当前位置:文档之家› 单弯管下游超声流量计的安装和测量性能研究_郑丹丹

单弯管下游超声流量计的安装和测量性能研究_郑丹丹

单弯管下游超声流量计的安装和测量性能研究_郑丹丹
单弯管下游超声流量计的安装和测量性能研究_郑丹丹

插入式超声波流量计安装调试方法简述

插入式超声波流量计安装调试方法简述 一、数据输入步骤: (1)首先用盒尺量出被测管路的周长。 (2)打开仪表,接通电源,仪表显示超声波流量计版本号或菜单第一项内容。 (3)=-------------;再按10仪表显示输入管道外周长,将用盒尺测量出的周长直接输入。 例:周长为318mm,直接按3、1、8 (4)仪表显示管外径。 (5) (6) 例:管路为碳钢,即仪表显示0 (具体材质见说明书9 (76)。(86)。 (95,插入 B型探头”,输入方法同(6) (10Z法安装”, (11 (12)40号窗口,窗口显示阻尼系数,输 (13)号窗口,窗口显示低流速切除值,按确认键后输, (141,固化参数并总使用” 二、传感器安装点的选择: 测量点要尽量选择距上游10倍直径,下游5倍直径以内均匀直管段,没有任何阀门、弯头、变径等干扰流场装置,流体必须为满管。 三、安装方法: 1、Z方式安装:以管路周长为200mm为例 侧视图侧视图截面图 (1)在管路一面外侧划一长十字为A点,以十字为中心用盒尺向另一侧量

出1/2周长,即100mm,该点为B 如安装距离为25mm,从A点向一侧量出25mm为C点和上面一样从B点向另一侧量出管路1/2周长为D点,B、D两点连接,D点划十字,A、D两点即为两个探头安装点,B、C两点也可为两个探头安装点,以现场情况而定。 (2)插入式探头则以A、D两点为中心焊接好探头底座。确保焊接周边不渗水,漏水。底座螺纹上顺时针缠绕生料带或油麻,再将球阀通过丝扣连接于底座上,旋开球阀。安装开孔工具,开钻打孔,孔打通后,缓慢向外旋出钻头,并迅速关闭球阀(也可再迅速开启、关断球阀,放出少量水以冲出打孔时的残留铁屑)根据钻头的进深,确定管壁及结垢总厚度。根据管壁及结垢厚度,确定探头的插入深度;旋转探杆,调节声楔面收发波束角度(插入式探头的安装方式详见 Z 水流方向 Z 水流方向 俯视图(接线嘴同时向上) 2显示上游= 下游= Q值= 上游、下游为信号强度,应大于60以上。上、下游数据接近。Q值为信号质量,应在60以上。如信号强度不理想,应旋转一侧探头一圈(向内或向外),同时观查信号强度变化,75-85之间最好。如还不行,应检查流体内是否含有大量气泡,或流体不满管。例:上游= 下游= Q值=70(Q值总在60-80之间变化)为好。 100%,最次在(100±3)%范围内波动。 详情请参看说明 唐山天泽仪表有限公司 开发部

超声波流量计常见安装问题及解决方案

超声波流量计常见安装问题及解决方案 一、外夹式传感器系搜不到信号的解决办法 1.常见问题的检查 常规问题检查 检查输入参数 检查耦合剂1、用户是否使用耦合剂 2、使用耦合剂的厚度是否够,安装外夹传感器管道 处理面积小安装点中心位置2~3mm厚,处理面积较大安装点中心位置 需4~5mm厚的耦合剂。(注,高温环境要选择高温耦合剂) 准确完成10~26 号菜单的设置。获得传感器的正确安装距离,这个距离是指两传感器的最内边缘距离。准确的输入参数对测量的准确性至关重要。 管道表面处理传感器调试管外欲安装传感器的区域 (一个安装点的处理面积和探头大小差不多即可,另一个安装点的处理面积应该是探头大小的2、3 倍。以便于调试信号。) 清理干净,除掉锈迹和油漆。如有防锈层也应去掉,最好用打磨 机打磨出金属光泽,再用干净抹布擦去油污和灰尘。1、在处理面积较小的安装点的中心位置涂抹2-3mm 厚 的随机附带的耦合剂,把传感器紧贴在管壁上粘好,注意传感器的发射方向要正确,传感器和管壁之间不 能有空气及沙砾。粘完后用钢带或钢丝绳紧固 2、在处理面积较大的安装点的中心位置涂抹4-5mm 厚的随机附带的耦合剂,以中心点为基准首先在水平方向轻微移动传感器找到信号强度和Q 值的最大值,然后在垂直方向轻微移动传感器找到信号强度和Q 值的最大值。然后 轻微调整传感器的发射角度找到信号强度和Q 值的最大值。这时就可以将外夹式传 感器定位。 安装距离

考虑安装点问题 满管测量点的流体必须充满管段,否则测量值会偏大或 者不能测量。 1、两个传感器应该安装在管道轴面的水平方向上 2、选择流体垂直向上流动的安装点;选择流体斜向上流动的安装点;选择管道系统中的最低点安装。 稳流管道远离泵出口、半开阀门,上游10D,下游5D(D为外管径);距离泵出口、半开阀门30D。 达不到稳流条件的标准要求,下列情况也可以尝试测量: 1、泵出口、半开阀门和安装点之间有弯头或者缓冲装置; 2、泵的入口、阀门的上游; 3、流体的流速为中、低流速。 (低流速:流速<1m/s;中流速:流速为1-2m/s;高流速:流速>2m/s) 结垢要尽量避免选择管道内壁结垢的地方 作为安装点。 如果无法避开结垢的安装点 1.更换一段测量点的管道。 2.用锤子用力敲击测量点的管道直到测量点的信号明显增大。 3.选用Z法测量,并把结垢设置为衬里以取得更好的测量精度。 温度、干扰1、尽量选择温度更低的安装点。 2、尽量远离这些干扰源:变频器、电台、电视台、微波通讯站、手机基站、高压线等 3、不要和变频器采用同一路电源,应采用隔离的电源,给主机供电

