当前位置:文档之家› 浅谈薄壁环形件变形控制

浅谈薄壁环形件变形控制

浅谈薄壁环形件变形控制
浅谈薄壁环形件变形控制

浅谈薄壁环形件变形控制

薄壁零件的变形控制一直以来都是一个难题,在质量和效率之间更是难于取舍。文章主要介绍了一些简易的变形控制的方法。

标签:薄壁;变形;控制

实际加工中应结合具体条件选择不同的控制方法。简单易实现的主要有优化加工刀具、优化工艺方案、进给量局部优化、优化切削参数、优化装夹方案等,下面就从以下几方面介绍薄壁零件的变形控制。

1 变形控制对加工工艺的要求

1.1 粗加工、精加工分开

对加工精度要求较高的薄壁类零件,应分开粗加工、半精加工、精加工进行。粗、半精、精加工分开,可避免因粗加工引起的各种变形,包括粗加工时,压紧力引起的弹性变形、切削热引起的热变形以及粗加工后由于内应力重新分布而引起的变形。其目的是为了保证零件的精度及稳定性。另外,粗、精加工分开,机床设备也可得到合理的使用,即粗加工设备充分发挥其效率,精加工设备可长期保持机床的精度。

1.2 增加时效去应力工序

内应力是引起零件变形的主要因素,为防止零件变形,除应严格地按照材料进行热处理,使零件具有较好的组织外,在粗、精加工之间,增加一道时效去应力工序,以最大限度地消除零件内部的应力。通常采用热时效和自然时效的方法。这两种方式却都存在弊端:自然时效周期需要达到半年或两年,周期过长;热时效费用高,耗能高,炉温控制难度大,零件易氧化,且易因受热不均导致裂纹,并在冷却过程中产生新的应力。振动时效是以金属零件固有频率,利用一受控振动能量对工件进行处理,使工件产生应变,达到消除零件残余应力的目的。

1.3 利用零件的整体刚性加工薄壁零件

随着零件壁厚的减小,其刚性降低,加工变形增大。因此,在切削过程中,尽可能地利用零件的未加工部分,作为正在切削部分的支撑,使切削过程处在刚性较佳的状态。下面举几个例子,如:铣“U”型槽时可以考虑先铣类似成“口”型,最后在把“口”上的横梁铣掉,该方法能有效地降低切削变形及其影响,降低了由于刚性降低而可能发生的切削振动。如:车加工薄壁时,可在有余量刚性较好时,先将内侧及内槽等加工到位,再加压盖加工外侧等多种灵活利用零件整体刚性的方法。

2 采用辅助支撑装夹方式增强工艺系统刚性

薄壁零件加工的特点

?摘要:在数控车加工过程中,经常碰到一些薄壁零件的加工。本文详细分析了薄壁零件加工的特点、防止变形的工艺方法、车刀几何角度及切削参数的选择,结合在教学实践中的实例设计出加工方案。关键词:薄壁零件工 ... ?摘要:在数控车加工过程中,经常碰到一些薄壁零件的加工。本文详细分析了薄壁零件加工的特点、防止变形的工艺方法、车刀几何角度及切削参数的选择,结合在教学实践中的实例设计出加工方案。 关键词:薄壁零件工艺分析加工方案 1 薄壁工件的加工特点 车薄壁工件时,由于工件的刚性差,在车削过程中,可跑产生以下现相。 1.1 因工件壁薄,在夹压力的作用下容易产生变形。从而影响工件的尺寸精度和形状精度。当采用如图1所示三爪卡盘夹紧工件加工内孔时,在夹紧力的作用下,会略微变成三角形,但车孔后得到的是一个圆柱孔。当松开卡爪,取下工件后,由于弹性恢复,外圆恢复成圆柱形,而内孔则如图2所示变成弧形三角形。若用内径千分尺测量时,各个方向直径D相等,但已变形不是内圆柱面了,这种现相称之为等直径变形。 1.2 因工件较薄,切削热会引起工件热变形,从而使工件尺寸难以控制。对于线膨胀系数较大的金属薄壁工件,如在一次安装中连续完成半精车和精车,由切削热引起工件的热变形,会对其尺寸精度产生极大影响,有时甚至会使工件卡死在夹具上。 1.3 在切削力(特别是径向切削力)的作用下,容易产生振动和变形,影响工件的尺寸精度,形状、位置精度和表面粗糙度。 2 减少和防止薄壁件加工变形的方法 2.1 工件分粗,精车阶段粗车时,由于切削余量较大,夹紧力稍大些,变形也相应大些;精车时,夹紧力可稍小些,一方面夹紧变形小,另一方面精车时还可以消除粗车时因切削力过大而产生的变形。 2.2 合理选用刀具的几何参数精车薄壁工件时,刀柄的刚度要求高,车刀的修光刃不易过长(一般取0.2~0.3mm),刃口要锋利。 2.3 增加装夹接触面如图3所示采用开缝套筒或一些特制的软卡爪。使接触面增大,让夹紧力均布在工件上,从而使工件夹紧时不易产生变形。 2.4 应采用轴向夹紧夹具车薄壁工件时,尽量不使用径向夹紧,而优先选用如图4所示轴向夹紧方法。工件靠轴向夹紧套(螺纹套)的端面实现轴向夹紧,由于夹紧力F沿工件轴向分布,而工件轴向刚度大,不易产生夹紧变形。 2.5 增加工艺肋有些薄壁工件在其装夹部位特制几根工艺肋,以增强此处刚性,使夹紧力作用在工艺肋上,以减少工件的变形,加工完毕后,再去掉工艺肋。 2.6 充分浇注切削液通过充分浇注切削液,降低切削温度,减少工件热变形。 3 数控车削薄壁件参数选择 数控车床进行薄壁件加工时,具有较大的优势,对于直径较小(φ160mm以内),长度短(250mm以下),壁厚为2-2.5mm的薄壁工件,可以一次性车削成型。但应注意不要夹持在薄壁部位,同时应选择合适的刀具角度,具体的刀具角度如下。 3.1 外圆精车刀Kr=90°~93°,Kr’=15°α0=14°~16°,α01=15°,γ0适当增大,刀具材料为YW1硬质合金。 3.2 内孔精车刀Kr=60°,Kr1=30°,γ0=35°α0=14°~16°,α01=6°~8°,λs=5~6°,刀具材料为YW1硬质合金。转贴于中国论文下 3.3 精加工车削参数Vc=160mm/min,f=0.1mm/r,αp=0.2~0.4mm。

