当前位置:文档之家› 流体力学 气体的一元流动

流体力学 气体的一元流动

流体力学 气体的一元流动
流体力学 气体的一元流动

第8章 气体的一元流动

一、 学习的目的和任务

1.掌握可压缩气体的伯努利方程 2.理解声速和马赫数这两个概念

3.掌握一元气体的流动特性,能分析流速、流通面积、压强和马赫数等参数的相互关系 4.掌握气体在两种不同的热力管道(等温过程和绝热过程)的流动特性。

二、 重点、难点

1.重点: 声速、马赫数、可压气体的伯努利方程、等温管道流动、绝热管道流动 2.难点: 声速的导出、管道流动参数的计算

由于气体的可压缩性很大,尤其是在高速流动的过程中,不但压强会变化,密度也会显著地变化。这和前面研究液体的章节中,视密度为常数有很大的不同。

气体动力学研究又称可压缩流体动力学,研究可压缩性流体的运动规律及其应用。其在航天航空中有广泛的应用,随着研究技术的日益成熟,气体动力学在其它领域也有相应的应用。本章将简要介绍气体的一元流动。

8.1 气体的伯努利方程

在气体流动速度不太快的情况下,其压力变化不大,则气体各点的密度变化也不大,因此可把其密度视为常数,即把气体看成是不可压缩流体。这和第四章研究理想不可压缩流体相似,所以理想流体伯努利方程完全适用,即

22

1122

1222p u p u z z g g g g

ρρ++=++ (8.1-1)

上式中12,p p ——流体气体两点的压强; 12,u u ——流动气体两点的平均流速

在气体动力学中,常以g ρ乘以上式(8.1-1)后气体伯努利方程的各项表示称压强的

形式,即

2

212

11222

2

u u p gz p gz ρρρρ++

=++

(8.1-2)

由于气体的密度一般都很小,在大多数情况下1gz ρ和2gz ρ很相近,故上式(8.1-2)就可以表示为

2

212

122

2

u u p p ρρ+

=+

(8.1-3)

前面已经提到,气体压缩性很大,在流动速度较快时,气体各点压强和密度都有很大的变化,式(8.1-3)就不能适用了。必须综合考虑热力学等知识,重新导出可压缩流体的伯努利方程,推导如下。

如图8-1所示,设一维稳定流动的气体,在上面任取一段微小长度ds ,两边气流断面1、2的断面面积、流速、压强、密度和温度分别为A 、u 、p 、ρ、T ;A dA +、

u du +、p dp +、d ρρ+、T dT +。

取流段1-2作为自由体,在时间dt 内,这段自由体所作的功为

()()()W pAudt p dp A dA u du dt =-+++

(8.1-4)

根据恒流源的连续性方程式,有uA C ρ=(常数),所以上式(8.1-4)可写成

()p

p dp p p dp

W Cdt Cdt Cdt d d ρ

ρρρρρ

++=

-

=-++

由于在微元内,可认为ρ和d ρρ+很相近,则上式可化简为

图8-1

ds 微元流段

(

)p p dp

dp

W Cdt Cdt ρ

ρ

--==-

(8.1-5)

又对1-2自由体进行动能分析,其动能变化量为

222111

()22

E m u du m u ?=

+- (8.1-6)

同样地根据恒流源的连续性方程式uA C ρ=(常数),故有12m m uA C ρ=== 上式就可以写成

1

(2)2

E Cdt udu Cudtdu ?==

(8.1-7)

根据功能原理有W E =?,化简得

0dp

udu ρ

+=

(8.1-8)

该式就是一元气体恒定流的运动微分方程

对上式(8.1-8)进行积分,就得一元气体恒定流的能量方程

22

dp

u C ρ+=?

(8.1-9)

式中C 为常数。上式表明了气体的密度不是常数,而是压强(和温度)的函数,气体流动密度的变化和热力学过程有关,对上式的研究取要用到热力学的知识。下面简要介绍工程中常见的等温流动和绝热流动的方程。

(1) 等温过程

等温过程是保持温度不变的热力学过程。因

p

RT ρ

=,其中T =定值,则有

p

C ρ

=(常

数),代入式(8.1-9)并积分,得

2

ln 2p

u p C ρ+= (8.1-10)

(2) 绝热过程

绝热过程是指与外界没有热交换的热力学过程。可逆、绝热过程称为等熵过程。绝热过程方程p

C γ

ρ=(常数),代入式(8.1-9)并

积分,得

2

12

p

u C γγρ+=-

(8.1-11)

式中γ为绝热指数。

8.2

声速和马赫数

8.2.1

声速

微小扰动波在介质中的传播速度称为声速。如弹拨琴弦,使弦振动了空气,其压强和密度都发生了微弱的变化,并以波的形式在介质中传播。由于人耳能接收到的振动频率有限,声速并不限于人耳能接收的声音传播速度。凡在介质中的扰动传播速度都称为声速。

如图8-2所示,截面面积为A 的活塞在充满静止空气的等径长管内运动,0u =时(0t =),管内压强为p ,空气密度为ρ,温度为T ;若以微小速度du 向右推进时间dt ,压缩空气后,压强、密度和温度分别变成了p dp +,d ρρ+和T dT +。活塞从右移动了dudt ,活塞微小扰动产生的声速传播了cdt ,c 就为声速。

取上面的控制体,列连续性方程得

()()cdtA d c du dtA ρρρ=+-

(8.2-1)

化简并略去高阶无穷小项,得

du cd ρρ=

(8.2-2)

图8-2 微小扰动波的传播

又由动量定理,得

()[()]pA p dp A cA c du c ρ-+=--

(8.2-3)

同样化简并略去高阶无穷小项,得

dp cdu ρ=

(8.2-4)

联立式(8.2-2)和式(8.2-4),得

c =

(8.2-5)

上式就为声速方程式的微分形式。

密度对压强的变化率

d dp ρ反映了流体的压缩性,d dp ρ越大,则dp

d ρ

越小,声速c 也越小;反则声速c 越大。由此可知,声速c 反映了流体的可压缩性,即声速c 越小,流体越容易压缩;声速c 越大,流体也越不易压缩。

由于微小扰动波的传播速度很快,其引起的温度变化也很微弱,在研究微小扰动时,

可认为其压缩或膨胀过程是绝热且可逆的,这就是热力学中的等熵过程。则有绝热方程为

p

C γ

ρ

=(常数)

(8.2-6)

式中γ为绝热指数。 可写为

p C γρ=

(8.2-7)

上式两边对ρ求导,得

11dp p p C d γγγγργργρρρ

--=== (8.2-8)

又由理想气体状态方程

g p

R T ρ

=和上式(8.2-8)、式(8.2-5)联立,得

c ==

(8.2-9)

综合上述分析,有 (1)

由式(8.2-5)得,密度对压强的变化率

d dp ρ反映了流体的压缩性,d dp ρ越大,则dp

d ρ

越小,声速c 也越小;反则声速c 越大。由此可知,声速c 反映了流体的可压缩性,即声速c 越小,流体越容易压缩;声速c 越大,流体也越不易压缩。 (2)

特别的,对于空气来说, 1.4,287.1/()g R J kg K γ==?,则空气中的声速为

/c s =

(8.2-10)

(3)

从式(8.2-9)可看出,声速c 不但和绝热指数γ有关,也和气体的常数g R 和热力学

温度T 有关。所以不同气体声速一般不同,相同气体在不同热力学温度下的声速也不同。

8.2.2 马赫(Ma )数

为了研究的方便,引入气体流动的当地速度u 与同地介质中声速c 的比值,称为马赫数,以符号Ma 表示

u

Ma c

=

(8.2-10)

马赫数是气体动力学中最采用的参数之一,它也反映了气体在流动时可压缩的程度。马赫数越大,表示气体可压缩的程度越大,为可压缩流体;马赫数越小,表示气体可压缩性小,当达到一定程度时,可近似看作不可压缩流体。

根据马赫数Ma 的取值,可分为

(1)u c =,即1Ma =时,称为声速流动; (2)u c >,即1Ma >时,称为超声速流动; (3)u c <,即1Ma <时,称为亚声速流动。

下面讨论微小扰动波的传播规律,可分为四种情况:

