当前位置:文档之家› 活性炭的特性,作用原理及其应用[1]

活性炭的特性,作用原理及其应用[1]

活性炭的特性,作用原理及其应用[1]
活性炭的特性,作用原理及其应用[1]

活性炭的特性,作用原理及其应用

活性炭介绍

活性炭是以优质椰子壳、核桃壳、杏壳、桃壳为原料,经系列生产工艺精制而成,外观呈黑色颗粒状。优点是孔隙结构发达,比表面积大,吸附性能强,库层阻力小,化学性能稳定,易再生。适用于高纯度的生活饮用水、工业用水和废水处理的深度净化脱氯、脱色、除臭和黄金提炼等方面。

活性炭是一种多孔性的含炭物质, 它具有高度发达的孔隙构造, 是一种极优良的吸附剂,

每克活性炭的吸附面积更相当于八个网球埸之多. 而其吸附作用是藉由物理性吸附力与化学性吸附力达成. 其組成物质除了炭元素外,尚含有少量的氢、氮、氧及灰份,其結构则为炭形成六环物堆积而成。由于六环炭的不规则排列,造成了活性炭多微孔体积及高表面积的特性。

活性炭可由许多种含炭物质制成,这些物质包括木材、锯屑、煤、焦炭、泥煤、木质素、果核、硬果壳、蔗糖浆粕、骨、褐煤、石油残渣等。其中煤及椰子壳已成为制造活性炭最常用的原炓。活性炭的制造基本上分为两过程,第一过程包括脱水及炭化,将原料加热,在170至600℃的温度下干燥,並使原有的有机物大約80%炭化。第二过程是使炭化物活化,这是经由用活化剂如水蒸汽与炭反应来完成的,在吸热反应中主要产生由CO及H2组成的混合气体,用以燃烧加热炭化物至适当的溫度(800至1000℃),以烧除其中所有可分解的物质,由此产生发达的微孔結构及巨大的比表面积,因而具有很强的吸附能力。

活性炭的孔隙按孔径的大小可分為三类。大孔:半径1000 - 1000000 A。过渡孔:半径20 - 1000 A。微孔:半径- 20 A。

由不同原料制成的活性炭具有不同大小的孔径。由椰壳制的活性炭具有最小的孔隙半径。木质活性炭一般具有最大的孔隙半径,它们用於吸附较大的分子,並且几乎专用于液相中。在都市給水处理领域中使用的第一种类型之粒状活性炭即是用木材制成的,称为木炭。煤质活性炭的孔隙大小介於两者之间。

在煤质活性炭中,褐煤活性炭比无烟煤活性炭具有较多的过渡孔隙及较大的平均孔径,因此能有效地除去水中大分子有机物。

一般在水处理中使用的活性炭,其表面积不一定过大,但是应具有较多的过渡孔隙及较大的平均孔徑。日本市埸售一些液相用的活性炭具有以下特性:比表面积为850至1000m2/g,孔隙容积为0.88至1.5ml/g,平均孔隙半径為40至50A。

活性碳功能简介:

活性炭有高效空气净化功能,活性炭可以营造舒适清净环境,活性炭更呵护人体健康,活性碳是看不到的空气过滤网,活性炭是以其物理吸附和化学分解相结合的功能,分解空气中的甲醛、氨、苯、香烟、油烟等有害气体及各种异味,尤其是致癌的芳香类物质,活性碳具有极强的吸附能力,是一种常用的吸附剂、催化剂或催化剂载体,很容易与空气中的有害气体充分接触,活性碳利用自身孔隙吸附将有害气体分子吸入孔内,吹出清爽干净的空气。所以家庭的合作伙伴离不开活性炭。

活性炭的应用

活性炭广泛应用于工农业生产的各个方面,如石化行业的无碱脱臭(精制脱硫醇)、乙烯

脱盐水(精制填料)、催化剂载体(钯、铂、铑等)、水净化及污水处理;电力行业的电厂水质处理及保护;化工行业的化工催化剂及载体、气体净化、溶剂回收及油脂等的脱色、精制;食品行业的饮料、酒类、味精母液及食品的精制、脱色;黄金行业的黄金提取、尾液回收;环保行业的污水处理、废气及有害气体的治理、气体净化;以及相关行业的香烟滤嘴、木地板防潮、吸味、汽车汽油蒸发污染控制,各种浸渍剂液的制备等。活性炭在未来将会有极好的发展前景和广阔的销售市场。