浅埋软弱围岩隧道变形控制

浅埋软弱围岩隧道变形控制 摘要:本文以宁安铁路钟鸣2#隧道为例,重点阐述在浅埋软弱围岩隧道施工,通过各种技术措施对围岩变形进行控制的方法。 关键词:隧道,浅埋,软弱围岩,变形控制 abstract: this article to ning an railway chiming 2 # tunnel as an example, focuses on the shallow buried tunnel in weak rock construction, through various technical measures to control surrounding rock deformation method. key words: tunnel, shallow buried and weak surrounding rock, deformation control. 中图分类号:u452.1+2 文献标识码:a文章编号:2095-2104(2013)引言 在高铁建设过程中,出现了越来越多的地质条件复杂,浅埋软弱围岩的高风险隧道。由于这些浅埋地层的埋藏比较浅,大多是强风化破碎的围岩,地质条件变化较大,围岩应力分布复杂,且开挖断面大,造成了隧道施工过程中,施工难度增大,初支变形复杂和隧道整体稳定难以控制的情况,隐含着很多坍塌等安全隐患。本文以钟鸣2#隧道为研究对象,阐述在浅埋软弱围岩隧道施工过程中如何采取对策减小初支变形,确保施工安全的方法。 1 工程概况 钟鸣2#隧道位于宁安铁路铜陵境内,双线全长798m,施工里程为dk140+830~dk141+628。隧道穿越地层主要为含砾粉质黏土及泥质

薄壁零件装夹变形原因及控制

薄壁零件装夹变形原因及控制 精密薄壁零件是目前制造业发展的一个重要方向,薄壁零件的装夹是其生产制 造中的一个重要环节,但由于工艺不合理,对薄壁零件认识不够等因素造成的装夹变形时有发生。该文分析了薄壁零件装夹变形的产生原因,并提出了一些控制对策。 薄壁零件,装夹变形,原因,对策 薄壁零件的加工变形,一直是机械加工制造业的一个难题,很多国内外学者都对薄壁零件的加工变形问题进行了分析了研究,使得薄壁零件的加工技术有了一定的突破。实际工作中,要想通过合理的对策解决薄壁零件的加工变形问题,就要首先认清产生变形的原因。 1.薄壁零件装夹变形的成因及区分 薄壁零件出现变形有很多的原因,在设计零件的过程中,不仅要考虑零件设计结构的工艺性,还要提高零件结构的刚性,防止在加工中出现变形,尽可能保证零件结构对称、薄壁厚度均匀,选择毛坯时,最好选择没有内应力的原材料。在制造系统中,零件加工变形的主要因素有, 工件的装夹条件。由于薄壁零件的刚性比较差,加工时不恰当的选择央紧力与 支承力的作用点,导致附加应力,夹、 1 压的弹性变形会一定程度上影响零件表面的尺寸精度和形状、位置精度,导致 变形。 加工残余应力。在零件加工过程中,由于刀具对已加工面的挤压、刀具前刀面 与切屑、后刀面与已加工表面之间的摩擦等综合作用,导致零件表层内部出现新的加工残余应力。由于不稳定的残余应力的存在,一旦零件受到外力作用,零件就会在外力与残余应力的作用下产生局部塑性变形,重新分配截面内的应力,去除外力作用

后,零件就会受到内部残余应力的作用出现变形。这种由于切削过程中残余应力的重新分布,造成的零件的变形,会严重影响加工质量。 切削力和切削热、切削振动。为了避免被加工材料产生弹性变形、塑性变形以及刀具与切屑和工件之间的摩擦,切削过程会产生切削力和切削热,在两者作用下,很容易导致零件振动和变形,进而影响零件的质量。另外,造成零件变形的影响因素还有机床、工装的刚度,切削刀具及其角度、切削参数和零件冷却散热情况等。其中造成零件变形的主要因素是切削力、夹紧力以及残余应力。 2.控制零件变形的工艺措施 由于零件的整体刚性在加工薄壁零件过程中随着零件壁厚逐渐减小,零件的刚性也会降低,进而导致加工零件的变形增大。因而,在对零件进行切削过程中,最大程度地利用零件的未加工部分,支撑正在切削部分,保证切削时处在最 2 佳刚性状态。如,腔内有腹板的腔体类零件,在加工过程中,铣刀以螺旋线方式从毛坯中间位置下刀进而降低垂直分力对腹板的压力,从深度方向铣到尺寸,再从中间扩张到四周至侧壁。如果内腔深度很大,根据上面的方法进行多层加工。这种方式能够尽可能的降低切削变形,减少了由于零件刚性的降低而出现的切削振动现象。 采用辅助支撑。在加工薄壁结构的腔类零件过程中,控制零件的变形就要首先解决由于装夹力造成的变形。因而,可利用腔内加膜胎(橡胶膜胎或硬膜胎)的方式来增加零件的刚性,避免零件在加工过程中出现变形,另外,还可以采用填充法石蜡、低熔点合金等工艺方法,来增加零件的支撑,从而减小变形、提高零件的精度。 设计工艺加强筋,提高刚性。对于薄壁零件来说,为了减少变形,可以增加零件的工艺筋条,从而达到加强刚性的目的,这是工艺设计中避免变形的提高刚性常用的手段之一。如在加工长槽过程中,在圆支管右端上下二槽口留3mm加强筋,进行消除

典型薄壁零件的数控加工

典型薄壁零件的数控加工 姓名: 班级: 学号: 指导老师: (单位:江苏盐城技师学院邮编: 224002) 2009-04-07

典型薄壁零件的数控加工 【摘要】薄壁零件广泛地应用在各工业部门,它具有重量轻,节约材料,结构紧凑等特点。但薄壁零件很难加工,原因是薄壁零件刚性差,强度弱,在加工中极容易变形,使零件的形位误差增大,不易保证零件的加工质量。本文就以典型薄壁零件的数控加工进行加工分析,解决以上问题为更好的加工薄壁零件提供了好的依据及借鉴。 【关键词】数控编程子程序。 一.对零件图纸分析注意事项 1.尺寸标注应符合加工的特点 在编程中,所有点、线、面的尺寸和位置都是以编程原点为基准的。因此零件图样上最好直接给出坐标尺寸,或尽量以同一基准引注尺寸。 2.零件图的完整性与正确性分析 在程序编制中,必须充分掌握构成零件轮廓的几何要素,参数及各几何要素间的关系。因为在自动编程时要对零件轮廓的所有几何元素进行定义,手工编程时要计算出每个节点的坐标,无论哪一点不明确或不确定,编程都无法进行。 3.零件技术要求分析 零件的技术要求主要指尺寸精度、形状精度、位置精度、表面粗糙度及热处理等,这些要求在保证零件使用性能的前提下,应经济合理。 4.零件材料分析 在满足零件功能的前提下,应选用廉价、切削性能好的材料。 5.定位基准选择