(1) 如图8-3()a 所示,0u =,扰动源静止。扰动波将以声速向四周对称传播,波面为一同心球面,不限时间,扰动波布满整个空间。

(2) 如图8-3()b 所示,u c <,扰动源以亚声速向右移动。扰动波以声速向外传播,由于扰动源移动速度小于声速,只要时间足够,扰动波也能布满整个空间。

(3) 如图8-3()c 所示,u c =,扰动源以声速向右移动。由于扰动源移动速度等于声速,所以扰动波只能传播到扰动源的下游半平面。

(4) 如图8-3()d 所示,u c >,扰动源以超声速向右移动。由于扰动源移动速度大于声速,扰动波的球形波面被整个地带向扰动源的下游,所以扰动波只能传播到扰动源的下游区域,其区域为一个以扰动源为顶点的圆锥面内。称该圆锥为马赫锥。锥的半顶角θ称

图8-3 微小扰动传播规律图

为马赫角,从图中可以看出

1

sin c u Ma

θ=

=

(8.2-11)

上面分析了扰动源分别在静止以及亚声速、声速和超声速从右移动时,微小扰动波的

传播规律。由此可知,01Ma ≤<,即在振源静止或以亚声速移动的情况下,扰动波能传播到整个空间;而1Ma ≥,即在振源以声速或超声速移动时,扰动波只能传播到半空间或一圆锥面内。

8.3 一元气流的流动特性

在引入了声速和马赫数的概念后,对于可压缩气体的流动有一些自己的特性。这里我们介绍两个重要特性。

8.3.1气体流速与密度的关系

由第一节的式(8.1-7)和第两节的式(8.2-5),得

2dp

dp d d udu c d ρρ

ρ

ρρρ

=-

=-

=-

(8.3-1)

将马赫数u

Ma c

=

代入上式,有 2

d du Ma u

ρ

ρ

=- (8.3-2)

上式表明了密度相对变化量和速度相对变化量之间的关系。从该式可以看出,等式中有个负号,表示两者的相对变化量是相反的。即加速的气流,密度会减小,从而使压强降低、气体膨胀;反则,减速气流,密度增大,导致压强增大、气体压缩。马赫数Ma 为两者相对变化量的系数。因此,当1Ma >时,即超声速流动,密度的相对变化量大于速度的相对变化量;当1Ma <时,即亚声速流动,密度的相对变化量小于速度的相对变化量。以下再分析流速与断面积的关系

8.3.2气体流速与流道断面积的关系

对一元气流得连续性方程uA C ρ=(常数)两边取对数,得

ln()ln ln ln ln uA u A C C ρρ'=++==

对上式微分,得

0d du dA u A ρ

ρ

+

+= 或

d du dA

u A

ρ

ρ

=-

-

(8.3-3)

将式(8.2-13)代入上式,得

2(1)

dA du

Ma A u

=- (8.3-4)

从上式我们可以看到,1Ma =是一个临界点。下面讨论其在亚声速和超声速流动下

的情况。

(1) 亚声速流动时,即1Ma <。面积相对变化量和速度相对变化量反向发展,说明了

气体在亚声速加速流动时,过流断面逐渐收缩;减速流动时,过流断面积逐渐扩大。

(2) 超声速流动时,即1Ma >。这种情况正好和亚声速流动相反,沿流线加速时,过

流断面逐渐扩大;减速流动时,过流断面逐渐收缩。上式就表明,亚声速和超声速流动在加速或减速流动的情况截然相反。

8.4 气体在管道中的等温流动

实际工程中,许多工业输气管道,如天然气、煤气等管道,管道很长,且大部分长期暴露在外界中,管道中的气体能和外界进行充分的热交换,所以其温度基本与周边环境一样。该类气体管道可视为等温管道。

8.4.1基本方程

气体在实际管道中流动要受到摩擦阻力,故存在流程损失,但在流动中,气体压强、密度都有所改变,所以不能直接应用达西公式,只能在微小ds 段上应用。即

2

2

f ds u dh D λ=

(8.4-1)

对于前面推导出的可压缩流体方程式(8.1-7),在工业管道中加上摩擦损失后就可以写成

2

02dp

u udu ds D

λρ++= (8.4-2)

式中λ为沿程阻力系数,上式就是气体运动微分方程。

根据连续性方程,有111222u A u A uA ρρρ==,对于等径管道因12A A A ==,得

1

1u u ρρ

= (8.4-3)

又由热力学等温过程方程

p

C ρ

=

即1

C p ρ-=和111C p ρ-=,有

11

1p u u p

ρρ== 或 11p p ρρ=

和11p u

u p

= (8.4-4)

将式(8.4-4)代入式(8.4-2)并改写为

211102pdp du ds

p u u D

λρ++=

(8.4-5)

如图8-3所示,设在等温管道中,取一微小流段ds ,在1-2段对上式(8.4-5)进行定积分,得

22

1

1

2

111102p u l

p u du pdp ds p u u D λ

ρ++=?

?

? 上式积分得

22

221211112ln u l p p p u u D λρ??-=+ ??

?

(8.4-6)

图8-3 微元管流

若管道较长,且气流速度变化不大,则可以认为212ln

u l

u D

λ<<,略去对数项,上式可写成

2p =

(8.4-7)

1u =

(8.4-8)

质量流量公式为

2

11

4m D Q u πρ== (8.4-9)

上面各项就是计算等温管道压强、流速和流量的计算公式。

8.4.2流动特征分析

前面已经给出了气体连续性方程uA C ρ=,其中A 不变,则有u C ρ'=,对该式取对数并积分,得

0d du

u

ρ

ρ

+

= (8.4-10)

由热力学方程

p

RT C ρ

==,积分得

dp d p ρρ

= (8.4-11)

联立上面两式(8.4-10)和(8.4-11),以及声速公式c =u

Ma c

=

并整理。得 22(1)2du Ma ds u Ma D

γλγ=-

(8.4-11)

从上式我们可以看出,如果Ma >

,,即210Ma γ-<,0ds >,则0du <;

又对于大多数气体的指数常数1γ>,且实际工程等温管道中气流的速度不可能无限增大,

21Ma γ-不可能等于或小于0,

所以只有Ma <

计算式才有效;Ma >

时,

只能按Ma =

(极限值)计算,该极限值计算的管长又称为最大管长,即实际管长

超过最大管长时,进口断面的流速将受到阻滞,必须减小管长。

8.5 气体在绝热管道中的流动

在实际的气体输送管道中,常常在管道外面包有良好的隔热材料,管内气流与外界不发生热交换,这样的管道可以当作绝热管流来处理。

8.5.1基本方程

和分析等温管道一样的,引入连续性方程和运动微分方程,并结合绝热过程方程

p

C γ

ρ

=进行分析。改写运动微分方程式(8.4-2)为

202dp du ds

u u D

λρ++= (8.5-1)

p

C γ

ρ

=(常数)和连续性方程u C ρ=(常数)(面积A 不变)得

2212

2

111111u p u u p γ

γ

ρρρρ== (8.5-2)

代入上式得

11211102p dp du ds p u u D

γγ

λρ++= (8.5-3)

对如图8-3所示在1-2间对上式定积分

22

1

1

112

01111

02p u l

p u du p dp ds p u u D

γγ

λρ++=?

?

? (8.5-4)

可得

1

11

2

21

2

11111ln 2u l p p p u u D γγγ

γ

γγλργ++??

+-=+ ???