弯管流量计的原理

弯管流量计的原理 弯管流量计与传统的孔板流量计一样同属于差压式流量计的范畴,只是弯管流量计产生差压的方式与孔板流量计不同,孔板是利用流体的缩放原理产生差压的,而弯管传感器是利用流体的惯性原理产生差压的。当流体通过弯管时,由于受弯管的约束流体被迫作类似的圆周运动,流体在作圆周运动时产生的离心力作用于弯管的内外两侧,使弯管传感器内外两侧之间产生一个压力差,该压力差(也就是压差值)的大小与流体的密度有关,与流体的平均流速有关,与流体作圆周运动的曲率半径有关。他们之间遵循作圆周运动物体都必须遵循的牛顿运动定律的有关规律。 F=m(V2/R) 其中:F—流体对弯管施加的离心力; V—流体值弯管中的平均流速; R—弯管中心曲率半径; 我们对上述公式进行整合、积分处理之后,最终获得如下关系式: V=α(R/d)1/2(ΔP/ρ)1/2 其中:V—介质中弯管传感器中的平均流速; R/d—弯管传感器的弯径比; ΔP—流体通过弯管传感器时产生的差压值; ρ—介质的密度; 这个公式就是弯管流量计的基本公式,它描述了介质在弯管传感器中流动时,介质对弯管施加的离心力与介质的密度,介质的平均流速以及弯管的重要几何尺寸弯径比之间的关系。这里提到的弯径比就是弯管的中心曲率半径与弯管内径的比值,它是描述弯管几何特征的重要参数。弯径比的大小准确地描述了弯管的弯曲程度,随着弯管弯径比的增加,弯管的弯曲程度将减小。它在流量公式中的作用于孔板流量计中的开孔率β值十分相似(β=d/D),随着β值的变化可以改变流体通过孔板时的缩流效果,从而可以在相同的流量条件下获得不同的差压值。同样,改变弯管传感器的弯径比可以改变流体作圆周运动的曲率,从而使同样的介质流量获得不同的离心力(也就是弯管传感器显示的差压值),当然改变弯管弯径比远比改变孔板的开孔率要困难得多。 大量的实验证明,我们推导所得的数学公式完全符合实际的结果,只要介质在弯管传感器中流动的最小雷诺数达到一个极低值以上,弯管流量计的流量系数α就是一个定值,这个结论与孔板流量计也是十分相似的。 三、“弯管流量计重现性精度很好,而测量精度不高”结论的可信程度 为什么那么多的前辈们在谈到弯管流量计时虽然承认他们的重现性精度很高,但是,同时总是认为它的测量精度不高,搞清楚这些问题对于弯管流量计的推广应用有着十分重要的作用,也许下面的分析会给我们一个比较公正的答案。 弯管传感器的结构十分简单,它就是一个具有确定几何尺寸的弯头,流体通过弯头产生离心力使弯头的内外两侧产生一个压力差,这个转换原理十分清楚、准确。在弯管传感器工作过程中只要能够重复流体流过弯管传感器的条件和状态,弯管传感器必然会产生不变的差压信号,因此它的重现性精度好的结论是自然成立的。 说到弯管流量计测量精度不高的结论时,我们不能超越当时的历史条件和技术水平来讨论。虽然弯管传感器的结构是特别简单,但是,在当时的历史条件下要想获得高质量的弯管并不容易(我们这里所说的高质量弯管包括:弯管的垂直度、水平度、扭曲度、不圆度、均匀度等等,其中弯管的圆度和均匀度对于加工成弯管传感器特别重要,手工或者简单机械的冷弯或者热弯都很难达到弯管传感器对于弯管的基本要求。其二,弯管流量计与孔板流量计一样,也是属于差压式流量计的范畴,在选择配套的差压变送器量程范围时我们都希望其差压范围大一些比较好,这将有利于保证系统测量精度的提高。孔板流量计可以利用选

超声波流量计安装操作规程

官方网址https://www.doczj.com/doc/2611736467.html, 超声波流量计安装操作规程 超声波流量计安装操作规程是怎样的呢?成都永浩机电工程技术有限公司做了以下说明,供大家参考: 一、参数设置 (1)测量管道外周长,计算外径。 外径测量 (2)给主机通电,供电范围10~36VDC,接表上的DC+和DC-端子。 (3)按“menu”键,输入11,按“Enter”键,再用键盘输入管道外径,输入完成按“Enter”键。 (4)按“∨”键,按“Enter”键再用键盘输入管道管壁厚度,输入完成按“Enter”键。 (5)按“∨”键,按“Enter”键通过按“∨”选择管道材质(0,1,2后面的单词分别代表碳钢、不锈钢、PVC材质),输入完成按“Enter”键。 (6)按“∨”键,按“Enter”键,通过按“∨”选择传感器类型,这里选“1”,插入式传感器,输入完成按“Enter”键。 (7)按“∨”键,按“Enter”键,通过按“∨”选择安装方式,一般选

官方网址https://www.doczj.com/doc/2611736467.html, “V”或“Z”法安装,输入完成按“Enter”键。 (8)按“∨”键显示安装距离,安装距离可认为是两传感器之间那节管道的长度。 二、安装步骤(能焊接的管道) (1)根据仪表主机计算出来的安装距离确定两个探头的安装点,做好标记。 (2)把流量计配套焊接底座焊接到管道上。 (3)焊接底座冷却后,在底座螺纹上缠上足够生料带,把流量计配套球阀拧到焊接底座上。 (4)把专业开孔器通过螺纹拧到球阀上,打开球阀。 (5)把开孔器前端伸到管壁上,打开电钻开孔。 (6)开孔完成后,把开孔器前端退出球阀,关闭球阀。 (7)松开锁紧螺母,将传感器缩进连接螺母内。 (8)将连接螺母缠上生料带,拧紧在球阀上。 (9)打开球阀,将传感器前端推入管道。 (10)转动传感器,使上游传感器杆上的定向点对向上游(下游传感器杆上的定向点对向下游) (11)重复(2)-(10)步,安装另一个传感器。 (12)安装完成,将线接好,接线方式如下图。