在加工中,加工工序往往较集中,以同一基准定位十分重要,有时需要设置辅助基准,特别是正、反两面都采用加工的零件,其工艺基准的统一是十分必要的。 薄壁零件是机械中常用的一种机械零件,在机械制造业中应用的范围很广,而且结构简单、紧凑、设计方便,如图 二.工艺分析 薄壁零件分别由凸台,薄壁。圆柱曲面,孔组成,由于壁厚比较薄在加工时要考虑切削用量不能太大,为了保证精度首先选择精确的刀具定位点。可以从外壁进行加工切削要留有加工余量。由于薄壁零件太薄只有2cm的厚度,而且深度有9cm 深,对尺寸精度要求很高,所以正确的选用切削用量是保证尺

运营期间的地铁隧道结构变形安全监测技术研究

运营期间的地铁隧道结构变形安全监测技术研究 发表时间:2017-05-14T13:31:08.110Z 来源:《建筑学研究前沿》2017年1月下作者:王鹏 [导读] 随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线。 广州市吉华勘测股份有限公司 510260 摘要:随着我国现代化建设的飞速发展,城市基础设施地铁越来越多,是城市客运交通的大动脉以及城市生命线,其投资大、难度高、施工期长、环境复杂等。同时地铁沿线高强度的物业开发、市政工程建设对地铁结构和运营安全带来一定的隐患,城市轨道交通结构的安全保护工作日益严峻,一但出现城市轨道交通安全事件,将严重影响城市轨道交通的正常运营。因此,在外界施工影响下,对运营期间的地铁实施必要的变形安全监测至关重要。 关键词:地铁,测量机器人,自动化监测。 1 地铁监测的意义和目的 地铁结构本身由于地基的变形及内部应力、外部荷载的变化而产生结构变形和沉降。而地铁旁边的施工正是引起外部荷载变化的主要原因,地铁结构变形和沉降超过允许值,将会对地铁的运营安全造成影响。通过监测可动态收集地铁结构变形信息,掌握结构变形情况,保障运营安全。 地铁监测的主要目的如下:1)通过对测量数据的分析、掌握隧道和围岩稳定性的变化规律,修改和确认设计及施工参数;2)通过监控量测了解施工方法的科学性和合理性,以便及时调整施工方法,保证施工安全及隧道的安全;3)了解隧道结构的变形情况,实现信息化施工,将监测结果反馈设计,为改进设计施工提供信息指导,提供可靠施工工艺,为以后类似的施工提供技术储备。 2.监测实施 因地铁隧道的特殊性,对于地铁运营期的监测,需采用自动化监测手段,即采用测量机器人和自动监测系统软件建立隧道结构变形自动监测系统。在外部施工期间自动测量地铁隧道结构顶板、侧墙及道床在三维—X、Y、Z方向(其中:X、Y为水平方向,Z为垂直方向)的变形值。 2.1监测点与基准点布置 参考工程设计、实际情况及有关规定,确定地铁受外界项目施工影响的范围,监测断面可按5~20m间距布设,每断面布设一般情况下六个监测点。在隧道两端不受建设项目施工影响的隧道远处各设置3个基准点。 2.2自动监测系统 自动监测系统主要由监测设备、参考系、变形体和控制设备构成。监测设备由测量机器人、自动化监测系统软件和监测控制房组成;控制设备由工控机及远程控制电脑组成。 1)自动化监测网络系统的硬件部分包括高精度自动全站仪、目标棱镜、信号通信设备与供电装置、计算机及网络设备等部分组成(如图1)。 图1数据采集系统图 2)系统软件包括动态基准实时测量软件和变形点监测软件两大部分。动态基准实时测量软件功能上主要有以下特点:根据距离及棱镜布设情况自动进行大小视场的切换;依据布设的网形站与站之间的观测关系,对测站点的观测方向可分组设置,可适合任意控制网形,不局限于导线网;采用局域网技术进行数据的通信,并具有网络断开的自动判断功能;为满足各种测量等级和运营环境的需要,具有各项测量限差、时间延迟、重试次数、坐标修正的设置功能;考虑到地铁内局部范围内气象一致性,在平差计算中,采用加尺度参数解算,避免了气象参数的测定,提高控制网测量的精度。 3)变形点监测软件包括各分控机上的监测软件和主控机上的数据库管理软件两部分。分控机上的监测软件用来控制测量机器人按要求的观测时间、测量限差、观测的点组进行测量,并将测量的结果写入主控机上的管理数据库中。 2.3自动监测系统工作流程 首先建立计算机和测量机器人的通信,然后对测量机器人进行初始化,此外进行测站及控制限差的设置,所有设置完毕后进行学习测量,设置点组和定时器,根据点位的重要性以及监测频率将相同的观测点纳入同一点组,最后进行自动观测。一周期观测完毕后软件便对原始观测数据进行差分处理,得到各变形点的三维坐标、变形量及变形曲线图,设置软件还可以将数据通过手机网络发送至指定的邮箱。 3地铁隧道自动化监测的技术难点 地铁隧道是狭长形的空间环境,同时列车一般以平均5分钟左右的间隔在隧道中高速运行。地铁环境的这些特点及保证地铁正常运营等因素的制约,使得自动变形监测系统在地铁变形监测中的应用,遇到比其它工程中更多的技术问题,因此自动变形监测手段有着常规测量无法比拟的优越性。自动监测系统系统可以在无人值守的情况下,全天24小时连续地自动监测,实时进行数据处理、数据分析、报表输