(8.5-5)

考虑到管道较长,流速变化也不大,21ln

2u s u D

λ<<,略去对数项,可写成 111

2

21

11112l

p p p u D

γγγ

γ

γγλργ+++=-

(8.5-6)

1u =

(8.5-7)

质量流量为

2

114m D q u πρ==

(8.5-8)

8.5.2 流动特征分析

和等温管流相似的推导,可以得到

212du Ma ds

u Ma D

λ=

- (8.5-9)

以上各式就是绝热管流的压强、速度和流量等计算公式。同样地,与等温管流一样,如果1Ma <时,可直接用公式计算;否则1Ma >时,实际流动只能按1Ma =来计算。

1Ma =计算得出的管长称为绝热管流的最大管长,如实际管长大于最大管长,流动

将发生阻滞,必须较小管长。

8.6气体的两种状态

8.6.1滞止参数

在气体流动的计算中,一般都是由一个已知断面上的参数,求出另一个断面上的参数。为了计算的方便,我们假定在流动过程中的某个断面,气流的速度以无摩擦的绝热过程(即等熵过程)降低至零,该断面的气流状态就称为滞止状态,相应的气流参数称为滞止参数。

如气体从大容器流入管道,由于容器断面相对于管道断面大很多,可认为容器中的气流速度为零,气流参数可认为是滞止参数,或气体绕过物体时,驻点的速度也为零,驻点处的流动参数也可认为是滞止参数。滞止参数常用下标“0”标识,如000,,p T ρ分别表示滞止压强、滞止密度、滞止温度。

由绝热过程方程式(8.1-11),按滞止参数的定义,可得滞止参数和某一断面的运动参数间的关系为

2

0112

p p

u γ

γγργρ=+--

(8.6-1)

又由完全气体状态方程

p

RT ρ

=得,上式可写为

2

0112

u RT RT γγ

γγ=+-- (8.6-2)

20112T u T RT γγ

-=+ (8.6-3)

又声速c

上式改写成马赫数的形式为

2

0112

T Ma T γ-=+ (8.6-4)

上式就是滞止温度和断面上的温度参数的计算式。由绝热过程方程

p

C γ

ρ

=(常数)

和完全气体状态方程p

RT ρ

=,代入上式就可以导出断面上的压强、密度和滞止压强、滞

止密度的关系如下

11200112p T Ma p T γγ

γγγ---????==+ ? ???

?? (8.6-5)

1

1

1

1

200112T Ma T γγργρ---????

==+ ?

???

??

(8.6-6)

在等熵条件下温度降到绝对零度时,速度达到最大(max u )的状态,称为最大速度状态。由于在地面上不可能制造绝对零度的环境,最大速度状态只具有理论意义,反映气流的总能量大小。将0T =代入式(8.6-2)得

max u =

(8.6-7)

式中0c =

根据上面的式子,只需已知滞止参数和某一断面的马赫数,就可以求该断面的运动参数。 例题:

8.6.2临界状态参数

气体从当地状态等熵地改变速度达到声速时(即1Ma =),所具有的状态称为与该当地状态对应的临界状态,相应的状态参数称为临界参数,与滞止状态一样,临界状态可以是流动中实际存在的,也可以是假想的状态。临界状态参数常用下标“*”表示。如*T 、

p *分别称为临界温度、临界压强等。在等熵流中所有的临界参数都是常数,因此可作为

参考状态参数。

根据临界状态的定义,1Ma =代入式(8.6-5),得临界温度比为

0*11

122

T T γγ-+=+= (8.6-8)

代入式(8.6-5),就可以得出临界压比、临界密度比为

1

0*12p p γγγ-+??

= ???

(8.6-9)

1

1

0*12γργρ-+??=

???

(8.6-10)

从上面公式可以看出,对于一定的气体, 临界状态参数与滞止参数的比值是定值。空气

1.4γ=,则

*00.8333T T =、*00.5283p p =、*0

0.6339ρ

ρ=。根据这些临界比值就可以判断流场中是否在临界截面。

临界截面上的声速称为临界声速*c 。由式(8.6-7)

和0c c *==

0max c *=

= (8.6-11)

或c *=

=

(8.6-12)

上式(8.6-11)为临界声速*c 和极限速度max u 的关系式,从式(8.6-12)可以看出,对于一定的气体,临界声速*c 决定于总温。式中的临界声速*c 即是1Ma =时的当地声速。是研究气体流动中的一个重要参数。

【例8-1】 空气在管道中作绝热无摩擦流动,某截面上的流动参数为K 333=T ,

KPa 207=p ,s m u /1522=,试求临界参数*T 、?p ,?ρ。

【解】 绝热、无摩擦流动就是等熵流动。先求马赫数M ,再求*T 、?p ,?ρ。空气的

4.1=γ,K kg J R ?=/287,

4155.0==

RT

u

M γ

8621.02

1

12

1

1//2

00=-+

-+

==?

?γγM T T T T T T , K T 08.287=?

5949.01

=??

? ??=-??r T T p p γ

, KPa p 15.123=?

3/4947.1m kg RT p ==

?

?

8.7喷管的计算和分析

工程中采用的喷管有两种,一种是可获得亚声速流或声速流的收缩喷管,另一种是能获得超声速的拉瓦尔喷管。本节将以完全气体为研究对象,研究收缩喷管和拉瓦尔喷管在设计工况下的流动问题。

8.7.1收缩喷管

如图所示,气体从一大容器通过收缩喷管出流,由于容器比出流口要大得多,可将其中的气流速度看作零,则容器内的运动参数表示为滞止参数,分别为0p 、0ρ、0T ,喷管出口处的气流参数分别为p 、ρ、T 、u 。由滞止参数中得出的能量方程式(8.3-5)得

2

0112

p p

u γ

γγργρ=+--

(8.7-1)

0000211p p u p ργγρρ??

=

- ?-??

(8.7-2)

又由绝热过程方程

p

C γ

ρ=(常数)和完全气体状态方程

p

RT ρ

=,上式可写成

11

0000000221111

p p p u RT γγγγγγ

γρργρ--????????????=-=- ? ?????--????????????

(8.7-3)

上式就是喷管出流的速度公式,也称圣维南(Saint Venant )定律。此式对超声速也同样成立。

通过喷管的质量流量

100m p q A u A u p ρρ??

== ???

(8.7-4)

代入上式得

图1 收缩喷管

m q A u ρ==

(8.7-5)

从上面的各个公式可以看出,对于一定的气体,在收缩喷管出口未达到临界状态前,压降比0p p 越大,出口速度越大,流量也越大。且收缩喷管出口处的气流速度最高可达到当地声速,即出口气流处于临界状态(即1Ma =)。此时的出口处压强为

1

0*21p p p γ

γγ-??== ?+??

(8.7-6)

此时气流速度也达到极限速度

*0*

u u c ==

===

(8.7-7)

则流过喷管的极限质量流量为

12(1)

*21m m q q A γγγ+-??== ?

+??

(8.7-8)

8.7.2拉瓦尔喷管

如图8-3所示为拉瓦尔喷管,其作用是能使气流加速到超声速,拉瓦尔喷管广泛应用于蒸气轮机、燃气轮机、超声速风洞、冲压式喷气发动机和火箭等动力装置中。本小节将讨论拉瓦尔喷管出口流速和流量的计算。

假定拉瓦尔喷管内的气体作绝能等熵流动,喷管进口的气流处在滞止状态。按照和收缩喷管同样的推导方法,推导出的喷管出口处的气流速度同收缩喷管气流速度式(8.7-2),即同样用圣维南定律。

拉瓦尔喷管的质量流量公式也可仍然采用式(8.7-8),需要注意的,(8.7-8)式中的截面积

A 要用喉部截面积*t A A =代替。即通过喷管的流量就是喉部能通过的流量的最大值

12(1)

*21m t q A γγγ+-??

= ?

+??

(8.7-9)

由连续性方程得

**

*t c A A A A u

ρρ== (8.7-10)

式中A 为喷管出口处截面积。

根据式(8.7-10)就可以在已知出口截面积A 的情况下求喉部截面积t A 。

【例8-2】空气在缩放喷管内流动,气流的滞止参数为Pa p 6

010=,K T 3500=,出口截面积2

001.0m A =,背压Pa p e 5103.9?=。如果要求喉部的马赫数达到M 1=0.6,试

求候部面积。

【解】管内为亚音速流动,出口压强等于背压:e p p =。利用喉部和出口的质量流量相等的条件确定喉部面积A 1。

出口参数:

0210.1100=???

?

??=-γ

γp p T T ,K T 8.324=

2

02

11M T T -+=γ, 3240.0=M 3/4528.9m kg RT

p

==

ρ

s m RT M Mc u /25.120===γ

喉部参数: 6.01=M

072.12

112

10=-+=M T T γ,K T 5.3261=

2755.111010=???

