当前位置:文档之家› 常见离散分布和连续分布公式

常见离散分布和连续分布公式

常见离散分布和连续分布公式
常见离散分布和连续分布公式

常见离散分布

1. 0-1分布

定义:如果随机变量X 只可能取0与1两个值,它的分布律是

1{}(1),0,1(01)k k P X k p p k p -==-=<<

则称X 服从参数为p 的0-1分布或两点分布。

()p,()(1).E X D X p p ==-

2. 二项分布

如果随机变量X 的分布律是

n {}(1),0,1,...,k k n k P X k C p p k n -==-=

则称X 服从二项分布,记为~(n,)X B p 。

()p,()(1).E X n D X np p ==-

3. 泊松分布

如果随机变量X 的分布律为k {},0!P X k e k λλλ-==

>为参数,k =0,1,2,…,则称服从参

数为λ的泊松分布,记为~()X P λ。 (),().E X D X λλ==

常见连续分布

1. 均匀分布

如果连续型随机变量X 具有概率密度

1,,()0,a x b f x a b ?<

其它, 则称X 在区间(a,b)上服从均匀分布,记为~(,)X U a b .均匀分布函数为

0,0,(),,1,,

a x a F x a x

b b a

x b

2

()(),()212

a b a b E X D X ++==. 2. 指数分布

如果随机变量X 概率密度为

1,0,()(0)0,0,

x e x f x x θθθ-?>?=>??≤?,

则称X 服从参数为θ的指数分布,记为~x ()X E p θ,(注λ=

1θ)

指数分布的分布函数为 1,0.()0,0.

x e x F x x θ-??->=??≤?

2(),()E X D X θθ==.

3. 正态分布

如果随机变量X 的概率密度为

22()2(),,x f x x μσ--=-∞<<+∞

其中μ,σ(σ>0)为参数,则称X 服从参数 μ,σ的正态分布(又称高斯分布),记为2~(,)X N μσ.

正态分布2

~(,)X N μσ的分布函数为

22()2()e x x F x dt μσ--=-∞.

2(),()E X D X μσ==.

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

连续传递函数离散化的方法与原理

目录

第一章 模拟化设计基础 数字控制系统的设计有两条道路,一是模拟化设计,一是直接数字设计。如果已经有成熟的模拟控制器,可以节省很多时间和部分试验费用,只要将模拟控制器离散化即可投入应用。如果模拟控制器还不存在,可以利用已有的模拟系统的设计经验,先设计出模拟控制器,再进行离散化。 将模拟控制器离散化,如果用手工进行,计算量比较大。借助数学软件MATLAB 控制工具箱,可以轻松地完成所需要的全部计算步骤。如果需要的话,还可以使用MATLAB 的SIMULINK 工具箱,进行模拟仿真。 第一节 步骤 步骤1 模拟控制器的处理 在数字控制系统中,总是有传输特性为零阶保持器的数模转换器(DAC ),因此,如果模拟控制器尚未设计,则应以下 图的方式设计模拟控制器,即在对象前面加上一个零阶保持器,形成一个新对象Ts 1e G s s ()--,然后针对这个新对象求模拟 控制器D(s)。事实上,模拟控制器一般是已经设计好的,无法或不方便更改了,离散化后的系统只好作为近似设计了。 然而,按照上述思路,可否将已有的控制器除以一个零阶保持器再离散化呢?还没有这方面的实际经验。 以下假设选定的G(s),D(s)如下图,而且不对G(s)作添加保持器的预处理。 步骤2 离散化模拟控制器 离散化模拟控制器之前,先要确定离散化算法和采样时间。离散化算法有好几种,第二章中有详细的论述,现假定采用双线性变换法。确定采样时间,需要考虑被控对象的特性,计算机的性能,以及干扰信号的影响等,初步可按采样时间T<,Tp 为被控对象时间常数,或T=~τ,为被控对象的纯滞后,初步确定后再综合平衡其它因素,当然这需要一定的经验,现在假定取秒。 假设模拟控制器为s 2 D s 8s 15 +=?+(),在MATLAB 中,用c2d 函数进行离散化,过程为: 转换结果为: 步骤3 检验数字控制器的性能 数字控制器的性能项目比较多,我们仅以直流增益,频率特性,零极点分布说明。 直流增益 dcgain(dz) 返回直流增益 频率特性 bode(ds,'r',dz,'g') 伯德图,见下页左图 零极点分布 pzmap(dz) 零极点分布图,见下页右图 步骤4 离散化控制对象 为了进行模拟仿真,需要对控制对象进行离散化,由于步骤1所说的原因,应把被控对象视为零阶保持器与原对象的串连,即应对 Ts 1e G s s ()--进行离散化,这时可在c2d 函数中使用零阶保持器(zoh)方法,如果认为不需要添加零阶保持器,即直接对G(s)离散化,则应在c2d 函数中使用冲击响应不变法(imp )。 借用零阶保持器(zoh)方法,将对象20 G s s s 2()() =+带一阶保持器离散化的过程如下: 转换结果为: 步骤5 模拟仿真 求离散系统的闭环传递函数和连续系统的闭环传递函数。 ds=zpk(-2,-15,8) %建立模拟控制器的s 传递函数 dz=c2d(ds,,'tustin') %将模拟控制器按tustin 方法转换为z 传递函数的数字控制器 ...... %模拟控制器D(s)转换为D(z)的过程见前 gs=zpk([ ],[0,-2],20) %建立对象的s 传递函数 g1z=c2d(gs,,'zoh') %借用c2d 函数进行带零阶保持器的对象的离散化