浅谈薄壁环形件变形控制

浅谈薄壁环形件变形控制 薄壁零件的变形控制一直以来都是一个难题,在质量和效率之间更是难于取舍。文章主要介绍了一些简易的变形控制的方法。 标签:薄壁;变形;控制 实际加工中应结合具体条件选择不同的控制方法。简单易实现的主要有优化加工刀具、优化工艺方案、进给量局部优化、优化切削参数、优化装夹方案等,下面就从以下几方面介绍薄壁零件的变形控制。 1 变形控制对加工工艺的要求 1.1 粗加工、精加工分开 对加工精度要求较高的薄壁类零件,应分开粗加工、半精加工、精加工进行。粗、半精、精加工分开,可避免因粗加工引起的各种变形,包括粗加工时,压紧力引起的弹性变形、切削热引起的热变形以及粗加工后由于内应力重新分布而引起的变形。其目的是为了保证零件的精度及稳定性。另外,粗、精加工分开,机床设备也可得到合理的使用,即粗加工设备充分发挥其效率,精加工设备可长期保持机床的精度。 1.2 增加时效去应力工序 内应力是引起零件变形的主要因素,为防止零件变形,除应严格地按照材料进行热处理,使零件具有较好的组织外,在粗、精加工之间,增加一道时效去应力工序,以最大限度地消除零件内部的应力。通常采用热时效和自然时效的方法。这两种方式却都存在弊端:自然时效周期需要达到半年或两年,周期过长;热时效费用高,耗能高,炉温控制难度大,零件易氧化,且易因受热不均导致裂纹,并在冷却过程中产生新的应力。振动时效是以金属零件固有频率,利用一受控振动能量对工件进行处理,使工件产生应变,达到消除零件残余应力的目的。 1.3 利用零件的整体刚性加工薄壁零件 随着零件壁厚的减小,其刚性降低,加工变形增大。因此,在切削过程中,尽可能地利用零件的未加工部分,作为正在切削部分的支撑,使切削过程处在刚性较佳的状态。下面举几个例子,如:铣“U”型槽时可以考虑先铣类似成“口”型,最后在把“口”上的横梁铣掉,该方法能有效地降低切削变形及其影响,降低了由于刚性降低而可能发生的切削振动。如:车加工薄壁时,可在有余量刚性较好时,先将内侧及内槽等加工到位,再加压盖加工外侧等多种灵活利用零件整体刚性的方法。 2 采用辅助支撑装夹方式增强工艺系统刚性

浅谈薄壁零件的铣削加工技术要点

浅谈薄壁零件的铣削加工技术要点 摘要:薄壁零件的数控铣削加工因薄壁件自身的特点决定了其加工难度极大,制造工艺复杂。本文就薄壁件的特点及加工方法理论进行分析,提出薄壁零件的数控铣削加工中变形控制的相应措施及改善方法。 关键词:薄壁零件加工;数控铣;加工变形 薄壁零件在工程上应用广泛,具有重量轻、强度高、造型美观等突出特点,薄壁零件按照空间几何形态通常可分为以细长轴为代表的二维薄壁构件和以薄壁件为代表的三维 薄壁零件。此类零件的共同特点是受力形式复杂,刚度低,加工时极易引起误差变形或工件颤振,从而降低工件的加工精度。特别是当零件的形状和加工精度要求较高时,对振动、切削力大小及波动、切削温度、装夹方式均十分敏感,往往未加工到规定的尺寸,零件已经超出了精度要求,因此,薄壁零件的加工制造难度极大,成为国际上公认的复杂制造工艺问题。 1 薄壁零件加工技术发展的现状 薄壁零件在现代工业技术中占有很重要的战略意义,国内外的学者专家都做了很深入的研究。欧美等制造业比较发达的国家针对薄壁零件的结构特点,应用的技术主要有:(1)

从加工工艺系统的整体刚度考虑,提出充分利用零件的整体刚性变形控制方案;(2)在机床方面,提出了平行双主轴联动精度控制方案;(3)在装夹方面,提出了用低熔点合金填充或使用真空夹具精加工零件的方案;(4)在切削用量方面,提出了变进给速度加工方法,通过工艺方法实验与计算机模拟仿真相结合,提高效率和可靠性;(5)采用有限元仿真预测加工变形,再利用数控补偿技术进行适当主动误差补偿,从而提高薄壁零件的加工精度。而在我国,由于缺少高精的理论计算和相关的试验数据,在这方面的研究还处于起步阶段,无论是振动加工技术还是高速切削技术都是处于摸索阶段,缺少必要的工艺技术数据,在实践中应用还不深入精准。在实际生产加工中,大多采用低转速、小进给、多次空走刀等方法控制加工变形,应用手工或三坐标检验。 2 薄壁零件的加工方法 随着工业的高速发展,各类薄壁零件已?越来越多的应用于各种机器与场合。由于薄壁零件的结构形状特殊性,在其加工过程中受工件材料等诸多因素的影响。引起变形的因素有很多,如加工过程中的受力变形、工件内部产生的残余应力变形、加工中的工件装夹变形等等,所以,在薄壁件的加工中,变形是不可避免的。薄壁件的实际加工中,虽然工件的变形是必然存在的,但我们可以对变形进行控制,可以采取一些相应有效的措施,使变形量降到最小,达到零件加工