? ??=-r T T p p γ

,Pa p 6

110784.0?=

31

1

1/3666.8m kg RT p ==

ρ s m RT M u /32.217111==γ

231

11106252.0m u u

A

A -?==ρρ

本 章 小 结

1.视为不可压缩气体的伯努利方程

2

212

122

2

u u p p ρρ+

=+

可压缩一元气体恒定流的运动微分方程

0dp

udu ρ

+=

(1)等温过程

2

ln 2p

u p C ρ+= (2)绝热过程

2

12

p

u C γγρ+=-

2.在介质中的扰动传播速度都称为声速,公式为c =

=马赫数u

Ma c

=

有1Ma =时,称为声速流动;1Ma >时,称为超声速流动;1Ma <时,称为亚声速流动。 3. 气体流速与密度的关系

2

d du Ma u

ρ

ρ

=- 气体流速与流道断面积的关系2(1)dA du Ma A u

=- 4. 等温流动的基本方程

工程流体力学课后习题答案72110

流体及其主要物理性质 7 相对密度0.89的石油,温度20oC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0== 水 ρρ d ν=40cSt =0.4St =0.4×10-4 m 2 /s μ=νρ=0.4×10-4 ×890=3.56×10-2 Pa ·s 8 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少? 解:233/10147.110 11147.1m N dy du ?=??==-μ τ 9 如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=? 解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2 ()N dy du A F 55.82 1096.11125 .010141096.1114.3065.0222=?-??????==---μ流体静力学 6油罐内装相对密度0.70的汽油,为测定油面高度,利用连通器原理,把U 形管内装上相对密度为1.26的甘油,一端接通油罐顶部空间,一端接压气管。同时,压气管的另一支 引入油罐底以上0.40m 处,压气后,当液面有气逸出时,根据U 形管内油面高差h =0.70m 来推算油罐内的油深H 为多少? 解:p -γ甘油Δh =p -γ汽油(H-0.4) H =γ甘油Δh/γ汽油+0.4=1.26×0.7/0.70+0.4=1.66m 7为测定油品重度,用如下装置,经过1管或2管输入气体,直至罐内油面出现气泡为止。用U 形管水银压力计分别量出1管通气时

流体力学-伯努利方程实验报告

中国石油大学(华东)工程流体力学实验报告 实验日期:2014.12.11成绩: 班级:石工12-09学号:12021409姓名:陈相君教师:李成华 同组者:魏晓彤,刘海飞 实验二、能量方程(伯诺利方程)实验 一、实验目的 1.验证实际流体稳定流的能量方程; 2.通过对诸多动水水力现象的实验分析,理解能量转换特性; 3.掌握流速、流量、压强等水力要素的实验量测技能。 二、实验装置 本实验的装置如图2-1所示。 图2-1 自循环伯诺利方程实验装置 1.自循环供水器; 2.实验台; 3.可控硅无极调速器;4溢流板;5.稳水孔板; 6.恒压水箱; 7.测压机;8滑动测量尺;9.测压管;10.试验管道; 11.测压点;12皮托管;13.试验流量调节阀 说明 本仪器测压管有两种: (1)皮托管测压管(表2-1中标﹡的测压管),用以测读皮托管探头对准点的总水头; (2)普通测压管(表2-1未标﹡者),用以定量量测测压管水头。 实验流量用阀13调节,流量由调节阀13测量。

三、实验原理 在实验管路中沿管内水流方向取n 个过水断面。可以列出进口断面(1)至另一断面(i )的能量方程式(i =2,3,…,n ) i w i i i i h g v p z g p z -++ + =+ + 1222 2 111 1αγυαγ 取12n 1a a a ==???==,选好基准面,从已设置的各断面的测压管中读出 z+p/r 值,测 出透过管路的流量,即可计算出断面平均流速,从而即可得到各断面测压管水头和总水头。 四、实验要求 1.记录有关常数实验装置编号 No._4____ 均匀段1d = 1.40-210m ?;缩管段2d =1.01-210m ?;扩管段3d =2.00-2 10m ?; 水箱液面高程0?= 47.6-2 10m ?;上管道轴线高程z ?=19 -2 10m ? (基准面选在标尺的零点上) 2.量测(p z γ + )并记入表2-2。 注:i i i p h z γ =+ 为测压管水头,单位:-2 10m ,i 为测点编号。 3.计算流速水头和总水头。

伯努利方程原理以及在实际生活中的运用

xx方程原理以及在实际生活中的运用 67陈高威在我们传输原理学习当中有很多我们实际生活中运用到的原理,其中伯努利方程是一个比较重要的方程。在我们实际生活中有着非常重要广泛的作用,下面就伯努利方程的原理以及其运用进行讨论下。 xx方程 p+ρρv 2=c式中p、ρ、v分别为流体的压强,密度和速度;h为铅垂高度;g 为重力加速度;c为常量。它实际上流体运动中的功能关系式,即单位体积流体的机械能的增量等于压力差说做的功。伯努利方程的常量,对于不同的流管,其值不一定相同。 相关应用 (1)等高流管中的流速与压强的关系 根据xx方程在水平流管中有 ρv 2=常量故流速v大的地方压强p就小,反之流速小的地方压强大。在粗细不均匀的水平流管中,根据连续性方程,管细处流速大,所以管细处压强小,管粗处压强大,从动力学角度分析,当流体沿水平管道运动时,其从管粗处流向管细处将加速,使质元加速的作用力来源于压力差。下面就是一些实例 伯努利方程揭示流体在重力场中流动时的能量守恒。由伯努利方程可以看出,流速高处压力低,流速低处压力高。三、伯努利方程的应用: 1.飞机为什么能够飞上天?因为机翼受到向上的升力。飞机飞行时机翼周围空气的流线分布是指机翼横截面的形状上下不对称,机翼上方的流线密,流速大,下方的流线疏,流速小。由伯努利方程可知,机翼上方的压强小,下方的压强大。这样就产生了作用在机翼上的方向的升力。 2.喷雾器是利用流速大、压强小的原理制成的。让空气从小孔迅速流出,小孔附近的压强小,容器里液面上的空气压强大,液体就沿小孔下边的细管升上来,从细管的上口流出后,空气流的冲击,被喷成雾状。

3.汽油发动机的汽化器,与喷雾器的原理相同。汽化器是向汽缸里供给燃料与空气的混合物的装置,构造原理是指当汽缸里的活塞做吸气冲程时,空气被吸入管内,在流经管的狭窄部分时流速大,压强小,汽油就从安装在狭窄部分的喷嘴流出,被喷成雾状,形成油气混合物进入汽缸。 4.球类比赛中的“旋转球”具有很大的威力。旋转球和不转球的飞行轨迹不同,是因为球的周围空气流动情况不同造成的。不转球水平向左运动时周围空气的流线。球的上方和下方流线对称,流速相同,上下不产生压强差。现在考虑球的旋转,转动轴通过球心且垂直于纸面,球逆时针旋转。球旋转时会带动周围得空气跟着它一起旋转,至使球的下方空气的流速增大,上方的流速减小,球下方的流速大,压强小,上方的流速小,压强大。跟不转球相比,旋转球因为旋转而受到向下的力,飞行轨迹要向下弯曲。

流体力学在土木工程中的应用

流体力学在土木工程中的应用 摘要:流体力学作为土木工程的重要学科,对于土木工程中的一些建筑物的工程设计,施工与维护有着重要作用,不仅是在工程时间上降低了成本,还在材料等物质方面降低了成本。对于实现科学,合理施工有这很高的地位。 关键词:高层渗流地基稳定风荷载给排水路桥高铁风炮隧道 流体力学是力学的一个分支,是研究以水为主体的流体的平衡和运动规律及其工程应用的一门学科, 土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木建构物的建筑环境不可避免会有地下及地表流水的影响,对于高层,或者高出建筑物,风对建筑物的影响也是不可小觑的。在建

筑物设计之初不但要考虑这些流体对施工的影响,在建成后,也得防范流体的长期作用对建构物的负面影响。怎么认识这些影响正如兵家所言,知己知彼,百战不殆,流体力学作为土木工程一门重要学科,通过对流体力学的学习,会使我们对流体形成一种客观正确的认识。 流体力学在工业民用建筑中的应用: 工业民用建筑是常见建筑,对于低层建筑,地下水是最普遍的结构影响源,集中表现为对地基基础的影响。 如果设计时对建筑地点的地下基地上水文情况了解不到位,地下水一旦渗流会对建筑物周围土体稳定性造成不可挽救的破坏,进而严重影响地基稳定,地基的的破坏对整个建筑主体来说是寿命倒计时的开始。一些人为的加固可能及耗材费力,又收效甚微。地下水的浮力对结构设计和施工有不容忽视的影响,结构抗浮验算与地下水的性状、水压力和浮力、地下水位变化的影响因素及意外补水有关。对于这些严重影响建筑物寿命和甚至波及人生安全的有水的流动性造成问题可以通过水力学知识在建筑物的实际和施工之前给以正确的设计与施工指导。避免施工时出现基坑坍塌等重大问题,也能避免施工结束后基地抵抗地下水渗流能力差的问题。 现在建筑越来越趋向于高层,高层节约了土地成本,提供了更多的使用空间,但也增加了设计施工问题。因为随着高度的增加,由于