常见离散分布和连续分布公式

常见离散分布 1. 0-1分布 定义:如果随机变量X 只可能取0与1两个值,它的分布律是 1{}(1),0,1(01)k k P X k p p k p -==-=<< 则称X 服从参数为p 的0-1分布或两点分布。 ()p,()(1).E X D X p p ==- 2. 二项分布 如果随机变量X 的分布律是 n {}(1),0,1,...,k k n k P X k C p p k n -==-= 则称X 服从二项分布,记为~(n,)X B p 。 ()p,()(1).E X n D X np p ==- 3. 泊松分布 如果随机变量X 的分布律为k {},0!P X k e k λλλ-== >为参数,k =0,1,2,…,则称服从参 数为λ的泊松分布,记为~()X P λ。 (),().E X D X λλ== 常见连续分布 1. 均匀分布 如果连续型随机变量X 具有概率密度 1,,()0,a x b f x a b ?<

0,0,(),,1,, a x a F x a x b b a x b ?=>??≤?, 则称X 服从参数为θ的指数分布,记为~x ()X E p θ,(注λ= 1θ) 指数分布的分布函数为 1,0.()0,0. x e x F x x θ-??->=??≤? 2(),()E X D X θθ==. 3. 正态分布 如果随机变量X 的概率密度为 22()2(),,x f x x μσ--=-∞<<+∞ 其中μ,σ(σ>0)为参数,则称X 服从参数 μ,σ的正态分布(又称高斯分布),记为2~(,)X N μσ. 正态分布2 ~(,)X N μσ的分布函数为 22()2()e x x F x dt μσ--=-∞. 2(),()E X D X μσ==.