弯管流量计的工作原理

弯管流量计的工作原理 推荐一、引言 弯管流量计广泛应用于石油、化工、电力、冶金、钢铁等行业的液体、气体、和蒸汽的流量测量,能在φ10~φ2000mm的大范围管道中精确测量各种流体的流量,弯管传感器可耐高温、高压、可在潮湿、粉尘、振动等各种恶劣的环境中正常工作。它没有插入件,无附加阻力损失,结构简单,安装方便。 二、弯管流量计的工作原理 1、原理 流体在管道中流动,在流经弯管时,流体类似于流过一个整流器,由于弯曲管壁的导流作用,在进入弯管前2D左右流体内侧被加速,而流体外侧被减速,直至进入弯管流体的流速形式被整流成近似于自由旋流理论描述的梯形速度流动模式,且在弯管45°截面处达到最大,这个过程将持续在整个弯管中。在弯管出口处及下游2D范围内,流速模型的变化过程是进口变化的反过程。弯管在45°截面各质点流速分布如图1所示。 图1弯管在45°截面各质点流速分布 根据质量守恒定律、能量守恒定律和动量守恒定律,在相同过流截面,各流质点的能量不变,由于各质点流速的变化,就形成了弯管的内外侧压差△P。这个压力差在45°截面时达到最大,最稳定。且45°弯管断面的流体平均速度υ与压差△P符合平方比例关系,流量愈大,差压愈大。流体流过弯管时的流量系数与弯管的几何结构尺寸(弯曲半径R和内径D)有密切关系,即流量系数α=f(R. D) 因此当弯管传感器的几何结构尺寸确定之后,只要测取弯管45°截面的内、外侧压差△P和流体的密度ρ就可以确定流体的平均流速υ。 2、数学表达式 其中: α(R.D):流量系数 △P: 45°截面内、外侧压差 D:弯管内径

R:弯管弯曲半径 ρ:流体密度 根据管道流体流速υ与流量Q的关系就可以得到以下流量计算公式: Q=π/4D2υ. 3.6ρ t/h 三、测量系统的组成 弯管流量计的基本组成除弯管传感器和主机外,还需要配置差压变送器、压力变送器和温度变送器, 1、差压变送器是用来检测弯管传感器产生的差压值,因此它是弯管流量计测量系统必不可少的配件。 2、系统是否配置压力和温度变送器,要根据具体的测量对象来决定,对于测量蒸汽或其它气体介质的系统,原则上必须配置温度和压力变送器,以便能对蒸汽或气体进行必要的实时温、压补偿。见图2 图2弯管流量计数学模型的框架结构 四、测量系统优点 1、传感器结构简单 弯管传感器利用管道系统弯头作检测元件,无附加压损及专门安装节流元件是其优点,弯管取压口开在45o处,取压口结构与标准孔板相同,两个平面内的两个取压口对准,使其能处于同一条直线上,如图3, 图3弯管流量传感器 2、免维护的流量传感器 弯管流量计在工作中不会磨损;在高速流体冲击下不会变形、扭曲、震动;对于环境中可能出现的震动、粉尘、潮湿、电磁场干扰不敏感;经过长周期运行它的稳定性、灵敏度、准确性不会发生明显变化;能在最大程度上防止传感器被粘污、结疤、堵塞等等。保证了流量计长期高精度测量的工作状态。而孔板流量计的节流口对微量磨损就十分敏感。规程规定,计量用孔板流量计的孔板每年必须进行一次或一次以上的强制性磨损检查,才能保证孔板流量计准确计量。对于

超声波流量计对管道配置要求

超声波流量计对管道配置要求 锐凌计量 / 2013-09-23 对双向流测量场合的管道配置:所谓“双向流测量”就是指使用同一套超声波流量计实现被测介质正输和反输时的流量测量。也就是说,这个时期正输时的仪表上游就是下个时期返输时的仪表下游。地下储气库或者目前大中型城市通常用作调峰手段的储气罐就需要这种具有双向测量功能的计量仪表。这正是超声流量计独到的特点。因此,当超声流量计应用于双向流测量场合就必须将其“下游”按“上游”的要求进行同等对待,这是实现超声流量计双向、等精度测量的重要前提。 直管段长度要求:为了降低不良流态对测量结果的影响,在流量计上下游安装一定长度的直管段就是一种常见的基本手段。从准确计量的角度来看,上下游直管段长度越长改善流量计测量性能的效果就越明显。但是,测量现场往往由于受场地征用(特别是海上作业平台)、材料供应以及建设施工成本等诸多客观因素的限制,又期望该长度越短越好。因此,兼顾这两方面的愿望并提出最低限度的直管段长度要求也是GB/T18604—2001标准的主要任务之一。 在超声波流量计直管段的配置长度上, AGA·NO·9号报告提出:“尽管制造商推荐的安装作法不尽一致,但一般都要求流量计的上游至少需要5~10D的直管段、下游至少需要3D直管段。 为了体现标准具有可操作性这一特点,根据上述标准或报告的建议,结合国内生产现场的实际情况,同时参考了部分超声流量计生产厂商的意见,在标准中尝试性地给出了一个有关超声流量计上下游直管段长度配置的技术规定或要求,即:在不需安装整流器的情况下,多声道超声流量计上游的最短直管段长度应为10D,下游最短直管段长度应为 5D;如果使用整流器,则整流器的安装位置及相应的配管长度应咨询生产厂商。 超声波流量计对直管段的质量要求 台阶及凸入物:在超声流量计上下游所要求的最短直管段长度范围内(测量管)出现的任何台阶及其它凸入物都将引起被测介质流态的改变,从而增大流量测量的不确定度。但事实上,只要对所用配管进行认真选择,或者采取对管道内壁进行适当镗制,或者根据现场的管道条件对制造厂商提出所用超声流量计必须达到的内径要求等手段,就可以避免各连接点台阶的出现,从而实现直管段与超声流量计之间的等径连接或良好匹配;另外,在施工组装过程中,采取将连接的内壁焊缝打磨平整或适当扩大法兰连接的垫片内圈直径等措施也可以避免凸入物及其它扰动性杂物障碍。因此,对台阶及凸入物的限制既是必要的,也是可行的。②内表面:如果在流量计本体内部及其测量管内壁存在着锈蚀、油污或硫化铁粉等其它附属物,一方面可能会改变测量管道的实际内径,另一方面又可能会增大测量管内壁的平均粗糙度,其次也可能会导致声波(脉冲信号)在表体内壁反射时出现发散和衰减现象。所有这些因素都有可能对测量结果造成严重的影响(ISO/WD17089认为,由此造成的测量偏差有可能超过1%),因此对表体及测量管内表面提出要求和限制也是实现准确计量的基本前提之一。 温度计安装 温度计的安装应主要考虑如下三点:感温元件应有足够的长度,以保证被测介质与测温元件之间有充分的接触面积;②对流态造成的影响尽可能地小;③在正常的测量过程中不会因气流冲刷等原因引起感温元件的折断或其它机械损伤。 声学噪声干扰 超声流量计是一种以声学原理为基础的测量仪表,因此现有的超声流量计对于噪声,特别是对来源于被测介质内部由于高速度、大压差等减压设备造成的超高频噪声,尤为敏感,从而影响到该种流量计的正常运行,为了确保超声流量计的正常工作,最为有效的方法就是远离噪声源或咨询制造厂家。 整流器的作用