流体力学课后习题答案

【2012年】《液压与气压传动》继海宋锦春高常识-第1-7章课后答案【最新经典版】 1.1 液体传动有哪两种形式?它们的主要区别是什么? 答:用液体作为工作介质来进行能量传递的传动方式被称之为液体传动。按照其工作 原理的不同,液体传动又可分为液压传动和液力传动,其中液压传动是利用在密封容器 液体的压力能来传递动力的;而液力传动则的利用液体的动能来传递动力的。 1.2 液压传动系统由哪几部分组成?各组成部分的作用是什么? 答:(1)动力装置:动力装置是指能将原动机的机械能转换成为液压能的装置,它是 液压系统的动力源。 (2)控制调节装置:其作用是用来控制和调节工作介质的流动方向、压力和流量,以 保证执行元件和工作机构的工作要求。 (3)执行装置:是将液压能转换为机械能的装置,其作用是在工作介质的推动下输出 力和速度(或转矩和转速),输出一定的功率以驱动工作机构做功。 (4)辅助装置:除以上装置外的其它元器件都被称为辅助装置,如油箱、过滤器、蓄 能器、冷却器、管件、管接头以及各种信号转换器等。它们是一些对完成主运动起辅助作

用的元件,在系统中是必不可少的,对保证系统正常工作有着重要的作用。(5)工作介质:工作介质指传动液体,在液压系统常使用液压油液作为工作介质。 1.3 液压传动的主要优缺点是什么? 答:优点:(1)与电动机相比,在同等体积下,液压装置能产生出更大的动力,也就 是说,在同等功率下,液压装置的体积小、重量轻、结构紧凑,即:它具有大的功率密度 或力密度,力密度在这里指工作压力。 (2)液压传动容易做到对速度的无级调节,而且调速围大,并且对速度的调节还可 以在工作过程中进行。 (3)液压传动工作平稳,换向冲击小,便于实现频繁换向。 (4)液压传动易于实现过载保护,能实现自润滑,使用寿命长。 (5)液压传动易于实现自动化,可以很方便地对液体的流动方向、压力和流量进行调 节和控制,并能很容易地和电气、电子控制或气压传动控制结合起来,实现复杂的运动和 操作。 (6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用。答:缺点:(1)由于液压传动中的泄漏和液体的可压缩性使这种传动无法保证严格

流体力学在医学中的应用

流体力学在医学中的应用 通过对流体力学这一章的学习,我发现在医学治疗疾病领域,流体力学有着丰富的应用,尤其在动脉病方面,通过对资料及文献的学习,了解到心血管疾病与其有密切关系,而且血流动力学不仅在动脉病变的发生和发展过程中起着决定性的作用,而且是外科医生在心血管疾病的手术和介入治疗等过程中必须充分考虑的因素,下面依次举例~ 1冠状动脉硬化斑块与血液流体动力学关系 原理:当冠状动脉粥样硬化斑块给血管造成的狭窄程度在20%-40%之间的时候,流经斑 块的速度剖面呈抛物线状态;当狭窄的程度是50%时,速度剖面出现紊乱,没有出现抛物线的分布,且不满足层流的规律,并伴有回流现象的发生;当狭窄程度在50%-75%之间时,斑块附近轴管的管轴速度小于周围速度,此时速度剖面呈现中心凹状,斑块的后部有明显的回流现象。 疾病成因及表象:软斑块可逆,且对血液动力学不造成明显的影响,但是它的不稳定与易破 碎等会引发急性冠状动脉的综合症状,是引发心脏事件的危险因素;钙化斑块不可逆,对血液动力学的影响较为明显,但其斑块稳定和不易破碎的特点是造成稳定性心绞痛的主要诱导原因,也是冠状动脉疾病的晚期表现。 检测及治疗方法:冠状动脉硬化斑块有较多的常规检查方法,比如多层CT冠状动脉成像、 血管的内超声检查以及冠状动脉造影,而其中冠状动脉造影是冠心病检查的金标准,但它主要是由填充造影剂的方法来判断血管腔的变化情况,而无法真正识别血管壁的结构,不能起到判断斑块性质的作用,也无法对血液动力学造成影响。而64排螺旋CT在空间和时间的分辨率上都有所提升,不仅能观察到管腔,还可以看到血管壁。由斑块特征的不同,可将其分成软斑块和纤维斑块以及钙化斑块,斑块不同,CT值也各异,其稳定性也存在差异,64排螺旋CT是目前为止无创检查冠心病最为常见的影像方法。本文主要研究患者在冠状动脉螺旋CT成像之后的软斑块和钙化斑块给血液动力学与诱发心脏事件带来的影响。 2与血液流体动力学关系

流体力学—习题答案

一、选择题 1、流体传动系统工作过程中,其流体流动存在的损失有( A ) A、沿程损失和局部损失, B、动能损失和势能损失, C、动力损失和静压损失, D、机械损失和容积损失 2、液压千斤顶是依据( C )工作的。 A、牛顿内摩擦定律 B、伯努力方程 C、帕斯卡原理 D、欧拉方程 3、描述液体粘性主要是依据( D ) A、液体静力学原理 B、帕斯卡原理 C、能量守恒定律 D、牛顿内摩擦定律 4、在流场中任意封闭曲线上的每一点流线组成的表面称为流管。与真实管路相比(C )。 A、完全相同 B、完全无关 C、计算时具有等效性 D、无边界性 5、一般把( C )的假想液体称为理想液体 A、无粘性且可压缩, B、有粘性且可压缩, C、无粘性且不可压缩, D、有粘性且不可压缩 6、进行管路中流动计算时,所用到的流速是( D ) A、最大速度 B、管中心流速 C、边界流速 D、平均流速 7、( A )是能量守恒定律在流体力学中的一种具体表现形式 A、伯努力方程, B、动量方程, C、连续方程, D、静力学方程 8、( A )是用来判断液体流动的状态 A、雷诺实验 B、牛顿实验 C、帕斯卡实验 D、伯努力实验 9、黏度的测量一般采用相对黏度的概念表示黏度的大小,各国应用单位不同,我国采用的是( D ) A、雷氏黏度 B、赛氏黏度 C、动力黏度 D、恩氏黏度 10、流体传动主要是利用液体的( B )来传递能量的 A、动力能 B、压力能, C、势能, D、信号 11、静止液体内任一点处的压力在各个方向上都( B ) A、不相等的, B、相等的, C、不确定的 12、连续性方程是( C )守恒定律在流体力学中的一种具体表现形式 A、能量, B、数量, C、质量 D、动量 13、流线是流场中的一条条曲线,表示的是( B ) A、流场的分布情况, B、各质点的运动状态 C、某质点的运动轨迹, D、一定是光滑曲线 14、流体力学分类时常分为( A )流体力学 A、工程和理论, B、基础和应用 C、应用和研究, D、理论和基础 15、流体力学研究的对象( A ) A、液体和气体 B、所有物质, C、水和空气 D、纯牛顿流体 16、27、超音速流动,是指马赫数在( B )时的流动 A、0.7 < M < 1.3 B、1.3 < M ≤5 C、M > 5 D、0.3 ≤M ≤0.7 17、静压力基本方程式说明:静止液体中单位重量液体的(A )可以相互转换,但各点的总能量保持不变,即能量守恒。 A、压力能和位能, B、动能和势能, C、压力能和势能 D、位能和动能 18、由液体静力学基本方程式可知,静止液体内的压力随液体深度是呈( A )规律分布的 A、直线, B、曲线, C、抛物线 D、不变 19、我国法定的压力单位为( A ) A、MPa B、kgf/cm2 C、bar D、mm水柱 20、理想液体作恒定流动时具有( A )三种能量形成,在任一截面上这三种能量形式之间可以相互转换。 A压力能、位能和动能,B、势能、位能和动能, C、核能、位能和动能, D、压力能、位能和势能 21、研究流体沿程损失系数的是(A) A、尼古拉兹实验 B、雷诺实验 C、伯努力实验 D、达西实验 22、机械油等工作液体随温度升高,其粘度( B ) A、增大, B、减小, C、不变 D、呈现不规则变化