连续系统离散化处理基本方法

在数字计算机上对连续系统进行仿真时,首先遇到的问题是如何解决数字计算机在数值及时间上的离散性与被仿真系统数值及时间上的连续性这一基本问题。 从根本意义上讲,数字计算机所进行的数值计算仅仅是“数字”计算,它表示数值的精度受限于字长,这将引入舍入误差;另一方面,这种计算是按指令一步一步进行的,因而,还必须将时间离散化,这样就只能得到离散时间点上系统性能。用数字仿真的方法对微分方程的数值积分是通过某种数值计算方法来实现的。任何一种计算方法都只能是原积分的一种近似。因此,连续系统仿真,从本质上是对原连续系统从时间、数值两个方面对原系统进行离散化,并选择合适的数值计算方法来近似积分运算,由此得到的离散模型来近似原连续模型。如何保证离散模型的计算结果从原理上确能代表原系统的行为,这是连续系统数字仿真首先必须解决的问题。 设系统模型为:),,(t u y f y =&,其中u (t )为输入变量,y (t )为系统变量;令仿真时间间隔为h ,离散化后的输入变量为)(?k t u ,系统变量为)(?k t y ,其中k t 表示t=kh 。如果)()(?k k t u t u ≈,)()(?k k t y t y ≈,即0)()(?)(≈-=k k k u t u t u t e ,0)()(?)(≈-=k k k y t y t y t e (对所有k=0,1,2,…),则可认为两模型等价,这称为相似 原理(参见图)。 实际上,要完全保证0)(,0)(==k y k u t e t e 是很困难的。进一步分析离散化引的误差,随着计算机技术的发展,由计算机字长引入的舍入误差可以忽略,关键是数值积分算法,也称为仿真建模方法。相似原理用于仿真时,对仿真建模方法有三个基本要求: (1)稳定性:若原连续系统是稳定的,则离散化后得到的仿真模型也应是稳定的。关于稳定性的详细讨论将在节中进行。 (2)准确性:有不同的准确性评价准则,最基本的准则是: 绝对误差准则:δ≤-=)()(?)(k k k y t y t y t e 相对误差准则:δ≤-= )(?)()(?)(k k k k y t y t y t y t e 其中 规定精度的误差量。 原连续模型 仿真模型 )(≈k y t e 图 相

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机 变量随机变量常用希腊字母、等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随 机变量叫做离散型随机变量。若 是随机变量, a b ,其中a 、b 是常数,则 也 是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的 变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变 量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列 出,而连续性随机变量的结果不可以 --------------------- 列出 离散型随机变量的分布列:设离散型随机变量可能取的值为X i 、X 2 X i 取每一 个值X i i 1,2, 的概率为P( X ) p ,贝U 称表 为随机变量的概率分布,简称的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0 P(A) 1,并且不可能事件的概率为0,必然事 件的概率为 1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) P i 0, i 1,2, ; (2) RP.L 1 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即P( 知识点二:两点分布: 若随机变量X 的分布列: 特别提醒:(1) 若随机变量X 的分布列为两点分布,则称X 服从两点分布,而称P(X=1为成 功 率? (2) 两点分布又称为0-1分布或伯努利分布 ⑶两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正 品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列 来研究? 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则 C k C n k X k ) P( X k ) P( X k 1) L 则称X 的分布列为两点分布列

常用的概率分布类型其特征

常用的概率分布类型及其特征 3.1 二点分布和均匀分布 1、两点分布 许多随机事件只有两个结果。如抽检产品的结果合格或不合格;产品或者可靠的工作,或者失效。描述这类随机事件变量只有两个取值,一般取0和1。它服从的分布称两点分布。 其概率分布为: 其中 Pk=P(X=Xk),表示X取Xk值的概率: 0≤P≤1。 X的期望 E(X)=P X的方差 D(X)=P(1—P) 2、均匀分布 如果连续随机变量X的概率密度函数f(x)在有限的区间[a,b]上等于一

个常数,则X服从的分布为均匀分布。 其概率分布为: X的期望 E(X)=(a+b)/2 X的方差 D(X)=(b-a)2/12 3.2 抽样检验中应用的分布 3.2.1 超几何分布 假设有一批产品,总数为N,其中不合格数为d,从这批产品中随机地抽出n件作为被检样品,样品中的不合格数X服从的分布称超几何分布。 X的分布概率为: X=0,1,…… X的期望 E(X)=nd/N

X的方差 D(X)=((nd/N)((N-d)/N)((N-n)/N))(1/2)3.2.2 二项分布 超几何分布的概率公式可以写成阶乘的形式,共有9个阶乘,因而计算起来十分繁琐。二项分布就可以看成是超几何分布的一个简化。 假设有一批产品,不合格品率为P,从这批产品中随机地抽出n件作为被检样品,其中不合格品数X服从的分布为二项分布。 X的概率分布为: 0