超声波流量计安装方式

超声波流量计是20世纪70年代随着集成电路技术迅速发展才开始得到实际应用的一种非接触式流量仪表,它利用超声波在流动的流体中传播时,可以载上流速信息的特性,通过接收和处理穿过流体的超声波信息就可以监测处流速,从而换算成流量。在结构上主要有超声波换能器、电子处理线路及流量显示和积算系统三个部分组成,相对于传统的流量计而言超声波流量计解决了大管径、大流量及各类明渠、暗渠的测量困难的问题,对于介质几乎无要求。 超声波流量计高精度、高可靠性、高性能、低价格的显著特点,目前在市政行业的原水、自来水、中水、污水的计量中广泛应用。 正确选择超声波流量计安装方式 外夹式超声波流量传感器安装方式共有三种。这三种方式分别称为V法、Z 法和N法。 一般在小管径100~300mm(4"~12")时可先选用V法;V法测不到信号或信号质量差时则选用Z法;管径在300mm(12")以上或测量铸铁管时应优先选用Z法。 N法是较少使用的方法,适合管径在50mm(2")以下管道。

当流体平行于管轴流体时,通常可以透过法(Z法)安装能获得较好的精度。 但当流体流动方向与管轴不平行,存在半径方向的速度成分时,应采用反射法(V法)或者交叉法(N法)安装,亦可采用N法安装,对于地点上管道的长度有限,不足以采用V法时,则应选用N法实施安装,此时,接收换能器与发射换能器之间的距离较小。对于已配置好的流体管道,特别是测量大口径管道流量时,由于上游流动状态的干扰而易于造成测量误差的场合,比较合适的措施是增加超声波的传播路径,更多地接收传宝路径找那个的流速信息,进行平均,以低销流体扰动造成的测量误差。增加测量线时,换能器的安装应使用超声波传播途径均匀地置于流通截面上。一般认为有四条测量线(即四对换能器)就足够了。 1.V型 V法在一般情况下是标准的安装方法,使用方便,测量准确。可测管径范围为25mm(1")至大约400mm(16")。安装流量传感器时,注意两传感器水平对齐,其中心线与管道轴线水平一致。 2.Z型 当管道很粗或由于液体中存在悬浮物、管内壁结垢太厚或衬里太厚,造成V 法安装的流量计,信号弱,导致仪表不能正常工作时,要选用Z法安装。原因是:使用Z法时,超声波在管道中直接传输,没有折射(称为单声程),信号衰耗小。Z法可测管径范围为100mm(4")至大约800mm(32")。实际

超声波流量计安装注意事项

超声波流量计安装 注意事项 1 2020年4月19日

超声波流量计安装注意事项 1.探头安装在管道两侧; 2.安装距离:90MM; 3.管道打磨; 4.涂上耦合剂 2 2020年4月19日

(一)详细了解现场情况 超声波流量计在安装之前应了解现场情况,包括: 1、安装传感器处距主机距离为多少; 2、管道材质、管壁厚度及管径;碳钢,壁厚:6管径:dn250(内) 3、管道年限;开始 4、流体类型、是否含有杂质、气泡以及是否满管; 3 2020年4月19日

5、流体温度; 6、安装现场是否有干扰源(如变频、强磁场等); 7、主机安放处四季温度; 8、使用的电源电压是否稳定; 9、是否需要远传信号及种类; 根据以上提供的现场情况,厂家可针对现场情况进行配置,必要情况下也可特制机型。 4 2020年4月19日

(二)选择安装位置 选择安装管段对测试精度影响很大,所选管段应避开干扰和涡流这两种对测量精度影响较大的情况,一般选择管段应满足下列条件: 1、避免在水泵、大功率电台、变频,即有强磁场和震动干扰处安装机器; 2、选择管材应均匀致密,易于超声波传输的管段; 3、要有足够长的直管段,安装点上游直管段必须要大于10D(注:D=直径),下游要大于5D; 5 2020年4月19日

4、安装点上游距水泵应有30D距离; 5、流体应充满管道; 6、管道周围要有足够的空间便于现场人员操作,地下管道需做测试井,测试井如下: (三)确定探头安装方式 超声波流量计一般有两种探头安装方式,即Z法和V法。 可是,当D《200MM而现场情况为下列条件之一者,也可采用Z法安装: 6 2020年4月19日