流体力学【关于伯努利方程的应用】

工程流体力学 综合报告 学院:机械工程学院专业:机械工程 班级: 学号: 学生姓名: 任课老师: 提交日期:2017年12月27 日

关于伯努利方程的应用 摘要 “伯努利原理“是著名的瑞士科学家丹尼尔·伯努利在1726年提出的。这是在流体力学的连续介质理论方程建立之前,水力学所采用的基本原理,其实质是流体的机械能守恒。理想正压流体在有势彻体力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。即:动能+重力势能+压力势能=常数。其最为著名的推论为:等高流动时,流速大,压力就小。伯努利方程对于确定流体内部各处的压力和流速有很大意义,在水利、造船、航空等部门有着广泛的应用。 关键词:伯努利方程公式及原理应用流体力学 1 伯努利方程 伯努利原理往往被表述为p+1/2ρv2+ρgh=C,这个式子被称为伯努利方程。式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。它也可以被表述为p1+1/2ρv12+ρgh1=p2+1/2ρv22+ρgh2。 需要注意的是,由于伯努利方程是由机械能守恒推导出的,所以它仅适用于粘度可以忽略、不可被压缩的理想流体 1.1 流线上的伯努利方程 流线上的伯努利方程:

适于理想流体(不存在摩擦阻力)。式中各项分别表示单位流体的动能、位能、静压能之差。如果流动速度为0,则由伯努利方程可得平衡流体的流体静力学基本公式(C g p z =+ρ )。 1.2 总流的伯努利方程 总流是无数元流的总和,将元流伯努利方程沿总流过流断面积分,即可推导出总流的伯努利方程,也即总流能量方程。 动能修正系数α为实际动能与按平均速度计算的动能的比值,α值反映了断面速度分布的不均匀程度。由于气体的动力黏度值较小,过流断面速度梯度小,实际的气流运动的速度分布比较均匀,接近于断面平均流速。所以,气体运动中的动能修正系数常常取1.0。管中水流多数也属于这种情况,此时总流与流线上的伯努利方程形式上无区别。 g V g p z g V g p z 222222221111αραρ++=++g V g p z g V g p z C g v g p z 222222221112++=++=++ρρρ

第十章:粘性流体的一元流动

第十章粘性流体的一元流动 问题: 同学们到开水房打开水,水龙头离锅炉的距离近还是短,灌满一壶水所花的时间短本章内容 1.粘性流体流动的两种流动状态 2.等截面圆管内的定常层流(泊肃叶流动) 3.等截面圆管内的定常湍流 4.水头损失 5.湍流基本特征 6.管路水力计算 本章重点: 1.两种流动状态的概念及其判别准则,临界雷诺数,转捩的概念。 2.平均速度,最大速度,摩擦速度,粘性底层的概念。 3.等截面圆管内定常层流的速度分布,切应力分布规律。 4.等截面圆管内定常湍流的速度分布,切应力分布规律。 5.湍流特征,湍流切应力在近壁面处的特征。 6.湍流度,时间平均值的概念。 7.沿程阻力、局部阻力产生的原因。 8.沿程阻力系数与雷诺数和粗糙度的关系。 10.水力光滑管的概念,平方阻力、自动模拟的概念。 11.简单管路的水力计算。 本章难点: 1.湍流特征 2.湍流应力的概念 §10-1 管路计算的基本方程式 第四章中已经将伯努利方程推广到有限大流束(粘性流体的伯努利方程):

w h g U a p z g U a p z +++=++222 2222211 1 1γγ (10--1) 推导如下:若设流线上1~2两点之间的水头损失为hw , 理想流体伯努利方程改写为:w h g v p z g v p z '+++=++ 222 222211 1γγ 上式各项乘于γdQ 在整个过流断面上积分: ??? '+++=++Q Q w Q dQ h dQ g v p z dQ g v p z γγγγγ)2()2(2 2222 11 1 (10--2) 缓变流:过流断面上流线几乎为相互平行的直线。否则称为急变流。如下图所示, 缓变流特性:在缓变流断面上,沿流线的法线方向有(证明略) 常数=+ γ p z (10--3) 则积分 ? + =+ Q Q p z dQ p z γγ γγ )()( (10--4) 现令积分 ? =Q Q g U a dQ g v γγ222 2 (10--5) U 为过流断面上平均流速,v 为微小流束上流速。 由连续性方程Q=AU ,及dQ=vdA ,则 ? ? ? == =dA U v A dQ U v Q Q g U d g v a Q Q 332 2 )(1)(122γθγ 为简便起见令

流体力学 课后答案

流体力学课后答案 一、流体静力学实验 1、同一静止液体内的测压管水头线是根什么线? 答:测压管水头指,即静水力学实验仪显示的测压管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。从表1.1的实测数据或实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2、当时,试根据记录数据确定水箱的真空区域。 答:以当时,第2次B点量测数据(表1.1)为例,此时,相应容器的真空区域包括以下3三部分:(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。(2)同理,过箱顶小杯的液面作一水平面,测压管4中该平面以上的水体亦为真空区域。(3)在测压管5中,自水面向下深度为的一段水注亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等,均为。 3、若再备一根直尺,试采用另外最简便的方法测定。 答:最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度和,由式,从而求得。 4、如测压管太细,对测压管液面的读数将有何影响? 答:设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容重;为测压管的内径;为毛细升高。常温()的水,或,。水与玻璃的浸润角很小,可认为。于是有 一般说来,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时。相互抵消了。 5、过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平是不是等压面?哪一部分液体是同 一等压面? 答:不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面: (1)重力液体; (2)静止; (3)连通; (4)连通介质为同一均质液体; (5)同一水平面 而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 ※6、用图1.1装置能演示变液位下的恒定流实验吗? 答:关闭各通气阀,开启底阀,放水片刻,可看到有空气由C进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与C点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称之为马利奥特容器的变液位下恒定流。 ※7、该仪器在加气增压后,水箱液面将下降而测压管液面将升高H,实验时,若以时的水箱液面作为测量基准,试分析加气增压后,实际压强()与视在压强H的相对误差值。本仪器测压管内径为0.8cm,箱体内径为20cm。

流体力学课后习题参考答案

第二章 流体静力学 2-1 密闭容器测压管液面高于容器内液面h=1.8m,液体密度为850kg/m3, 求液面压强。 解:08509.8 1.814994Pa p gh ρ==??= 2-2 密闭水箱,压力表测得压强为4900Pa,压力表中心比A 点高0.4米,A 点在液面下1.5m ,液面压强。 解: 0()490010009.8(0.4 1.5) 49009800 1.15880Pa M B A p p g h h ρ=+-=+??-=-?=- 2-3 水箱形状如图,底部有4个支座。试求底面上的总压力和四个支座的支座反力,并讨论总压力和支座反力不相等的原因。 解:底面上总压力(内力,与容器内的反作用力平衡) ()10009.81333352.8KN P ghA ρ==??+??= 支座反力支座反力(合外力) 3312()10009.8(31)274.4KN G g V V ρ=+=??+= 2-4盛满水的容器顶口装有活塞A ,直径d=0.4m ,容器底直径D=1.0m ,高h=1.8m 。如活塞上加力为2520N(包括活塞自重)。求容器底的压强和总压力。 解:压强2252010009.8 1.837.7kPa (0.4)/4 G p gh A ρπ= +=+??= 总压力 237.71/429.6K N P p A π=?=??= 2-5多管水银测压计用来测水箱中的表面压强。图中高程单位为m ,试求水面的绝对压强。 解:对1-1等压面 02(3.0 1.4)(2.5 1.4)p g p g ρρ+-=+-汞 对3-3等压面 2(2.5 1.2)(2.3 1.2)a p g p g ρρ+-=+-汞 将两式相加后整理 0(2.3 1.2)(2.5 1.4)(2.5 1.2)(3.0 1.4)264.8kPa p g g g g ρρρρ=-+-----=汞汞绝对压强 0.0264.8+98=362.8kPa abs a p p p =+= 2-6水管A 、B 两点高差h 1=0.2m ,U 形管压差计中水银液面高差h 2=0.2m 。试求A 、B 两点的压强差。 解:122 ()A B p g h x h p gx gh ρρρ+++=++ 汞 212()13.69.80.219.8(0.20.2)22.7kPa A B p p gh g h h ρρ∴-=-+=??-??+=汞或直接用压差计公式求解1p A B A B p p p z z h g g ρρρρ??????+-+=- ? ? ??????? 2-7盛有水的密闭容器,水面压强为p 0,当容器自由下落时,求容器内水的压强分布规律。 自由下落时加速度方向向下,惯性力方向向上,其单位质量力为g +,则 () 00 dp Xdx Ydy Zdz X Y Z g g dp p p ρ=++===-==∴= 2-8已知U 形管水平段长l=30cm ,当它沿水平方向作等加速运动时,液面高差h=5cm ,试求它的加速度a.