活性炭吸附性

吸附性质是活性炭的首要性质。活性炭具有像石墨晶粒却无规则地排列的微晶。在活化过程中微晶间产生了形状不同、大小不一的孔隙,假定活性炭的孔隙是圆筒孔形状,活性炭按一定方法计算孔隙的半径大小可分为二类:

(1) 按IUPAC分:

微孔<1.0nm

中孔1-25nm

大孔>25nm。

(2) 按习惯分:

微孔<150nm

中孔150-20 000nm

大孔>20 000nm。

由于这些孔隙,特别是微孔提供了巨大的表面积。

活性炭微孔的孔隙容积一般只有0.25-0.9mL/g,孔隙数量约为1020个/g,全部微孔表面积约为500-1500m2/g,通常以BET法测算,也有称高达3500-5000 m2/g的。活性炭几乎95%以上的表面积都在微孔中,因此除了有些大分子进不了外,微孔是决定活性炭吸附性能高低的重要因素。中孔的孔隙容积一般约为0.02-1.0mL/g,表面积最高可达几百平方米,一般只有活性炭总蚕种的约5%。其作用能吸附蒸汽,并能为吸附物提供进入微孔的通道,又能直接吸附较大的分子。

大孔的孔隙容积一般约为0.2-0.5 mL/g,表面积只约0.5-2 m2/g,其作用一是使吸附质分子快速深入活性炭内部较小的孔隙中去;二是作为催化载体时,催化剂常少量沉淀在微孔内,大都沉淀在大孔和中孔之中。

所提的活性炭表面积理应包括内表面积和外表面积,事实上吸附性质主要来自巨大的内表面积,因此不能误认为:把活性炭研碎磨细会明显提高表面积从而提高吸附力。

很多吸附是可逆的物理吸附,即被吸附物为流体,在一定温度和压力下被活性炭吸附,在高温低压下被吸附物又解吸出来,活性炭内表面恢复原状。这是广泛应用的物理吸附,学术上又称为范德华吸附。

活性炭吸附原理

[1]活性炭是一种很细小的炭粒有很大的表面积,而且炭粒中还有更细小的孔——毛细管。这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与气体(杂质)充分接触。当这些气体(杂质)碰到毛细管被吸附,起净化作用。活性炭的表面积研究是非常重要的,活性炭的比表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接对比法的检测,现在国内也被淘汰了。目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。F-Sorb 2400比表面积测试仪是真正能够实现BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb 2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试结果精确性。

活性炭对各气体的吸附能力(单位:ml/cm3):

H2、O2、N2、Cl2、CO2

4.5 、35、11、494、97

影响活性炭吸附的主要因素

①活性炭吸附剂的性质

其表面积越大,吸附能力就越强;活性炭是非极性分子,易于吸附非极性或极性很低的吸附质;活性炭吸附剂颗粒的大小,细孔的构造和分布情况以及表面化学性质等对吸附也有很大的影响。

②吸附质的性质

取决于其溶解度、表面自由能、极性、吸附质分子的大小和不饱和度、附质的浓度等

③废水PH值

活性炭一般在酸性溶液中比在碱性溶液中有较高的吸附率。

PH值会对吸附质在水中存在的状态及溶解度等产生影响,从而影响吸附效果。

④共存物质

共存多种吸附质时,活性炭对某种吸附质的吸附能力比只含该种吸附质时的吸附能力差

⑤温度

温度对活性炭的吸附影响较小

⑥接触时间

应保证活性炭与吸附质有一定的接触时间,使吸附接近平衡,充分利用吸附能力。

活性炭化学性

活性炭的吸附除了物理吸附,还有化学吸附。活性炭的吸附性既取决于孔隙结构,又取决于化学组成。

活性炭不仅含碳,而且含少量的化学结合、功能团开工的氧和氢,例如羰基、羧基、酚类、内酯类、醌类、醚类。这些表面上含有的氧化物和络合物,有些来自原料的衍生物,有些是在活化时、活化后由空气或水蒸气的作用而生成。有时还会生成表面硫化物和氯化物。在活化中原料所含矿物质集中到活性炭里成为灰分,灰分的主要成分是碱金属和碱土金属的盐类,如碳酸盐和磷酸盐等。