超声波流量计正确使用规范

超声波流量计正确使用规范 1、零流量的检查 当管道液体静止,而且周围无强磁场干扰、无强烈震动的情况下,表头显示为零,此时自动设置零点,消除零点飘移,运行时须做小信号切除,通常可流量小于满程流量的5%,自动切除。同时零点也可通过菜单进行调整。 2、仪表面板键盘操作 启动仪表运行前,首先要对参数进行有效设置,例如,使用单位制、安装方式、管道直径、管道壁厚、管道材料、管道粗糙度、流体类型、两探头间距、流速单位、小速度、大速度等。只有所有参数输入正确,仪表方可正确显示实际流量值 3、流量计的定期校验 为了保证流量计的准确度,要进行定期的校验,通常采用更高精度的便携式超声波流量计进行直接对比,利用所测数据进行计算:误差=(测量值-标准值)/标准值,利用计算的相对误差,修正系数,使得测量误差满足±2%的误差,即可满足计量要求。该操作简单方便,可有效提高计量的准确度。 使用过程中需注意事项: 1、当管道内流体方向是由下向上的时候,可以使用超声波流量计测量。如果液体流向是自上向下的,这个管道是不适合用超声波流量计测量流量数。 2、如测量的管径低于DN15,选择进口超声波流量计,目前国产

超声波流量计对于小管径测量,测量精度很难达到技术要求。当测量的介质为常温时,可选择国产超声波流量计,温度在120 ℃到200 ℃时,应选择进口超声波流量计。 3、测量管道比较老旧的工况,尽量使用单声层(Z法)方法安装探头,不要使用双声道和多声道(V、W法)。单声道更容易接收信号,不容易产生错误信号,能够保证高精度测量。 4、超声波流量计的传感器安装处和管壁反射处必须避开接口和焊缝。同时也要避免在水泵、大功率变频等即有强磁场和震动干扰处安装传感器,安装点上游距水泵应有30D以上的距离,保证流体充满管道。要有足够长的直管段,安装点上游直管段必须要大于等于10D(注:D=管段直径),下游要大于5D。 5、超声波流量计的传感器安装处的管道衬里或污垢层不能太厚,否则会影响声音传播速度,进而影响测量精度。衬里、锈层与管壁间不能有间隙。对于锈蚀严重的管道,可先处理掉表面的锈层,保证声波正常传播。传感器工作面与管壁之间保持有足够的耦合剂,不能有空气和固体颗粒,以保证耦合良好。 6、测量前,要对管道的外周长(用卷尺)、壁厚(用测厚仪)、管道外壁的温度(表面温度测量仪)等进行测量,能够更利于超声波流量计的参数设定,使测量数据更加准确。当遇到管道有油漆或涂层的管道时候,可以先用角磨机或打磨机等设备处理管道表面图层,然后再用砂纸磨平,这样保证超声波流量计的流量传感器安装点光滑、平整,有利于探头与管道良性接触。

超声波流量计安装注意事项

超声波流量计安装注意事项 1.探头安装在管道两侧; 2.安装距离:90MM; 3.管道打磨; 4.涂上耦合剂(一)详细了解现场情况 超声波流量计在安装之前应了解现场情况,包括: 1、安装传感器处距主机距离为多少;

2、管道材质、管壁厚度及管径;碳钢,壁厚:6管径:dn250(内) 3、管道年限;2013开始 4、流体类型、是否含有杂质、气泡以及是否满管; 5、流体温度; 6、安装现场是否有干扰源(如变频、强磁场等); 7、主机安放处四季温度; 8、使用的电源电压是否稳定; 9、是否需要远传信号及种类; 根据以上提供的现场情况,厂家可针对现场情况进行配置,必要情况下也可特制机型。 (二)选择安装位置 选择安装管段对测试精度影响很大,所选管段应避开干扰和涡流这两种对测量精度影响较大的情况,一般选择管段应满足下列条件:

1、避免在水泵、大功率电台、变频,即有强磁场和震动干扰处安装机器; 2、选择管材应均匀致密,易于超声波传输的管段; 3、要有足够长的直管段,安装点上游直管段必须要大于10D(注:D=直径),下游要大于5D; 4、安装点上游距水泵应有30D距离; 5、流体应充满管道; 6、管道周围要有足够的空间便于现场人员操作,地下管道需做测试井,测试井如下: (三)确定探头安装方式 超声波流量计一般有两种探头安装方式,即Z法和V法。 但是,当D《200MM而现场情况为下列条件之一者,也可采用Z法安装: 1、当被测量流体浊度高,用V法测量收不到信号或信号很弱时; 2、当管道内壁有衬里时;

3、当管道使用年限太长且内壁结垢严重时; 对于管道条件较好者,即使D稍大于200MM,为了提高测量精度,也可采用V法安装。 (四)求得安装距离,确定探头位置 1、将管道参数输入仪表,选择探头安装方式,得出安装距离; 2、在水平管道上,一般应选择管道的中部,避开顶部和底部(顶部可能含有气泡、底部可能有沉淀); 3、V法安装:先确定一个点,按安装距离在水平位置量出另一个点。 Z法安装:先确定一个点,按安装距离在水平位置量出另一个点,然后测出此点在管道另一侧的对称点。 (五)管道表面处理 确定探头位置之后,在两安装点±100MM范围内,使用角磨砂轮机、锉、砂纸等工具将管道打磨至光亮平滑无蚀坑。 要求:光泽均匀,无起伏不平,手感光滑圆润。需要特别注意,打磨点要求与原管道有同样的弧度,切忌将安装点打磨成平面,用酒精或汽油等将此范围擦净,以利于探头粘接。 (六)探头与仪表接线