隧道施工期间的变形监测

TRANSPOWORLD 2011No.9 (May) 206B RIDGE&TUNNEL 桥梁隧道 隧 道监测作为新奥法的重要内容之一,在隧道施工中 起着非常重要的作用。某隧道(DK2+450~DK4+036)地处龙岩闹市区,具有埋深浅、地表建筑密集、地下管线众多、围岩破碎、施工对地表建筑及地下管线影响大等诸多施工不利因素。在施工期间对地表位移、建筑变形及爆破震动等进行监测,监测成果除了为评价施工对建筑的影响服务外,监测成果还可反馈施工,为施工方案及爆破设计参数等的优化提供重要依据,测试成果对确保施工安全、加快施工进度、降低施工成本具有重要意义。 监控测量的目的 在施工期间对隧道进行监控测量,可掌握围岩和支护的动态信息并及时反馈,指导施工作业;通过对围岩和支护的变位、应力测量,修改支护系统设计,提供二次支护的最佳时间;在位移——时间曲线中如出现以下反常现象,表明围岩和支护呈不稳定状态,应加强监视。 隧道洞内外观测 隧道开挖工作面的观测 在每个开挖面进行,特别是在 软弱破碎围岩条件下,开挖后由隧道工程师和地质工程师立即进行地质调查,观察后绘制开挖工作面略图(地质素 描),填写工作面状态记录表及围岩级别判定卡。 开挖后未被支护围岩的观测,如节理裂隙发育程度及其方向;开挖工作面的稳定状态,顶板有无坍塌;涌水情况:位置、水量、水压等;底板是否有隆起现象。 对开挖后已支护的围岩的观测,如对已施工区段的观察每天至少进行一次,观察内容包括有无锚杆被拉断或垫板脱离围岩现象;喷射混凝土有无裂隙和剥离或剪切破坏;钢拱架有无被压变形情况;锚杆注浆和喷射混凝土施工质量是否符合规定的要求;观察围岩破坏形态并分析。 洞外观察 洞外观察包括洞口地表情况、地表沉陷、边坡及仰坡的稳定以及地表水渗透等的观察,观察结果记录在工程施工日志及相关表格中。 隧道位移及变形量测 地表下沉量测 根据图纸要求洞口段应在施工过程中可能产生地表塌陷之处设置观测 点,如图1所示。地表下沉观测点按普通水准基点埋设,并在预计破裂面以外3~4倍洞径处设至少两个水准基点,以便互相校核,基点应和附近原始水准点多次联测,确定原始高程,作为各观测点高程测量的基准,从而计算出各观测 点的下沉量。地表下沉桩的布置宽度应根据围岩级别、隧道埋置深度和隧道开挖宽度而定。地表下沉量测频率和拱顶下沉及净空水平收敛的量测频率相同。地表 下沉量测应在开挖工作面前方H+h(隧道埋置深度+隧道高度)处开始,直到衬砌结构封闭、下沉 基本停止时为止。 周边位移量测 C R D 法洞内监控点布置见图2所示,而双侧壁导坑法洞内控制点布置见图3所示。量测坑道断面的收敛情况,包括量测拱顶下沉、净空水平收敛,以及底板鼓起(必要时)。拱顶是隧洞周边上的一个特殊点,挠度最大,其位移情况,具有较强的代表性和显示“闯口”作用等。 拱顶下沉和水平收敛量测断面的间距,Ⅲ级及以上围岩不大于40m;Ⅳ级围岩不大于25m;V级围岩应小于 隧道施工期间的变形监测 文/王 刚

浅谈隧道工程施工变形监测和控制对策

浅谈隧道工程施工变形监测和控制对策 摘要随着我国经济的快速发展以及社会建设的大力推进,基础建设工程越来越多,并且呈现出规模化、复杂化、一体化等发展态势,对于施工技术和管理的要求大大增强。隧道施工是目前道路施工中的重点内容也是难点,特别是在特殊地质条件下以及为了满足更为严苛的施工要求而进行的隧道施工,通常会面临围岩变化状况,本文在多年实践的基础上对隧道工程施工变形进行深入的研究,在此基础上探讨了隧道变形的监测技术及控制措施。 关键词隧道工程围岩变化变形监测控制措施 隧道施工技术是随着我国交通事业的发展而逐渐确立并完善的,特别是在现今隧道施工多样化发展的情况下,加快技术引进与技术更新才能满足施工的要求和社会的快速发展。随着地铁、山区公路、地下交通等工程的开展,出现了数量众多的特长隧道施工和复杂地质环境中的隧道施工,在施工中加强监测与控制是隧道工程施工中的重点内容,通过对围岩变化进行及时的预测和应对,为工程的顺利进行奠定基础。 一、隧道施工变形监测概述 隧道施工具有很多不同于地面施工的特点,由于施工多是在岩石条件下进行,因此具体的施工操作往往受到岩层

结构以及岩土情况的影响。此外在进行施工时,机械振动或者开挖爆破也会造成岩石的变化,从而对施工带来影响。为了使工程安全顺利的完成,必须对隧道的变化信息进行严格的监控与上报,以便做出针对性的方案,保证工程质量。 二、隧道工程施工变形监测技术 根据隧道特征和岩石的性质应该选用不用的技术或方法对施工中的变形情况进行监测,先进的科学技术以及理论成果和技术成果为隧道变形监测提供了新的技术、设备和理念,目前在工程中主要应用的监测技术有以下几种。 1.隧道收敛监测技术。隧道收敛监测技术的优点是适合于大断面隧道施工的监测,缺点也较为明显,就是进行监测时需要大型设备的支持,并且技术较为复杂。根据测量使用的原理可以将收敛监测技术分为相对位移观察监测法和绝对三维位移观察监测法。 相对位移监测法的具体操作流程如下:首先将监测锚杆安装到监控断面上,并且保证锚杆的端部较为平整并且能够产生反光效应;以此基点为准,选取30m远的位置安装全站仪;运用坐标测量技术测出基点的三维坐标,通过将数据与全站仪内存中的坐标系相结合可以精确地计算出相对位置。 绝对三维位移监测法内容为:将测量仪器安装到坐标系明确的监测点,这样能够对监测点的变化情况进行准确全

隧道变形监测方案-新

隧道变形监测方案 1、目的 为明确隧道内变形观测的作业内容,规范技术细节及作业程序,总结隧道结构变形规律,为隧道结构维修养护提供依据,指导津滨轻轨隧道变形观测工作进行,从而保证行车安全,特制订本预案。 2、适用范围 2.1适用于津滨轻轨隧道变形观测的相关工作; 2.2线桥室从事变形观测的相关工作人员须依据本方案开展各项变形观测工作。 3、职责分工 隧道变形工作由线桥室主任及安技主管进行监督指导,桥梁维修主管负责变形观测工作的全面管理与协调,桥梁检测工程师协同隧道工程师、桥梁维修工程师负责隧道变形观测的相关技术工作,并由桥隧检测工区负责具体实施。 4、参考依据 《建筑变形测量规程》 《地下铁道、轨道交通工程测量规范》 《地下铁道工程施工及验收规范》 5、变形观测工作内容 5.1隧道沉降观测 监测隧道结构的沉降,主要是监测隧道结构的底板沉降,实质上是对道床的监测,主要包括区间隧道的沉降监测以及隧道与地下车站交接处的沉降差异监测。运营测量采用的坐标系统、高程系统、图式等与原施工测量相同。 5.1.1监测基准网 监测基准网是隧道沉降监测的参考系,由水准基点和工作基点构成,网形布设成附合水准路线或沿上、下行线隧道布设成结点水准路线形式,采用国家二等水准测量的观测标准进行。水准基点采用隧道线路两端远离测区的国家II等水准点,在沿线车站内和联络通道处布设工作基点,每个车站布设4个工作基点,联络通道处布设2个工作基点,水准基点与车站内、联络通道处工作基点共同构成监测基准网,如图1所示。基准网的高程值由国家水准点引入,每季度校核一