几种常见的概率分布复习过程

几种常见的概率分布 一、 离散型概率分布 1. 二项分布 n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布 应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的 平均数: (Y)np X E μ== 方差与标准差:2(1)X np P σ=- ;X σ=特例:(0-1)分布 若随机变量X 的分布律为 1(x k)p (1p)k k p -==- k=0,1;0

复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票 二、 连续型概率分布 1. 均匀分布 若随机变量X 具有概率密度函数 (x)f = 则称X 在区间(a ,b )上服从均匀分布,记为X ~ U(a ,b) 在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为 0F(x),1 x a x a a x b b a b x ? 是常数, 则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为 1,0(x)0,0 x e x F x λ-?-≥=?

连续系统离散化分析

1 实验一 离散系统的分析 一 实验目的 1.学习利用采样控制理论; 2.使用MATLAB 理论进行分析; 3. 学习利用z 变换与反变换分析离散控制系统; 二、实验步骤 1.开机执行程序 C :\matlab \bin \matlab.exe (或用鼠标双击图标)进人MATLAB 命令窗口; 2.运用所学自动控制理论z 变换与反变换,使用MATLAB 的基本知识分析离散控制系统的基本性质及进行控制系统的设计。 3. MATLAB 离散系统基本命令 模型转换 1)连续系统离散化 sysd=c2d(sys,T) T 为采样时间 sysd=c2d(sys,T,method) method 有四种模式: a. ‘zoh’---采用零阶保持器, b. ‘foh’---采用一阶保持器, c. ‘tustin’---采用双线性逼近(tustin )方法, d. ‘preqarp’---采用改进的(tustin )方法, 2)离散系统连续化 sys=d2c(sysd,T,method) T 为采样时间 例 设) 1(1)(+=s s s g , T=0.1s , 求G(z) 键入命令:sys=tf([1],[1 1 0]); c2d(sys,0.1) %采样时间0.1s 得到离散传递函数: 当采样时间取T=1s 时: 0.004837 z + 0.004679 G (z )= ---------------------------- z^2 - 1.905 z + 0.9048 0.3679 z + 0.2642 G (z )= ---------------------------- z^2 - 1.368 z + 0.3679

常见离散型随机变量的分布 (1)

新乡医学院教案首页单位:计算机教研室 课程名称医药数理统计方法 授课题目 2.1 常见离散型随机变量的分布授课对象05级药学专业 时间分配超几何分布15分钟二项分布35分钟泊松分布30分钟 课时目标理解掌握常见离散型随机变量的分布函数 掌握两点分布、二项分布、泊松分布之间的联系与区别授课重点伯努利试验、二项分布、泊松分布 授课难点两点分布、二项分布、泊松分布之间的联系与区别 授课形式小班理论课 授课方法启发讲解 参考文献医药数理统计方法刘定远主编人民卫生出版社概率论与数理统计刘卫江主编清华大学出版社北京交通大学出版社 高等数学(第五版)同济大学编高等教育出版社 思考题二项分布和超几何分布有何联系? 教研室主任及课程负责人签字教研室主任(签字)课程负责人(签字)年月日年月日

