点三角形中,过任一焦点向非焦顶点的外角平分线引垂线,则椭圆中心与垂足连线必与另一焦半径所在直线平行. 11.椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,则椭圆中心与垂足的距离为椭圆长半轴的长. 12.椭圆焦三角形中,过任一焦点向非焦顶点的外角引垂线,垂足就是垂足同侧焦半径为直径的圆的和椭圆长轴为直径的圆的切点. 13.椭圆22 221(0)x y a b a b +=>>的焦半径公式: 1020||,||.PF a ex PF a ex =+=-(0x 是P 点横坐标). 14.设P 点是椭圆22 221(0)x y a b a b +=>>上异于长轴端点的任一点,12,F F 为其焦点.记 12F PF θ∠=,则1222122(1)||||;(2)tan .1cos 2 PF F b PF PF S b θ θ?= =+ 15.若P 为椭圆22 221(0)x y a b a b +=>>上异于长轴端点的任一点, 12,F F 为其焦点, 1221,PF F PF F αβ∠=∠=,则 tan tan .22 a c a c αβ -=+ 16.设椭圆22 221(0)x y a b a b +=>>的两个焦点为12,F F ,P(异于长轴端点)为椭圆上任意一点,

椭圆基本知识点总结终审稿)

椭圆基本知识点总结公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

椭圆知识点 知识点一:椭圆的定义 平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若2121F F PF PF <+,则动点P 的轨迹无图形. 知识点二:椭圆的简单几何性质 椭圆:12222=+b y a x )0(>>b a 与 122 22=+b x a y )0(>>b a 的简单几何性质 标准方程 122 22=+b y a x )0(>>b a 122 22=+b x a y )0(>>b a 图形 性质 焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F 焦距 c F F 221= c F F 221= 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 )0,(a ±,),0(b ± ),0(a ±,)0,(b ± 轴长 长轴长=a 2,短轴长=b 2 离心率 )10(<<= e a c e c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1; (p 是椭圆上一点)

1.椭圆标准方程中的三个量c b a ,,的几何意义 222c b a += 2.通径:过焦点且垂直于长轴的弦,其长a b 2 2 3.最大角:p 是椭圆上一点,当p 是椭圆的短轴端点时,21PF F ∠ 为最大角。 4.焦点三角形的面积2 tan 2 21θ b S F PF =?,其中21PF F ∠=θ 5. 用待定系数法求椭圆标准方程的步骤. (1)作判断:依据条件判断椭圆的焦点在x 轴上还是在y 轴上. (2)设方程: ①依据上述判断设方程为2222b y a x +=1)0(>>b a 或22 22a y b x +=1)0(>>b a ②在不能确定焦点位置的情况下也可设mx 2+ny 2=1(m >0,n >0且m ≠n ). (3)找关系,根据已知条件,建立关于a ,b ,c 或m ,n 的方程组. (4)解方程组,代入所设方程即为所求. 6.点与椭圆的位置关系: 2222b y a x +<1,点在椭圆内,2222b y a x +=1,点在椭圆上,22 22b y a x +>1, 点在椭圆外。 7.直线与椭圆的位置关系 设直线方程y =kx +m ,若直线与椭圆方程联立,消去y 得关于x 的一元二次方程:ax 2+bx +c =0(a ≠0). (1)Δ>0,直线与椭圆有两个公共点;(2)Δ=0,直线与椭圆有一个公共点; (3)Δ<0,直线与椭圆无公共点. 8.弦长公式: 若直线b kx y l +=:与圆锥曲线相交与A 、B 两点,),(),,2211y x B y x A (则弦长 221221)()(y y x x AB -+-=221221)()(kx kx x x -+-= 2121x x k -+= 2122124)(1x x x x k -++= 9.点差法: 就是在求解圆锥曲线题目中,交代直线与圆锥曲线相交所截的线段中点坐标的时候,利用直线和圆锥曲线的两个交点,并把交点代入圆锥曲线的方程,并作差。求出直线的斜率,然后利用中点求出直线方程。 步骤:①设直线和圆锥曲线交点为?,,其中点坐标为,则得到关系式 , ..