次,分析工作基点的稳定性;然后,再通过车站内两侧的工作基点,采用附合水准路线对每段隧道结构进行沉降观测。 图1 监测基准网示意图 5.1.2沉降监测点 津滨轻轨地下结构由明挖段和盾构组成,明挖段沉降监测点按施工浇筑段每段设4个点,分别布设在左右两侧墙上。具体布置见图2。 图2 明挖段沉降监测点布置示意图 为方便以后长期的位移监测工作,隧道内沉降监测点布设在隧道中线的道床上,隧道直线段每隔30m设一个测点,曲线处根据曲线半径大小设置测点间距,半径为400m曲线处每隔12m设一个测点,半径为800m曲线处每隔18m设一个测点,半径为2000m曲线处每隔30m设一个测点。具体布置见图3。

典型薄壁盘类零件的工艺方案及数控加工过程

典型薄壁盘类零件的工艺方案及数控加工过程 2008-10-13 来源:中国机床商务网 近年来,随着数控技术的发展,性能良好的加工中心设备使许多零件的加工更为方便。利用这些设备如何能高效地加工出更为优质的零件,已成为企业关心的问题。本文以典型薄壁盘类零件为例,基于近年应用起来的高速加工制造技术的优势,利用工厂现有的数控设备,积极探索出加工该类零件的较好的工艺方案及数控加工过程。 1.数控加工的工艺分析 (1)零件的结构特点该零件材料为硬铝LY12,其切削性能良好,属于典型的薄壁盘类结构,外形尺寸较大,周边及内部筋的厚度仅为2mm,型腔深度为27mm。该零件在加工过程中如果工艺方案或加工参数设置不当,极易变形,造成尺寸超差,零件结构如图1所示。

(2)工艺分析该零件毛坯选用棒料,采用粗加工、精加工的工艺方案,具体工艺流程如下:毛坯→粗车→粗铣→时效→精车→精铣。 粗车:分别在外圆及端面预留1.5mm精加工余量,并预钻中心孔。 粗铣:分别在型腔侧面及底面预留余量1.5mm,并在φ12mm孔位处预钻工艺孔。时效:去除材料及加工应力。 精车:精车端面、外圆并镗工艺孔φ6mm,要求一次装夹完成,以便保证同轴度,为后序加工打好基础。

精铣:保证零件的最终要求,是本文论述的重点。 ①粗铣型腔粗加工主要是去除大余量,并为后序精加工打好基础,所以加工型腔时,选择低成本的普通数控铣床加工。该工序要求按所示零件结构图加工出内形轮廓,圆弧拐角为R5mm,所留精加工余量均匀,为1.5mm。而且本道工序还需要在φ12mm孔位处预先加工精加工所需的定位孔。 ②精铣型腔高速加工技术是近年应用起来的制造技术。在高速切削加工中,由于切削力小,可减小零件的加工变形,比较适合于薄壁件,而且切屑在较短时间内被切除,绝大部分切削热被切屑带走,工件的热变形小,有利于保证零件的尺寸、形状精度;高速加工可以获得较高的表面质量,加工周期也大大缩短,所以结合该类薄壁盘类零件的特点,精加工型腔时选用高速加工。 ③定位孔的加工该零件精加工选用中心孔φ6mm及φ12mm孔作为定位孔,所以精加工型腔前必须先将其加工到位。中心孔φ6mm在车工精车外圆 φ301.5mm时将其镗削为φ6H8;φ12mm孔由数控铣床钻、铰至φ12H8。 (3)精加工型腔时零件的定位与装夹为了使工件在机床上能迅速、正确装夹,而且在加工一批工件时不必逐个找正,所以此次加工采用一面两销的定位方式。以零件上已经存在的φ6mm及φ12mm孔作为定位孔,做简易工装,该工装采用一个圆柱销和一个扁形销作为定位元件。由于该零件属于薄壁件,容易变形,在夹紧工件时,压板应压在工件刚性较好的部位,分布尽可能均匀,以保证夹紧的可靠性,而且夹紧力的大小应适当,以防破坏工件的定位或使工件产生不允许的变形。其具体定位与装夹示意图见图2。此装夹方式完全符合加工中心的特点,一次装夹可以完成型腔及所有孔的加工。

隧道变形监测方案

富水土质隧道围岩变形监测及其应用 (中铁建某集团山东) 摘要本文以新松树湾隧道为例,通过内空收敛和围岩内部位移的量测,分析了富水土质隧道的围岩变形规律,对类似工程施工有一定的参考价值。 关键词富水土质隧道围岩变形 随着西部大开发的进行,对富水黄土地区的隧道施工参数的测试和研究具有重要的意义。本文以新松树湾隧道为例进行探讨。 1 工程概况 新松树湾隧道为既有松树湾隧道复线的单线铁路隧道,位于甘肃省陇西县境内大营梁,全长1726m,复合衬砌。大营梁为黄土梁峁区,该隧道范围地层为上更新统风积粘质黄土和下、中更新统冲、洪积杂色砂粘土。粘质黄土为淡黄色、棕黄色,厚0—20m,土质较匀,具孔隙及虫孔,局部含白色钙丝及钙质斑点,半干硬至硬塑,II级普通土,II类围岩,σ0=150kPa,具II级自重湿陷性。杂色砂粘土主要表现为强崩解性,一定的膨胀性及含有盐碱成分。II级普通土,II类围岩,σ0=200--250kPa (局部软塑—流塑状,I类松土,I类围岩,σ 0=100--120kPa)。大营梁地带年平均降水量513.3mm,隧道三面汇水,地下水较发育,系大气降水补给。地下水主要有上层滞水和裂隙水,前者一般埋深15—30m之间。多见有泉和渗水出露,水量相对较大,隧道内日渗水量22--18m3/d.地下水对混凝土具弱侵蚀性。经调查,既有松树湾隧道(1960年建成)各地段有不同程度的渗漏水现象。隧道渗水主要通过拱顶、边墙接缝、排水沟孔、墙角部位渗出,水对普通硅酸盐水泥有侵蚀性。因此,新松树湾隧道采用曲墙有仰拱衬砌,除进口端I类围岩模筑衬砌,余均采用复合衬砌。初期支护为1榀/m钢格栅+钢筋网+钢筋锚杆喷锚。在施工中采用新奥法分三台阶开挖。 2 量测项目 根据现场情况,选取了八个量测断面进行内空收敛的测试;还选取了两个断面进行围岩内部位移测试。内空收敛在开挖后马上埋设测点,在12小时内测取初始读数,采用煤炭科学研究院生产的JSS30型数显收敛计量测。观测断面里程分别为1#面——DK1601-8.4,2#面——DK1601+6.4,3#面——DK1601+21.9,4#面——DK1601+36.1,5#面——DK1601+46.5,6#面——DK1601+86.5,7#面——DK1601+122.5,8#面——DK1601+172.7,其中7#、8#面进行围岩内部位移测试(图1),每个断面各有六条内空收敛测线,即1-2、1-3、1-4、1-5、2-3、4-5。围岩内部位移采用煤炭科学研究院生产的杆式多点位移计进行测量,这种位移计使用膨胀木锚头,具有安装简单,可靠等特点,每个钻孔可分别测量埋深1M,2M,4M处的围岩与洞壁之间的相对位移。 Fig.1 Arrangement of the c onvergences and internal displacement of the wall rock 3 内空收敛量测 通过测量结果计算各测线收敛累计值,同时计算出各测线的位移速率。 隧道周边收敛按下式计算: R R U i i - = 收敛速率按下式计算:

软弱围岩隧道变形及其控制技术相关分析

软弱围岩隧道变形及其控制技术相关分析 发表时间:2016-05-28T13:37:56.550Z 来源:《基层建设》2016年2期作者:张琨玮[导读] 中国电建集团成都勘测设计院有限公司四川成都 611130 一般影响软弱围岩变形的主要因素是围岩的性质,包括围岩级别,围岩结构,地应力,岩体的力学性质、隧道埋深等。张琨玮 中国电建集团成都勘测设计院有限公司四川成都 611130 摘要:隧道围岩大变形常表现为断面缩小、拱顶下沉、周边收敛、基底隆起等现象,导致成洞困难或初期支护严重破坏。隧道穿越埋深大、地应力高、岩体软弱等地质环境时,在开挖方法不当、支护抗力不足或不及时的情况下容易发生大变形。关键词:软弱围岩;隧道变形;控制引言 围岩是指受隧道开挖影响而发生应力状态改变的周围岩土体。根据岩土体的强度,可将围岩分为坚硬围岩和软弱围岩两大类,软弱围岩主要包括软弱、破碎、富水等不良地质条件下的围岩,但不包括岩溶、瓦斯等特殊的围岩。隧道穿越高地应力区及遇到软弱围岩体时,常产生软弱围岩大变形等相关地质灾害,对隧道软弱围岩大变形的有效合理防治与控制愈显紧迫与重要。 1软弱围岩隧道变形概述随着我国经济的高速发展,各项基础设施建设正在快速地推进。我国是一个地形地质复杂多样的国家,在山区进行交通工程建设不可避免的会遇到大量软岩隧道,并且埋深也在不断加大,随之带来了诸多问题,隧道大变形破坏就是其中之一。目前,关于隧道大变形仍没有一种学界公认的统一定义,根据前人的著述,其特点可描述为:深埋地下结构中表现出了与时间、岩体结构、水文地质条件、围岩岩性密切相关的特性,并受施工过程中的各种因素扰动的影响,这些因素反过来又影响施工和结构物长期运营的变形,比如交通隧道的变形。其中,软弱围岩隧道的时效特性正引起工程界的高度重视。软弱围岩具有明显的流变特性,与时间有着密不可分的关系,长期的工程实践表明,软弱围岩的变形和破坏并不是隧道运营初期立即完成的,而是经历很长时间不断变形的积累,出现大变形以致失稳和破坏。2隧道大变形原因分析2.1围岩软弱 一般影响软弱围岩变形的主要因素是围岩的性质,包括围岩级别,围岩结构,地应力,岩体的力学性质、隧道埋深等。软弱围岩是隧道发生大变形的内在因素,。例如,某工程中,围岩为粘土夹岩溶角砾,粘土松软,含水量高,角砾棱角分明,围岩十分软弱,用地质锤可轻松剥离。由于隧道右侧围岩强度低,开挖后硐室周边由三维应力状态转变成二维应力状态,洞周切向应力急剧增大,围岩强度应力比减小,使右侧围岩发生塑性破坏而向内挤入。围岩自身强度较低,对地下水敏感度高,隧道洞身开挖后围岩产生塑性变形松动圈范围大,作用在初期支护的压力较大,围岩变形持续的时间比较长。同时,通过采取适宜的超前预加固控制变形技术,还能够对隧道掌子面前方围岩变形情况进行有效的控制,进而避免发生掌子面坍塌现象。此外,对于断层破碎带以及软弱地层,尤其是在含有丰富的水源时,必须要对围岩进行超前加固施工,进而改善地层,保证隧道施工的安全。 2.2支护强度低 对于软弱围岩隧道,开挖后支护应尽早封闭成环,对于围岩压力持续增加,变形收敛时间长的隧道,应趁早施工二衬,利用模筑混凝土刚度大的特点,对控制持续变形有良好的效果。某工程隧道上台阶开挖后及时施作了初支,喷层厚度已达到要求,但上台阶拱脚锁脚锚管长度仅为2m,并没有穿过松动区,也没有注浆加固,因此不能充分发挥锁脚作用,故水平收敛很大。此外,格栅拱架刚度较低,拱架间距较大(1m),不能有效抵御拱脚剪力作用。 2.3水的影响 地表河流、冲沟与隧道距离较近,隧道上方冲沟附近发育有溶蚀漏斗,地表水可沿岩溶通道进入地下。围岩软弱松散,在地下水位以下处于饱和状态。在隧道开挖前该处岩土体中地下水位保持恒定,隧道开挖后地下水向坑道内渗流从而使隧道右侧地下水位降低,施作初期支护后由于喷混凝土有一定的阻水作用,阻断了右侧围岩地下水的渗流通道,使隧道右侧地下水位回升,故出现隧道左侧边墙干燥而右侧边墙湿润滴水的现状。同时,右侧拱墙支护结构承受静水压力的作用、。由于围岩含有黏土,遇水易发生膨胀、软化,从而使围岩自承能力迅速降低而压力不断增大,因此围岩和初支变形也表现为持续的发展。在地下水的作用下,围岩体积膨胀、强度降低,使得右侧初期支护同时承受膨胀压力与静水压力,变形不易控制。、3围岩大变形控制处理措施3.1加强超前地质预报工作一般情况下,在软弱围岩隧道施工过程中,都会遇到隧道开挖揭示地质情况与工程设计提供的地质存在较大差异的状况。基于此,除了需要在设计阶段加强地质勘察工作之外,还必须在施工阶段进行超前地质预报工作。之后还需按照超前地质预报设计方案的要求,对超前地质预报中涉及的细则进行详细的编制,然后才可开展地质预报工作。同时,对于那些地质较为简单的地段,可以采用以地质编录为主的途径进行相应的施工,并依据掌子面开挖揭示的地层岩性、地质构造以及节理裂缝发育情况等来分析与判断围岩的稳定性。而对于地质较为复杂地段的施工,应在完成地质编录工作的情况下,进行物探超前地质预报,进而为之后勘察资料的对比与分析工作提供基础与便利,最终实现提升预报质量与精度的目的。此外,对于那些特浅埋地质复杂地段,可通过水平钻孔等途径,明确掌子面前方地质情况,然后采取合理的开挖方式来保证工程施工安全。 3.2选择合理施工方法选择适宜的软弱围岩隧道开挖施工方法能够更好的保护围岩,减少塑性区域范围,进而最大限度地发挥出围岩的自承载效果,最终对围岩的变形量进行有效的控制。(1)在选择现场施工方式时,应依据地质与地层加固的具体情况来确定,并在实际施工过程中依据地质情况以及监控量测结果来及时的调整不合适的施工方法。(2)在采用爆破法掘进时,应全面掌握炮眼数量、深度以及装药量,进而在提高爆破控制技术的前提下,尽量减少爆破对围岩造成的破坏。 3.3加强支护强度和刚度