基 本 内 容 备 注 常见离散型随机变量的分布 一、超几何分布 例1 带活动门的小盒子里有采自同一巢的20只工蜂和10只雄蜂,现随机地放出5只作实验,表示X 放出的蜂中工蜂的只数,求X 的分布列。 解 X 1 2 3 4 5 P 052010530C C C 142010530C C C 232010530C C C 322010530C C C 412010530C C C 502010 5 30 C C C 定义 1 若随机变量X 的概率函数为 {} 0,1,2,,k n k M N M n N C C P X k k l C --?=== 其中N≥M>0,n≤N -M,l=min(M,n),则称X 服从参数为N,M,n 的超几何分布,记作X~H(N,M,n). 超几何分布的分布函数为()k n k M N M n k x N C C F x C --≤?=∑ 二、二项分布 1. Bernoulli 试验 只有两个可能结果的试验称为Bernoulli 试验。 例2 已知某药有效率为0.7,今用该药试治某病3例,X 表示治疗无效的人数,求X 的分布列。 解:X 可取0,1,2,3。 用A i 表示事件“第i 例治疗无效”,i=1,2,3.则()0.7i P A p == P{X=0}=33 123123()()()()(1)0.343P A A A P A P A P A p q ==-== P{X=1}=231312123()P A A A A A A A A A ++ 2231312123()()()30.441P A A A P A A A P A A A pq =++== P{X=2}=321121323()P A A A A A A A A A ++ 2321121323()()()30.189P A A A P A A A P A A A p q =++==

连续传递函数离散化的方法与原理

目录 第一章模拟化设计基础1第一节步骤1第二节在MATLAB中离散化3第三节延时e-Ts环节的处理5第四节控制函数分类6第二章离散化算法10摘要10比较11第一节冲击响应不变法(imp,无保持器直接z变换法) 11第二节阶跃响应不变法(zoh,零阶保持器z变换法) 11第三节斜坡响应不变法(foh,一阶保持器z变换法) 11第四节后向差分近似法12第五节前向差分近似法14第六节双线性近似法(tustin) 15第七节预畸双线性法(prevarp) 17第八节零极点匹配法(matched) 18第三章时域化算法19第一节直接算法1—双中间变量向后递推19第二节直接算法2—双中间变量向前递推20第三节直接算法3—单中间变量向后递推21第四节直接算法4—单中间变量向前递推(简约快速算法) 21第五节串联算法22第六节并联算法23第四章数字PID控制算法24第一节微分方程和差分方程25第二节不完全微分25第三节参数选择26第四节 c51框架27第五章保持器33第一节零阶保持器33第二节一阶保持器30附录两种一阶离散化方法的结果的比较31

第一章 模拟化设计基础 数字控制系统的设计有两条道路,一是模拟化设计,一是直接数字设计。如果已经有成熟的模拟控制器,可以节省很多时间和部分试验费用,只要将模拟控制器离散化即可投入应用。如果模拟控制器还不存在,可以利用已有的模拟系统的设计经验,先设计出模拟控制器,再进行离散化。 将模拟控制器离散化,如果用手工进行,计算量比较大。借助数学软件MATLAB 控制工具箱,可以轻松地完成所需要的全部计算步骤。如果需要的话,还可以使用MATLAB 的SIMULINK 工具箱,进行模拟仿真。 第一节 步骤 步骤1 模拟控制器的处理 在数字控制系统中,总是有传输特性为零阶保持器的数模转换器(DAC ),因此,如果模拟控制器尚未设计,则应以下图 的方式设计模拟控制器,即在对象前面加上一个零阶保持器,形成一个新对象Ts 1e G s s ()--,然后针对这个新对象求模拟控 制器D(s)。事实上,模拟控制器一般是已经设计好的,无法或不方便更改了,离散化后的系统只好作为近似设计了。 然而,按照上述思路,可否将已有的控制器除以一个零阶保持器再离散化呢还没有这方面的实际经验。 D(s)x u e -模拟控制器 1-e -Ts s G(s)对象 以下假设选定的G(s),D(s)如下图,而且不对G(s)作添加保持器的预处理。 x u e -D(s)=8s+2 s+15 .G(s)=20 s(s+2) 步骤2 离散化模拟控制器 离散化模拟控制器之前,先要确定离散化算法和采样时间。离散化算法有好几种,第二章中有详细的论述,现假定采用双线性变换法。确定采样时间,需要考虑被控对象的特性,计算机的性能,以及干扰信号的影响等,初步可按采样时间T<,Tp 为被控对象时间常数,或T=~τ,为被控对象的纯滞后,初步确定后再综合平衡其它因素,当然这需要一定的经验,现在假定取秒。 假设模拟控制器为s 2 D s 8s 15 +=?+(),在MATLAB 中,用c2d 函数进行离散化,过程为: 转换结果为: x u e -D(z)= 6.1091(z-0.9048) z-0.4545 D(s)=8s+2 s+15. G(s)= 20s(s+2) 步骤3 检验数字控制器的性能 数字控制器的性能项目比较多,我们仅以直流增益,频率特性,零极点分布说明。 ds=zpk(-2,-15,8) %建立模拟控制器的s 传递函数 dz=c2d(ds,,'tustin') %将模拟控制器按tustin 方法转换为z 传递函数的数字控