流体力学中的四大研究方法

流体力学中的四大研究方法 多年前,我看过一篇杨振宁老先生谈学习和研究方法的文章,记忆深刻。很多人可能都知道,杨老先生大学毕业于西南联大,他总结我们中国学习自然科学的研究方法,主要是“演绎法”,往往直接从牛顿三大定律,热力学定律等基础出发,然后推演出一些结果。然而,对于这些定律如何产生的研究和了解不多,也就不容易产生有重大意义的原创性成果。他到美国学习后发现,世界著名物理学大学费米、泰勒等是从实际试验的结果中,运用归纳的原理,采用的是“归纳法”。这两种方法对杨老先生的研究工作,产生了很大的影响。 除了这两种基本研究方法外,还有很多方法,如量纲分析法、图解法、单一变量研究法、数值模拟法等。每个学科可能都有一些各自独特的研究方法。我是流体力学专业出身,就以流体力学为例。通常,开展流体力学的工作主要有4种研究方法:现场观测法、实验模拟法、理论分析法和数值计算法四个方面。 现场观测法 从流体力学的学科历史来看,流体力学始于人们对各种流动现象的观测。面对奔腾的河流,孔子发出了:“逝者如斯夫,不舍昼夜”的感叹,古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。阿基米德在澡盆中,看到溢出的水,提出了流体静力学的一个重要原理——阿基米德原理。丹尼尔·伯努利通过观察发现流速与静压关系的伯努利原理。在流体力学史上还有很多这样的例子,发现自然界的各种流动现象,通过各种仪器进行观察,从而总结出流体运动的规律,再反过来预测流动现象的演变。但此方法有明显的局限性,最主要的体现在两个方面,一是一些流动现象受特定条件的影响,有时不能完成重复发生;二是成本比较大,需要花费大量的人财物。 实验模拟法 为了克服现场观测的缺点,人们制造了多种实验装置和设备,建立了多个专项和综合实验室。实验基本上能可控、重复流动现象,可以让人们仔细、反复地观测物理现象,直接测量相关物理量,从而揭示流动机理、发现流动规律,建立物理模型和理论,同时还能检验理论的正确性。 流体力学史上很多重要的发现都是通过实验发现或证实的,比如意大利物理学家伽俐略利用实验演示了在空气中物体运动所受到的阻力;托里拆利通过大气

最新2-5有限元法在流体力学中的应用汇总

2-5有限元法在流体力学中的应用

第五章有限元法在流体力学中的应用 本章介绍有限元法在求解理想流体在粘性流体运动中的应用。讨论了绕圆柱体、翼型和轴对称物体的势流,分析了求解粘性流动的流函数—涡度法流函数法和速度—压力法,同时导出粘性不可压流体的虚功原理。 §1 不可压无粘流动 真实流体是有粘性和可压缩的,理想不可压流体模型使数学问题简化,又能较好地反映许多流动现象。 1. 圆柱绕流 本节详细讨论有限无法的解题步骤。考虑两平板间的圆柱绕流.如图5—1所示。为了减小计算工作量,根据流动的对称性可取左上方的l/4流动区域作为计算区域。 选用流函数方法,则流函数 应满足以下Laplace方程和边界条件

22220(,)0(,)2(,)(,)0(,)x y x y x y aec x y bd y x y ab x y cd n ψψ ψψ ???+=-∈Ω?????-----∈???=-----∈????-----∈????=-----∈???流线流线流线 流线 (5-1) 将计算区域划分成10个三角形单元。单元序号、总体结点号和局部结点号都按规律编排.如图5—2所示。 从剖分图上所表示的总体结点号与单元结点号的关系,可以建立联缀表于下 元素序号 1 2 3 4 5 6 7 8 9 10 总体 结点 号 n1 1 4 4 4 2 2 6 6 5 5 n2 4 5 9 8 6 5 7 10 10 9 n3 2 2 5 9 3 6 3 7 8 10 表5-1

各结点的坐标值可在图5—2上读出。如果要输入计算机运算必须列表。本质边界结点号与该点的流函数值列于下表 表5-2 选用平面线性三角形元素,插值函数为(3—15)式。对二维Laplace 方程进行元素分析,得到了单元系数矩阵计算公式(3—19)和输入向量计算公式(3—20)。现在对全部元素逐个计算系数矩阵。 例如元素1,其结点坐标为1x =0, 1y =2; 2x =0, 2y =1; 3x =2.5, 3y =2. 由(3—15)式可得 132 2.5a x x =-=; 213 2.5a x x =-=- 3210a x x =-=, 1231b y y =-=-; 2310b y y =-=; 3121b y y =-=; 0 1.25A = 从(3—19)式可计算出1K 1 1.45 1.250.21.2500.2K ?? ? ? = ? ? ? ? --对称 依次可计算出全部子矩阵 20.20.201.45 1.251.25K ?? ? ? = ? ? ? ? --

中科大流体力学试卷及答案

流体力学基础期末考试试卷 姓名__________ 学号__________ 班级__________ 得分__________ 一、简答题(30分) 1. 什么是粘性?气体与液体的粘性随温度变化趋势有什么不同?为什么? 答:相邻两层流体做相对运动时存在内摩擦作用,称为粘性力。粘性是流体抵抗剪切变形能力的一种量度。 液体间粘性力主要由分子内聚力形成,气体间粘性力主要由分子动量交换形成的,所以导致气体与液体粘性随温度变化趋势不同,具体表现为:液体粘性随温度升高而降低(温度升高,分子间距增大,内聚力降低),气体粘性随温度升高而升高(温度升高,分子运动加剧,动量交换加剧)。 2. 简述单位与量纲的联系与区别,简述Re, Fr的物理意义 答:单位是某一物理参数的量度,包含了物理量的物理特性与尺度。量纲表示物理量的物理特性。 R e是惯性力与粘性力的比较,Fr 是惯性力与重力的比较。 3. 什么是边界层厚度,位移厚度及动量厚度? 答:边界层厚度是速度等于外流速度的99%时的厚度;位移厚度--将由于不滑移条件造成的质量亏损折算成无粘性流体的流量相应的厚度,又称为质量亏损厚度;动量厚度--将由于不滑移条件造成的动量流量亏损折算成无粘性流体的动量流量相应的厚度。 4. 什么是流线,迹线及烟线? 答:流线:流场中的一条曲线,曲线上各点的速度矢量方向和曲线在该点的切线方向相同。 迹线:流体质点在空间运动时描绘出来的曲线。 烟线:从流场中的一个固定点向流场中连续地注入与流体密度相同的染色液,该染色液形成一条纤细色线,称为脉线。或另定义如下,把相继经过流场同一空间点的流体质点在某瞬时连接起来得到的一条线。 5. 简述层流与湍流的区别 答:层流:是流体的一种流动状态。当流速很小时,流体分层流动,互不混合,其流动行为可以预测。 湍流:是流体的一种流动状态。流体运动具有随机性,强混合性与有旋性,其流动行为不可预测,本质上是三维,非定常的。 二、运算题 1. (15分)拉格朗日变数 (a, b, c ) 给出的流体运动规律为: 2222)1(,)1(,--+=+==t ce z t b y ae x t t 1)求以欧拉方法描述的速度 2)流动是否定常? 3)求加速度 答:1)设速度场三个分量为 u,v,w 消去拉氏变数: 222, , 11y zt u x v w t t =-= = ++22t x u ae t -?==-?2 2(1)2(1)1y b t v b t t t ?+= =+=?+22223 2(1)2[(1)(1)]1t t z ce t t w ce t t t t ---?+==+-+=?+