弯管流量计及其应用

弯管流量计及其应用 崔桂生 (内蒙古包头市雄狮化工有限责任公司 014100) 0 前言 包头市雄狮化工有限责任公司现生产能力为3万t/a合成氨。原造气半水煤气流量采用缩流取压圆盘孔板流量计计量, P=4kPa,煤气总管为 530 6。变换气流量采用环室孔板流量计计量, P=4kPa,管道 273 8。 随着生产能力的不断提高,为降低系统管道阻力,2001年大修期间公司决定将造气半水煤气总管更改为 630 6,变换气出口管道改为 377 8。由于管道的改变,原有流量计的取压装置也无法使用,所以必须进行更换。但公司要求新配套流量仪表压力损失要小、计量准确可靠,且投资要少。 1 几种主要流量仪表比较 结合具体情况我们进行了筛选分析,重点考察了孔板流量计、均速管流量计、涡街流量计及弯管流量计。 孔板流量计能够保证测量值准确可靠,且投资不高,但其最大的缺点就是为保证较高的精度,设计时的差压值要尽可能选的高一些,造成压力损失大,不符合我们的要求。 均速管流量计压力损失较小,但由于造气半水煤气及变换气所含粉尘、水分等较大,易引起流量计测量管的管道粘污堵塞。为此,还必须增加蒸汽冲洗管道,定期反向吹除压管内沉积物,否则将无法长期正常工作。 涡街流量计是新型的低压差流量计。缺点是只有工艺管道内径与流量计的直径相一致时工艺管道的实际流量与涡街流量计的量程范围才相符合。但在实际工艺管道设计时考虑今后企业生产规模扩大或降低系统阻力等因素,工艺管道较实际流量所需要的要大,甚至出现大管道小流量的现象,从而导致仪表不能正常工作,测量误差较大。要避免这种情况,必须根据工艺管道的实际流量选择仪表的量程和通径,必要时还需对工艺管道缩管,以保证测量精度。这也不符合我们要求。 弯管流量计是一种新型的差压式流量计。但传统的差压式流量计是利用流体通过管道内的节流元件产生差压的。而弯管流量计没有任何内插的节流件,其实质就是1个90的标准弯头,利用流体通过弯管时的惯性离心力在弯管内外侧产生的微差压来进行测量,故压力损失较小,指示准确可靠,长期稳定运行,为此我们最终选择了弯管流量计代替原来的孔板流量计。 2 弯管流量计的工作原理 当流体通过弯管时,由于弯管的约束作用,使流体在弯管内作类似的圆周运动,从而产生惯性离心力。该离心力的大小与流体的流速、密度以及作圆周运动的曲率半径等因素有关。其中流体的密度可通过温度、压力等参数计算确定,弯管传感器的曲率半径是已知的,因此弯管传感器产生的离心力大小就与流体的流速具有单一的函数关系。而离心力的大小可以通过测量弯管内外侧的差压确定,这样可计算出流体的流速。将流速与管道的截面积和流体的密度相乘,即可确定流体的流量。 3 弯管流量计的组成 (1)取压部分:90弯管传感器、取压阀、三阀组; (2)变送部分:差压变送器、压力变送器、温度变送器、温度传感器; (3)主机部分:实现人机对话,对温度、压力、差压、流量等参数的设定和显示。A型及B型机配有打印机。

超声波流量计技术要求

1.6流量计 1.6.1供货范围 需求数量:1套 安装形式:分体式 其他要求:供货商应提供现场安装服务 1.6.2流量计订货技术条件 1.流量计主要技术性能参数 ●测量介质:清水 ●介质温度:0℃~+60℃ ●环境温度:-20℃~+60℃ ●管径OD:1200mm ●管材:金属 ●管壁厚度:8mm~14mm ●管壁涂层料: 内壁:水泥砂浆(紧密地涂上内壁) 外壁:环氧煤沥青四油二布 ●涂层厚度:最高15mm ●传感器防护等级:IP68 2.流量计显示装置技术参数 ●工作电源:220V AC ●工作温度:-18℃~+60℃ ●防护等级:IP4X ●精度:双声道0.25-0.5% ●灵敏度:0.003m/s ●线性度:0.15%~0.25% ●数字及图型显示当时流量及总流量 显示:图型 240×128像素,数字 2行×16字符

●输出:RS-232串联口,标准 2个4~20mA模拟输出,标准 2个0~10V模拟输出,标准 ●数据记录:160K~2MB资料库,记录一段时间内的流量及总流量 3.流量计其它性能要求 ●在流速±14m/s内可维持标定的精度,并可显示正反流动方向 ●可测知液体中的含气量(VAER读数)并作出内部补偿 ●双声道设计,可安装在弯头附近,不受液体中的乱流影响 ●高灵敏度0.001ft/s ●自诊功能,显示计量时间的问题,如气泡、讯号值和声速 1.6.3试验与验收 1.6.3.1型式试验 投标商在投标时应提供法定机构有效的型式试验报告。其项目及标准均应符合国家相关标准及规范,并符合本技术规范的要求。 1.6.3.2出厂试验 流量计应作出厂试验,试验项目应符合国家相关标准及规范所规定的全部项目,出厂试验报告随产品一起交付需方。 1.6.3.3现场交接试验与验收 设备材料到达现场后,由安装单位按照国家有关规程与规范进行现场验收试验。试验结果应与产品型式试验和出厂试验结果及其规定值相符,否则由卖方负责。 1.6.4技术资料 1.6.4.1投标方在投标文件中应提供与投标报价有关的技术说明书等技术 资料,以供评标时比较性价比。 1.6.4.2供货商在供货时,应配套提供全套安装使用说明书、产品合格证、 出厂试验报告、装箱单、备品备件一览表及四套图纸资料等。 1.6.4.3卖方在合同签定后15天内提供全套供施工设计用的图纸及技术资 料。