第八章 常用统计分布练习题

第八章 常用统计分布 一、填空 1.对于超几何分布,随着群体的规模逐渐增大,一般当N n ≤(0.1 )时,可采用二项分布来近似。 2.泊松分布只有一个参数( λ ),只要知道了这个参数的值,泊松分布就确定了。 3.卡方分布是一种(连续 )型随机变量的概率分布,它是由(正态 )分布派生出来的。 4.( F )分布具有一定程度的反对称性。6.( 稀有 )事件是满足泊松分布的。 7.( 泊松 )分布用于解决连续体中的孤立事件。8.2χ分布的图形随着自由度的增加而渐趋(对称 )。 9.当群体规模逐渐增大,以致不回置抽样可以作为回置抽样来处理,这时(超几何分布 )可采用二项分布来近似。 二、单项选择 1.已知离散性随机变量x 服从参数为λ=2的泊松分布,则概率P (3;λ)=( A )。 A 4/3e 2 B 3/3e 2 C 4/3e 3 D 3/3e 3 2.当群体的规模逐渐增大,以至于不回置抽样可以作为回置抽样来处理时,( D )分布可以用二项分布来近似。 A t 分布 B F 分布 C 2χ分布 D 超几何分布 3.研究连续体中的孤立事件发生次数的分布,如某时间段内电话机被呼叫的次数的概率分布,应选择( C )。 A 二项分布 B 超几何分布 C 泊松分布 D F 分布 4.对于一个样本容量n 较大及成功事件概率p 较小的二项分布,都可以用( C )来近似。 A 二项分布 B 超几何分布 C 泊松分布 D F 分布。 5.与F α(1k ,2k )的值等价的是( C )。 A F 1-α(1k ,2k ) B F 1-α(2k ,1k ) C 1/F α(1k ,2k ) D 1/F 1-α(2k ,1k ) 6、只与一个自由度有关的是(A )A 2χ分布 B 超几何分布 C 泊松分布 D F 分布 三、多项选择 1.属于离散性变量概率分布的是(ABC )。A 二项分布 B 超几何分布 C 泊松分布 D F 分布 2.属于连续性变量的概率分布的是(AF )。A 2χ分布 B 超几何分布 C 泊松分布 D F 分布 3.下列近似计算概率的正确方法是(ACDE )。 A 用二项分布的概率近似计算超几何分布的概率 B 用二项分布的概率近似计算泊松分布的概率 C 用泊松分布的概率近似计算超二项分布的概率 D 用正态分布的概率近似计算超二项分布的概率 E 用正态分布的概率近似计算 F 分布的概率 4.2 χ分布具有的性质是(ABE )。A 恒为正值 B 非对称性 C 反对称性 D 随机变量非负性 E 可加性 5.F 分布具有的性质是( ABC )。A 恒为正值 B 非对称性 C 反对称性 D 随机变量非负性 E 可加性 6.一般地,用泊松分布近似二项式分布有较好的效果是(BC )。 A n/N ≤0.1 B n ≥10 C p ≤0.1 D k ≥30 E k 2>2