浅析隧道施工变形原因及控制措施

浅析隧道施工变形原因及控制措施 摘要:文章以浅埋暗挖施工隧道为例,介绍了该种施工方式诱发变形的原因,根据相关施工经验,提出了相应的控制预防措施,可供同类施工工程参考。 关键词:隧道;浅埋暗挖法;变形;控制措施 Abstract: the article with shallow depth excavation tunnel construction as an example, this paper introduces the construction method of the deformation of the induced reasons, according to relevant construction experience, and put forward the corresponding control precautionary measures for other similar construction projects. Keywords: tunnel; WaFa shallow depth; Deformation; Control measures 隧道由于受到所处周围环境的限制,对施工要求较高,浅埋暗挖法具有 诸多优点。例如经济效益好、适用能力强和扰动环境小等,因此越来越被广泛的应用于隧道施工中。虽然有许多优点,但隧道采用暗挖法施工也将必然地对周围土体产生或大或小扰动,从而引起土体移动变形,最后导致一系列病害,例如会使地表结构物倾斜、开裂甚至坍塌,道路路面发生破损、既有隧道或地下管线断裂、破损等环境岩土问题。因此针对隧道施工引起的施工变形问题,需仔细分析其产生的原因,根据相关研究理论与施工经验制定可靠的控制预防措施。 1、浅埋暗挖法施工过程中土体变形规律 根据浅埋暗挖隧道施工流程以及隧道施工引起的土体扰动机理可以得到,对于暗挖法隧道来说,可以总结出在施工过程中的土体变形规律可大致分为三个阶段: 1.1、土体开挖和初期支护 土体开挖,作初期支护是第一阶段的主要内容。在此阶段内,隧道本身处在一种临空的状态下。特别是在土体开挖后和初期支护强度达到要求前的这段时间内,临空状态尤为明显。我们可以假定土体在此阶段的移动是向内均匀收敛的。而且此阶段会产生土体损失,这是因为在开挖时,土体会释放积攒的应力,此时隧道所承受的支撑力较小,处在其周围一定范围内的土体会移动引起地层整体变形。

铝合金薄壁件加工中变形的因素分析与控制方法

铝合金薄壁件加工中变形的因素分析与控制方法 一般认为,在壳体件、套筒件、环形件、盘形件、轴类件中,当零件壁厚与内径曲率半径(或轮廓尺寸)相比小于1:20时,称作为薄壁零件。这一类零件的共同特点是受力形式复杂,刚度低,加工时极易引起误差变形或工件颤振,从而降低工件的加工精度。薄壁零件因其制造难度极大,而成为国际上公认的复杂制造工艺问题。 一、薄壁件加工变形因素分析 薄壁件由于刚度低,去除材料率大,在加工过程中容易产生变形,对装夹工艺要求高,使加工质量难以保证。薄壁类零件在加工中引起变形的因素有很多,归纳总结有以下几个方面: 1、工件材料的影响 铝合金作为薄壁件最理想的结构材料,与其他金属材料相比,具有切削加工性好的特点。但由于铝合金导热系数高、弹性模量小、屈强比大、极易产生回弹现象,大型薄壁件尤为显著。因此,在相同载荷情况下,铝合金工件产生的变形要比钢铁材料的变形大,同时铝合金材料具有硬度小、塑性大和化学反应性高等性质,在其加工中极易产积屑瘤,从而影响工件的表面质量和尺寸精度。 2、毛坯初始残余应力的影响 薄壁件加工中的变形与毛坯内部的初始残余应力有直接的关系,同时由于切削热和切削力的影响,使工件和刀具相接触处的材料产生不能回弹的塑性变形。这种永久性的变形一旦受到力的作用就会产生残余应力,而在加工过程中,一旦破坏了毛坯的残余应力,工件内部为达到新的平衡状态而使应力重新分布,从而造成了工件的变形。 3、装夹方式的影响 在加工中夹具对工件的夹、压而引起的变形直接影响着工件的表面精度,同时如果由于夹紧力的作用点选择不当而产生的附加应力,也将影响工件的加工精度。其次,由于夹紧力与切削力产生的耦合效应,也将引起工件残余应力的重新分布,造成工件变形。 4、切削力和切削热的影响 切削力是影响薄壁件变形的一个重要因素。切削力会导致工件的回弹变形,产生不平度,当切削力达到工件材料的弹性极限会导致工件的挤压变形。在切削加工过程中,刀具与工件之间的摩擦所作的功,材料在克服弹性、塑性变形过程中所做的功绝大部分转化为加工中的切削热,从而导致工件的各部分的温度差,

相关主题
文本预览
相关文档 最新文档