新型流量计综述汇总

新型流量计概述 XXX 摘要: 流量测量是研究物质量变的科学,质和量的互变规律是事物联系与发展的基本规律,因此,其测量对象已不限于传统意义上的管道流体,凡是需要掌握流体流动的地方都有流量测量的问题。 工业生产过程是流量测量与仪表应用的一大领域,流量与温度、压力和物位一起统称为过程控制中的四大参数,人们通过这些参数对生产过程进行监视与控制。对流体流量进行正确测量和调节是保证生产过程安全经济运行、提高产品质量、降低物质消耗、提高经济效益、实现科学管理的基础。在整个过程检测仪表中,流量仪表的产值约占1/5~1/4。 在流量测量中,测量流速是测定流量的一个常用方法,流体在管道中流动时,在一个截面上的各点流速情况与流体的流动状态有密切的关系,选择适当的流动状态进行流速测量对于保证测量精度有重要的意义。 用来检测管内流速的方法或仪器主要有: 1)节流式检测方法:利用节流件前后的差压与流速之间的关系,通过差压值获得流体的流速; 2)变面积式检测方法:它是基于力平衡原理,通过在锥形管内的转子把流体的流速转换成转子的位移,相应的流量检测仪表称为转子流量计; 3)电磁式检测方法:导电流体在磁场中运动产生感应电势,感应电势的大小正比于流体的平均流速; 4)旋涡式检测方法:流体在流动中遇到一定形状的物体会在其周围产生有规则的旋涡,旋涡释放的频率正比于流速。 5)涡轮式检测方法:流体对置于管内涡轮的作用力,使涡轮转动,其转动速度在一定流速范围内与管内流体的流速成正比; 6)声学式检测方法:根据声波在流体中传播速度的变化可获得流体的流速; 7)热学式检测方法:利用加热体被流体的冷却程度与流速的关系来检测流速,基于此方法的流量仪表主要有热线风速仪等。 关键词:新型流量计速度式流量计容积式流量计质量流量计 正文: 1.前言 随着科学技术的进步,越来越多的流量计被设计与制造出来,用以测定被测流体。 流量计是指示被测流量在选定的时间间隔内流体总量的仪表。按测量原理分有力学原理、热学原理、声学原理、电学原理、光学原理、原子物理学原理等。 体积流量计分为: (1)速度式流量计,包括:转子流量计、涡轮流量计、涡街流量计、电磁流量计、超声波流量计、堰式流量计等 (2)容积式流量计,包括:椭圆齿轮流量计、活塞式流量计、腰轮流量计、皮膜式流量计等

插入式超声波流量计安装调试方法简述

插入式超声波流量计安装调试方法简述 、数据输入步骤: 首先用盒尺量出被测管路的周长。 打开仪表,接通电源,仪表显示超声波流量计版本号或菜单第一项内容。 按菜单键,仪表显示输入菜单号码 二 ------ ;再按10仪表显示输 入管道外周长,将用盒尺测量出的周长直接输入 B 型探头”,输入方法同(6),按确认键 (10)按键进入百4―号窗口,选择安装方式,选择“ Z 法安装”, 按确认键。 (11) 按▼□键进入口号窗口,窗口自动显示出探头安装距离。 (12) 按菜单键输4匸0 口 入20,再按确认键。 键进入 朗 口 号窗口,窗口显示低流速切除值,按确认键后输, 再按确认键。 (14)按菜单键输入26,进入2]匚号窗口,选择“ 然后按确认键。 二、 传感器安装点的选择: 测量点要尽量选择距上游10倍直径,下游5倍直径以内均匀直管段,没有 任何阀门、 弯头、变径等干扰流场装置,流体必须为满管。 三、 安装方法: 1、Z 方式安装:以管路周长为200mm 为例 A CB^ 截面图 (1) (2) (3) 例:周长为318mm 直接按3、1、8后按确认键 仪表 显示管外径。 选择,仪表显示不同材质,选择完毕,再按确认键 选择被测管路材质,按确认键后用^ /-键 (7) (8) (9) 例:管路为碳钢,即仪表显示 0、碳钢,然后按确认键 (具体材质见说明书 号窗口, 号窗口, 号窗口, 按 按FT 9页菜单口口) 选择被测管路衬材,输入方法同( 选择流体类型,输入方法同(6) 选择探头类型,按确认键,选择“ 6)。 5,插入 ,进入40号窗口,窗口显示阻尼系数,按确认键 输 (13)按▼ /- 1,固化参数并总使用” 键进入 按叵

弯管流量计计算公式

弯管流量计计算公式 弯管流量计与传统的孔板流量计一样,同属于差压式流量计的范畴,只是弯管流量计产生差压的方式与孔板流量计不同。孔板是利用流体的缩放原理产生差压的,而弯管传感器是利用流体的惯性原理产生差压的。当流体通过弯管时,由于受弯管的约束流体被迫作类似的圆周运动,流体在作圆周运动时产生的离心力作用于弯管的内外两侧,使弯管传感器内外两侧之间产生一个压力差,该压力差的大小与流体的密度、平均流速、管道的曲率半径、管道内径有关,其表达式为 其中v—流体值弯管中的平均流速; R—弯管中心曲率半径; D—弯管的内径 ΔP—流体通过弯管传感器时产生的差压值; —介质的密度; Q—管道内流体的流量

从以上可知,只要准确测量出压力差,在进行运算的同时再考虑到温度、压力对于介质密度的影响进行必要的温度补偿,就能准确的测量介质的流量。 ①弯管传感器(与管路焊接或法兰连接):输出差压信号。 ②差压变送器:将弯管传感器输出的差压信号转换为4-20mA电流信号。 ③流量转换器:通过接收差压变送器、温度、压力变送器信号。计算并显示流量、 温度、压力、热量等参数。 ④三阀组:差压变送器和引压管之间的连接体。 ⑤根阀:选用二通阀(针阀或球阀)。 ⑥盘式冷凝器:高温介质(蒸汽)测量时用于介质的降温。 ⑦三通旋塞阀:排污、反吹。 ⑧引压管:差压变送器与根阀连接用。 ⑨压力变送器:被测介质(蒸汽、气体)压力变化较大时选用。

⑩温度变送器:被测介质(蒸汽、气体)温度变化较大时选用,测量饱和蒸汽时可以选择压力变送器或温度变送器其中一种,对流量补偿即可。用于供热量计量时,选用2只温度变送器。