椭圆的几何性质讲义

8.1 椭圆方程及性质 一、明确复习目标 1.掌握椭圆的定义、标准方程,了解椭圆的参数方程 2.掌握椭圆的简单几何性质;掌握a ,b ,c ,e 等参数的几何意义及关系. 二.建构知识网络 1. 椭圆的两种定义: (1)平面内与两定点F 1,F 2的距离的和等于定长() 212F F a >的点的轨迹,即点集 M ={P | |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨 迹)。其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。 (2)平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M ={P | e d PF =,0<e <1的常数 }。(1=e 为抛物线;1>e 为双曲线) 2. 标准方程:(1)焦点在x 轴上,中心在原点:122 22=+b y a x (a >b >0); 焦点F 1(-c ,0), F 2(c ,0)。其中22b a c -= (一个?Rt ) 《 (2)焦点在y 轴上,中心在原点:122 22=+b x a y (a >b >0); 焦点F 1(0,-c ),F 2(0,c )。其中22b a c -= (3)两种标准方程可用统一形式表示:Ax 2 +By 2 =1 (A >0,B >0,A ≠B 当A <B 时, 椭圆的焦点在x 轴上,A >B 时焦点在y 轴上),这种形式用起来更方便。 3.性质:对于椭圆:122 22=+b y a x (a >b >0)如下性质必须熟练掌握: ①范围; ②对称轴,对称中心; ③顶点; ④焦点; ⑤准线方程; ⑥离心率; (参见课本)

椭圆的复习专题

椭圆 一、椭圆的定义、基本性质 (一)椭圆的定义及椭圆的标准方程: ●椭圆定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数 ,即__________________________ 这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:①若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;②若)(2121F F PF PF <+,则动点P 的轨迹无图形 (二)椭圆的简单几何性: 标准方程 12 2 22=+b y a x )0(>>b a 12 2 22=+b x a y )0(>>b a 图形 性质 焦点 焦距 范围 a x ≤,b y ≤ b x ≤,a y ≤ 对称性 关于x 轴、y 轴和原点对称 顶点 轴长 离心率 (离心率越大,椭圆越______) 1.方程中的两个参数a 与b,确定椭圆的形状和大小,是椭圆的定型条件,焦点F 1,F 2的位置,是椭圆的定位条件,它决定椭圆标准方程的类型,常数a,b,c 都大于零,其中a 最大且a 2 =b 2 +c 2 .

2. 方程22 Ax By C +=表示椭圆的充要条件是:AB C≠0,且A,B ,C 同号,A ≠B 。A >B 时,焦点在y 轴上,A<B时,焦点在x 轴上。 练习 题型一 椭圆的定义 1、已知椭圆 上一点到椭圆的一个焦点的距离为,则到另一焦点 距离为________ 2、已知、为椭圆的两个焦点,过的直线交椭圆于、两点, 若,则=__________. 3、在平面直角坐标中,椭圆的中心为原点,焦点,在轴上,离心率为,过 的直线交C于,两点,且△ 的周长为,那么的方程为( ) A. B. C. D. 题型二 椭圆的方程 1、已知 ,则椭圆的标准方程是( ) A.B. C . 或 D. 2、如果 表示焦点在轴上的椭圆,那么实数k 的取值范围是( ) A. B . C. D. 3、已知椭圆的中心在原点,焦点在轴上,若其离心率为,焦距为,则该椭圆的方程是__________. 4、已知 两点,动点满足 .求动点 的轨迹方程. 5、求与椭圆 有相同焦点,且过点的椭圆方程.

椭圆的第一定义与基本性质的练习题(精)

椭圆的第一定义与基本性质的练习题 1.椭圆2x2+3y2=6的焦距是 A.2 B.2(- C.2 D.2(+ 2.方程4x2+Ry2=1的曲线是焦点在y轴上的椭圆,则R的取值范围是 A.R>0 B.0

10.椭圆的焦点、,P为椭圆上的一点,已知,则△的面积为()(A)9 (B)12 (C)10 (D)8 11.AB为过椭圆+=1中心的弦,F(c,0为椭圆的右焦点,则△AFB面积的最大值是 A.b2 B.ab C.ac D.bc 12.若椭圆的两个焦点为F1(-4,0、F2(4,0,椭圆的弦AB过点F1,且△ABF2的周长为20,那么该椭圆的方程为__________. 14.与椭圆具有相同的离心率且过点(2,-)的椭圆的标准方程是_____ 15.椭圆+ =1的焦点为F1、F2,点P为其上的动点,当∠F1PF2为钝角时,点P横坐标的取值范围是__________. 椭圆的第二定义与性质的练习题 16.点M到一个定点F(0,2的距离和它到一条定直线y=8的距离之比是1∶2,则M点的轨迹方程是__________. 17.如果椭圆的两个焦点将长轴三等分,那么这个椭圆的两条准线间的距离是焦距的 A.4倍 B.9倍 C.12倍 D.18倍 18.设点A(-2,,椭圆+ =1的右焦点为F,点P在椭圆上移动.当|PA|+2|PF|取最小值时,P点的坐标是__________. 19.设椭圆+=1(a>b>0的左焦点为F1(-2,0,左准线l1与x轴交于点N(-3,0,过点N且倾斜角为30°的直线l交椭圆于A、B两点. (1求直线l和椭圆的方程; (2求证:点F1(-2,0在以线段AB为直径的圆上.

相关主题
文本预览
相关文档 最新文档