高中理科数学离散型随机变量及分布列

理科数学复习专题 统计与概率 离散型随机变量及其分布列 知识点一 1、离散型随机变量:随着实验结果变化而变化的变量称为随机变量,常用字母,X,Y , 表示,所有取值可以一一列出的随机变量,称为离散型随机变量。 2、离散型随机变量的分布列及其性质: (1)定义:一般的,若离散型随机变量X 可能取的不同值为12,,,,,,i n x x x x X 取每一个值(1,2,,)i x i n 的概率为() i i P X x p ,则表 称为离散型随机变量离散型随机变量X ,简称X 的分布列。 (2)分布列的性质:①0,1,2,,i p i n ;② 1 1n i i p (3)常见离散型随机变量的分布列: ①两点分布:若随机变量X 的分布列为, 则称X 服从两点分布,并称(1)p P x 为成功概率 ②超几何分布:一般的,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则() (0,1,2,,k n k M N M n N C C P X k k m C 其中min{,}m M n ,且 *,,,,)n N M N n M N N ,称分布列为超几何分布列。如果随机变量X 的分布列 0n M N M n C C 1n M N M n C C m n m M N M n C C 、随机变量的数学期望(均值)与方差

题型一 由统计数据求离散型随机变量的分布列 【例1】已知一随机变量的分布列如下,且E (ξ)=6.3,则a 值为( ) A. 5 【变式1】 某公司有5万元资金用于投资开发项目,如果成功,一年后可获利12%;一旦失败,一年后将丧失全部资金的50%.下表是过去200例类似项目开发的实施结果: 则该公司一年后估计可获收益的期望是________. 题型二 由古典概型求离散型随机变量的分布列(超几何分布) 【例2】在一次购物抽奖活动中,假设某10券中有一等奖券1,可获价值50元的奖品;有二等奖券3,每可获价值10元的奖品;其余6没有奖.某顾客从此10奖券中任抽2,求: (1) 该顾客中奖的概率; (2)该顾客获得的奖品总价值X 元的概率分布列.

选修2-3离散型随机变量及其分布知识点

离散型随机变量及其分布 知识点一:离散型随机变量的相关概念; 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。若ξ是随机变量,a b ηξ=+,其中a 、b 是常数,则η也是随机变量 连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 离散型随机变量的分布列:设离散型随机变量ξ可能取的值为12i x x x ??????、ξ取每一个值()1,2,i x i =???的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 知识点二:离散型随机变量分布列的两个性质; 任何随机事件发生的概率都满足:0()1P A ≤≤,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: (1) 01,2,i p i ≥=???,;12(2) 1P P ++ = 特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的 概率的和即1()()()k k k P x P x P x ξξξ+≥==+=+ 知识点二:两点分布: 若随机变量X 的分布列: 则称 X 的分布列为两点分布列. 特别提醒:(1)若随机变量X 的分布列为两点分布, 则称X 服从两点分布,而称P(X=1) 为成功率. (2)两点分布又称为0-1分布或伯努利分布 (3)两点分布列的应用十分广泛,如抽取的彩票是否中奖;买回的一件产品是 否为正品;新生婴儿的性别;投篮是否命中等等;都可以用两点分布列来研究. 知识点三:超几何分布: 一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则