超声波流量计安装使用的注意事项

超声波流量计安装使用的注意事项 1、当管道内流体方向是由下向上的时候,可以使用超声波流量计测量。如果液体流向是自上向下的,这个管道是不适合用超声波流量计测量流量数。 2、如测量的管径低于DN15,最好选择进口超声波流量计,目前国产超声波流量计对于小管径测量,测量精度很难达到技术要求。当测量的介质为常温时,可选择国产超声波流量计,温度在120 ℃到200 ℃时,应选择进口超声波流量计。 3、测量管道比较老旧的工况,尽量使用单声层(Z法)方法安装探头,不要使用双声道和多声道(V、W法)。单声道更容易接收信号,不容易产生错误信号,能够保证高精度测量。 4、超声波流量计的传感器安装处和管壁反射处必须避开接口和焊缝。同时也要避免在水泵、大功率变频等即有强磁场和震动干扰处安装传感器,安装点上游距水泵应有30D以上的距离,保证流体充满管道。要有足够长的直管段,安装点上游直管段必须要大于等于10D(注:D=管段直径),下游要大于5D。 5、超声波流量计的传感器安装处的管道衬里或污垢层不能太厚,否则会影响声音传播速度,进而影响测量精度。衬里、锈层与管壁间不能有间隙。对于锈蚀严重的管道,可先处理掉表面的锈层,保证声波正常传播。传感器工作面与管壁之间保持有足够的耦合剂,不能有空气和固体颗粒,以保证耦合良好。

6、测量前,要对管道的外周长(用卷尺)、壁厚(用测厚仪)、管道外壁的温度(表面温度测量仪)等进行测量,能够更利于超声波流量计的参数设定,使测量数据更加准确。当遇到管道有油漆或涂层的管道时候,可以先用角磨机或打磨机等设备处理管道表面图层,然后再用砂纸磨平,这样保证超声波流量计的流量传感器安装点光滑、平整,有利于探头与管道良性接触。 7、探头的安装距离是保证测量准确度的重要测量参数,为了保证找到最佳信号强度,使用移动其中一个探头的方式找信号。但是往往找到信号,发现探头的安装距离又对不上。正确的找信号的方式是同时平行移动两个探头,在保证探头的安装距离符合要求的前提下找最佳安装点。在信号强度较大时确定测量位置,最后一定要用实测的方法(一般超声波流量计自带测量功能)确认探头的安装距离准确无误。

热示踪法测量流体流量的研究

!""!年#月第#$卷第#期 西安石油学院学报%自然科学版& ’()*+,-(./01,+234*(-3)56+7404)43%8,4)*,-9:03+:3;<040(+& ’,+=!""! >(-=#$8(=# 收稿日期?!"""@"A @!B 作者简介?沈跃%#C B #@&D 男D 北京人D 高级工程师D 主要从事电子与传感器技术在石油工业中的应用研究=文章编号?#""#@E F B #%!""!&"#@""E A @"G 热示踪法测量流体流量的研究 HI J K L M N O PQ R I S T U V M J Q I U W S T L N XY Z[R I M \J T [M J ]N O PHI Q R U X 沈跃D 朱宏良D 陈世廉 % 石油大学应用物理系D 山东东营!E $"B !& 摘要?介结了一种热示踪法测量流体流量的原理及热示踪流量计的设计方法=该方法利用脉冲状热流体通过固定距离所用时间来间接测量流体流量?首先由一个热激励器在周围流体中产生脉冲状热流团D 热流团随流体运动过程中经过一个特殊的温度传感器阵列时D 流体的温差将引起传感器的信号突变D 形成标记脉冲^通过判断标记脉冲出现的时间可以确定流体平均流速D 进而得到流体流量=针对引起流量测量误差的原因进行了分析并提出了相应的改进建议和实际应用要求=通过室内模拟实验表明D 该方法适用于层流状流体D 尤其适用于较高粘度流体的流量测量=关键词?热示踪^流量测量^粘度^传感器^测量方法 中图分类号?_‘C F "a #!b E 文献标识码?c 常规流量测量方法D 如涡轮流量计d 弯管流量计等在遇到较高粘度流体时D 由于流体粘附的影响会引起很大的测量误差D 甚至无法进行测量=热示踪法测量流体流量依据于流体的层流流动状态D 用一个热激励器定时为流体提供热脉冲D 形成作为检测标记的脉冲热流D 通过检测热流形成的流体温差脉冲D 从而确定流体流速D 可以较好地解决流体粘附问题^通过高灵敏度温度传感器及特殊的测温电路D 在脉冲热流与流体温度仅高于!e 的情况下D 可以有效地实施测量= f 测量原理 在流体流经的管道中心放置一个远红外热激励器D 用于产生脉冲热流D 在下游一段距离放置由高灵敏测温元件组成的温度传感器阵D 当受热流体经过温度传感器时D 流体温差将引起传感器的信号突变D 形成信号脉冲D 设管道中心流体流速为g h i j k l D 测流体流量mh no i j k l D 其中?n p 比例系数D o p 管道截面积D ip 热激励器与温度传感器之间的距离D k l p 热流体运移时间= f a f 流体热响应特性 在脉冲状热功率作用下D 设受热流体体积为q h n #o "g r k D 由流体热平衡方程sh m t r k h uv s %wp w "&r k %#& 测流体温升 r wh wp w "h s r k uv s h s n #o "v s g x %!&式%!&中D sp 脉冲热功率D y^n #p 比例系数^o "p 受热流体等效面积D 5!^x p 流体密度D z {j 5F ^v s p 流体比热D ’j z {|}^g p 流体流速D 5j 7^r k p 脉冲作用时间D 7^流体流速越低D 温升越大=f a ~系统时间模型 从电脉冲信号作用于功率开关管产生加热电流到温度传感器接收到流体温差信号形成脉冲标记为止D 整个过程所用的时间分为$段D 即k h k #b k !b k F b k G b k E b k B b k $D 其中?k #为>‘!9模拟开关管导通时间%"7级&^k !为热激励器中电流建立时间% "7级&^k F 为热激励器热响应时间%与热激励器的热容及导热速度有关&^k G 为流体热响应时间%与流体热容及流速有关&^k E 为被加热流体包到达温度传感器所用的渡越时间^k B 为测温元件的响应时间% 与元万方数据

相关主题
文本预览
相关文档 最新文档