流体力学在土木工程中的应用

流体力学在土木工程中的应用 流体力学,是研究流体(液体和气体)的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。在生活、环保、科学技术及工程中具有重要的应用价值。 流体力学逐渐广泛地应用于生产实践,并在生产实践的推动下,大大丰富了流体力学的内容。例如:重工业中的冶金,电力,采掘等工业;轻工业中的化工,纺织,造纸等工业;交通运输业中的飞机,火车。船舶设计;农业中的农田灌溉,水利建设,河道整治等工程中,无不有大量的流体力学问题需要解决。 在道路桥梁交通中,桥涵水力学问题,路边排水,大桥水下施工中的水力学问题,路基,路边渗水等诸多问题都需要应用流体力学知识去解决。结构风工程中,高耸建筑物一般都要做风洞试验的。而大跨度柔性桥梁的抗风性能就是空气动力学的一个典型应用。从而有了CFD的蓬勃发展。基坑施工时一般要考虑地下水的,降水怎么计算也要用到流体力学。隧道中的通风效应,如何计算隧道施工运营隧道中的通风效应,如何计算隧道施工运营中的通风问题,风机如何安置,采用哪种通风方式都是很典型的应用。高速铁路隧道的空气动力学效应。这个越来越重视啦。由于高铁的速度高,进出隧道时都会产生活塞效应,搞不好还有“空气炮”,所以也要用到流体力学来解决这些问题。修明渠和城市管网设计(市政工程)用到的基本上都是经典的流体力学。 流体力学广泛应用于土木工程的各个领域。例如:在建筑工程和桥梁工程中,研究解决风对高耸建筑物的荷载作用和风振问题,要以流体力学为理论基础;进行基坑排水,地基抗渗稳定处理,桥渡设计都有赖于水力分析和计算;从事给水排水系统的设计和运行控制,以及供热,通风与空调设计和设备选用,更是离不开流体力学。可以说,流体力学已成为土木工程各领域共同的专业理论基础。 流体力学不仅用于解决单项土木工程的水和气的问题,更能帮助工程技术人

流体力学-课后习题答案

第一章习题答案 选择题(单选题) 1.1 按连续介质的概念,流体质点是指:(d ) (a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 1.2 作用于流体的质量力包括:(c ) (a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。 1.3 单位质量力的国际单位是:(d ) (a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。 1.4 与牛顿内摩擦定律直接有关的因素是:(b ) (a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。 1.5 水的动力黏度μ随温度的升高:(b ) (a )增大;(b )减小;(c )不变;(d )不定。 1.6 流体运动黏度ν的国际单位是:(a ) (a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ?。 1.7 无黏性流体的特征是:(c ) (a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p =ρ 。 1.8 当水的压强增加1个大气压时,水的密度增大约为:(a ) (a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。 1.9 水的密度为10003 kg/m ,2L 水的质量和重量是多少? 解: 10000.0022m V ρ==?=(kg ) 29.80719.614G mg ==?=(N ) 答:2L 水的质量是2 kg ,重量是19.614N 。 1.10 体积为0.53 m 的油料,重量为4410N ,试求该油料的密度是多少? 解: 44109.807 899.3580.5 m G g V V ρ= ===(kg/m 3) 答:该油料的密度是899.358 kg/m 3。 1.11 某液体的动力黏度为0.005Pa s ?,其密度为8503 /kg m ,试求其运动黏度。

第十章:粘性流体的一元流动

第十章 粘性流体的一元流动 问题: 同学们到开水房打开水,水龙头离锅炉的距离近还是短,灌满一壶水所花的时间短? 本章内容 1.粘性流体流动的两种流动状态 2.等截面圆管内的定常层流(泊肃叶流动) 3.等截面圆管内的定常湍流 4.水头损失 5.湍流基本特征 6.管路水力计算 本章重点: 1.两种流动状态的概念及其判别准则,临界雷诺数,转捩的概念。 2.平均速度,最大速度,摩擦速度,粘性底层的概念。 3.等截面圆管内定常层流的速度分布,切应力分布规律。 4.等截面圆管内定常湍流的速度分布,切应力分布规律。 5.湍流特征,湍流切应力在近壁面处的特征。 6.湍流度,时间平均值的概念。 7.沿程阻力、局部阻力产生的原因。 8.沿程阻力系数与雷诺数和粗糙度的关系。 10.水力光滑管的概念,平方阻力、自动模拟的概念。 11.简单管路的水力计算。 本章难点: 1.湍流特征 2.湍流应力的概念 §10-1 管路计算的基本方程式 第四章中已经将伯努利方程推广到有限大流束(粘性流体的伯努利方程): w h g U a p z g U a p z +++=++222 22222111 1γγ (10--1) 推导如下: 若设流线上1~2两点之间的水头损失为hw ,

理想流体伯努利方程改写为:w h g v p z g v p z '+++=++ 222 222211 1γγ 上式各项乘于γdQ 在整个过流断面上积分: ??? '+++=++Q Q w Q dQ h dQ g v p z dQ g v p z γγγγγ)2()2(2 222211 1 (10--2) 缓变流:过流断面上流线几乎为相互平行的直线。否则称为急变流。如下图所示, 缓变流特性:在缓变流断面上,沿流线的法线方向有(证明略) 常数=+ γ p z (10--3) 则积分 ? + =+ Q Q p z dQ p z γγ γγ )()( (10--4) 现令积分 ? =Q Q g U a dQ g v γγ222 2 (10--5) U 为过流断面上平均流速,v 为微小流束上流速。 由连续性方程Q=AU ,及dQ=vdA ,则 ? ? ? == =dA U v A dQ U v Q Q g U d g v a Q Q 332 2 )(1)( 122γθγ 为简便起见令 Q h dQ h w Q w γγ='? (10--6) 代表过流断1~2之间单位重量流体的平均能量损失. 将式(10--4),(10--5),(10--6)代入式(10--2),并通除以γQ ,则有

流体力学-课后习题答案

流体力学-课后习题答案

第一章习题答案 选择题(单选题) 1.1 按连续介质的概念,流体质点是指:(d ) (a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 1.2 作用于流体的质量力包括:(c ) (a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。 1.3 单位质量力的国际单位是:(d ) (a )N ;(b )Pa ;(c )kg N /;(d )2 /s m 。 1.4 与牛顿内摩擦定律直接有关的因素是:(b ) (a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。 1.5 水的动力黏度μ随温度的升高:(b ) (a )增大;(b )减小;(c )不变;(d )不定。 1.6 流体运动黏度ν的国际单位是:(a ) (a )2 /s m ;(b )2 /m N ;(c )m kg /;(d )2 /m s N ?。 1.7 无黏性流体的特征是:(c ) (a )黏度是常数;(b )不可压缩;(c )无 黏性;(d )符合RT p =ρ 。 1.8 当水的压强增加1个大气压时,水的密度增 大约为:(a ) (a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。 1.9 水的密度为10003 kg/m ,2L 水的质量和重量

是多少? 解: 10000.0022m V ρ==?=(kg ) 29.80719.614 G mg ==?=(N ) 答:2L 水的质量是2 kg ,重量是19.614N 。 1.10 体积为0.53 m 的油料,重量为4410N ,试求该油料的密度是多少? 解: 44109.807 899.3580.5 m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358 kg/m 3 。 1.11 某液体的动力黏度为0.005Pa s ?,其密度为8503 /kg m ,试求其运动黏度。 解:6 0.005 5.88210850μνρ-===?(m 2/s ) 答:其运动黏度为6 5.88210-? m 2 /s 。 1.12 有一底面积为60cm ×40cm 的平板,质量为 5Kg ,沿一与水平面成20°角的斜面下滑,平面与斜面之间的油层厚度为0.6mm ,若下滑速度0.84/m s ,求油的动力黏度μ。

相关主题
文本预览
相关文档 最新文档