连续系统离散化处理基本方法

连续系统离散化处理的基本方法 在数字计算机上对连续系统进行仿真时,首先遇到的问题就是如何解决数字计算机在数值及时间上的离散性与被仿真系统数值及时间上的连续性这一基本问题。 从根本意义上讲,数字计算机所进行的数值计算仅仅就是“数字”计算,它表示数值的精度受限于字长,这将引入舍入误差;另一方面,这种计算就是按指令一步一步进行的,因而,还必须将时间离散化,这样就只能得到离散时间点上系统性能。用数字仿真的方法对微分方程的数值积分就是通过某种数值计算方法来实现的。任何一种计算方法都只能就是原积分的一种近似。因此,连续系统仿真,从本质上就是对原连续系统从时间、数值两个方面对原系统进行离散化,并选择合适的数值计算方法来近似积分运算,由此得到的离散模型来近似原连续模型。如何保证离散模型的计算结果从原理上确能代表原系统的行为,这就是连续系统数字仿真首先必须解决的问题。 设系统模型为:),,(t u y f y =&,其中u (t )为输入变量,y (t )为系统变量;令仿真时间间隔为h ,离散化后的输入变量为)(?k t u ,系统变量为)(?k t y ,其中k t 表示t=kh 。如果)()(?k k t u t u ≈,)()(?k k t y t y ≈,即0)()(?)(≈-=k k k u t u t u t e ,0)()(?)(≈-=k k k y t y t y t e (对所有k=0,1,2,…),则可认为两模型等价,这称为相似原理(参见图2、1)。 ,随着计,也称为仿真建模关于稳定性的详细讨论将在2、4节中进行。 (2)准确性:有不同的准确性评价准则,最基本的准则就是: 绝对误差准则:δ≤-=)()(?)(k k k y t y t y t e 相对误差准则:δ≤-= )(?)()(?)(k k k k y t y t y t y t e 其中δ 规定精度的误差量。 (3)快速性:如前所述,数字仿真就是一步一步推进的,即由某一初始值)(0t y 出发,逐步计算,得到)(,),(),(21k t y t y t y Λ,每一步计算所需时间决定了仿真速度。若第k 步计算对应的系统时间间隔为,1k k k t t h -=+计算机由)(k t y 计算)(1+k t y 需要的时间为T k ,则,若T k =h k 称为实时仿真,T k h k ,对应于离线仿真。 &,已知系统变量y 的初始条件y t y ()00=,现 在要求y 随时间变化的过程y t ()。计算过 程可以这样考虑(参见图2、2):首先求出初始 点y t y ()00=的f t y ()00,,微分方程可以 )(≈k y t e 图2、1

离散型随机变量及其概率分布列(学生版)

离散型随机变量及其概率分布列 第一课时 随机变量 学习目标: 1.离散型随机变量、事件空间的概念。区分离散型随机变量和非离散型随机变量。 2.理解随机变量所表示实验结果的含义,会用合适的数表示试验的结果。 3.会求离散型随机变量:()P X a =、()P X a <、()()P X a P b X a ≤<≤、。 预习:离散型随机变量、离散型随机变量概率分布列的概念。 新课 一、随机试验、随机变量、样本空间 引例:下列2个随机试验,结果能否用数字表达? 1.抛掷一枚质地均匀的骰子一次。 2.抛掷一枚质地均匀的硬币一次。 3.一枚电灯泡的使用寿命是否超过1000小时。 例题1 下列随机试验的结果能否用离散型随机变量表示?若能,请写出随机变量的样本空间和各个随机变量所对应的试验结果。 1.已知5件产品中有2件次品,任意一次抽取2件中含有的次品数。 2.抛掷质地均匀的2枚骰子一次,所得点数之和。 3.某球队在5次点球中,射进的球数。 4.任意抽取一瓶某种标有2500ml 的饮料,其实际量与规定量之差。 5.一枚电灯泡的使用寿命。 6.东圳水库2020年3月1日至7日,每天中午12点的水位。 练习:抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ> 4”表示的试验结果是什么?

二、随机变量的概率 例题2 抛掷一枚质地均匀的骰子,数值X 表示抛掷出的点数。 (1)求X 的样本空间; (2)(5)P X =; (3)(5)P X <; (4)(5)P X ≤; (5)(35)P X <≤; (6)抛掷出偶数; 练习:投掷2枚质地均匀的硬币一次,用X 表示投掷出的正面数。求下列事件的概率。 (1)(0)P X = (2)(1)P X = 三、作业 《离散型随机变量及其分布列A 卷》1,2,3,5,8,10 《离散型随机变量及其分布列B 卷》3,5,7,11,13,15,16. 第二课时 随机变量的概率分布列 学习目标: 1. 随便变量概率分布列的概念。 2. 会求简单的离散型随机变量的概率分布列。认识概率分布列对刻画随机现象的重要性。 3. 掌握超几何分布概率分布列。 预习:随机变量概率分布列的概念 一、复习导入 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量

相关主题
文本预览
相关文档 最新文档