这些灰分含量可经水洗或酸洗的处理而降低。

活性炭催化性

活性炭在许多吸附过程中伴有催化反应,表现出催化剂的活性。例如活性炭吸附二氧化硫经催化氧化变成三氧化硫。

由于活性炭有特异的表面含氧化合物或络合物的存在,对多种反应具有催化剂的活性,例如使氯气和一氧化碳生成光气。

由于活性炭和载持物之间会形成络合物,这种络合物催化剂使催化活性大增,例如载持钯盐的活性炭,即使没有铜盐的催化剂存在,烯烃的氧化反应也能催化进行,而且速度快、选择性高。

由于活性炭具有发达的细孔结构、巨大的内表面积和很好的耐热性、耐酸性、耐碱性,可作为催化剂的载体。例如,有机化学中加氢、脱氢环化、异构化等的反应中,活性炭是铂、钯催化剂的优良载体。

活性炭机械性

(1)粒度:采用一套标准筛筛分法,求出留在和通过每只筛子的活性炭重量,表示粒度分布。

(2)静观密度或堆密度:饮食孔隙容积和颗粒间空隙容积的单位体积活性炭的重量。

(3)体积密度和颗粒密度:饮食孔隙容积而不饮食颗粒间空隙容积的单位体积活性炭的重量。

(4)强度:即活性炭的耐破碎性。

(5)耐磨性:即耐磨损或抗磨擦的性能。

这些机械性质直接影响活性炭应用,例如:密度影响容器大小;粉炭粗细影响过滤;粒炭粒度分布影响流体阻力和压降;破碎性影响活性炭使用寿命和废炭再生。

活性炭应用

增加活性炭目数与毫米对应表内容以及相关网站.并非作广告.对消费者有很多帮助.现在活性炭都是按照目来说的,但大家不知道目其实可以换成毫米的.

活性炭广泛应用于工农业生产的各个方面,如石化行业的无碱脱臭(精制脱硫醇)、乙烯脱盐水(精制填料)、催化剂载体(钯、铂、铑等)、水净化及污水处理;电力行业的电厂水质处理及保护;化工行业的化工催化剂及载体、气体净化、溶剂回收及油脂等的脱色、精制;食品行业的饮料、酒类、味精母液及食品的精制、脱色;黄金行业的黄金提取、尾液回收;环保行业的污水处理、废气及有害气体的治理、气体净化;以及相关行业的香烟滤嘴、木地板防潮、吸味、汽车汽油蒸发污染控制,各种浸渍剂液的制备等。活性炭在未来将会有极好的发展前景和广阔的销售市场。

活性碳主要用途﹕

1.用于液相吸附类活性碳

?自来水,工业用水,电镀废水,纯净水,饮料,食品,医药用水净化及电子超纯水制备。

?蔗糖、木糖、味精、药品、柠檬酸、化工产品、食品添加剂的脱色、精制和去杂质纯化过滤

?油脂、油品、汽油、柴油的脱色、除杂、除味、酒类及饮料的净化、除臭、除杂?精细化工、医药化工、生物制药过程产品提纯、精制、脱色、过滤。

?环保工程废水、生活废水净化、脱色、脱臭、降COD

2.用于气相吸附类活性碳

?苯、甲苯、二甲苯、丙酮、油气、CS2等有机溶剂吸附与回收。

?香烟过滤嘴、装修除味、室内空气净化(甲醛,苯等的去除),工业用气的净化(如CO2、N2等)

?石化行业生产、天然气净化、脱硫、除臭、废气的治理

?生化、油漆工业、地下场所、皮革工厂、动物饲养场所的空气净化、脱臭。

?烟道气的臭气吸附、硫化物吸附,汞蒸汽的去除,降低戴奥辛的生成。

3.用于高要求领域活性碳

?催化剂及催化剂载体(钯炭催化剂、钌炭催化剂、铑炭催化剂、铂炭催化剂),贵重金属催化剂及合成金刚石、黄金提取。

?血液净化、汽车炭罐、高性能燃料电池、双电层超级电容器、锂电池负极材料、贮能材料、军事、航天等高要求领域。

活性碳服务﹕

?活性炭选型﹕为您的企业量体裁衣,特别定制,即符合本企业的生产需求而同时又能降低企业综合成本。

?优化设计﹕我们的应用工程人员将与您的企业一道,对吸附工艺、设备、活性炭品种进行优化设计,使其达到最佳性价比。

?新产品研发:如果您认为现有的活性炭规格品种不能满足贵方生产应用的需要,请将您的需求告诉我们,我司工程技术人员可与贵方共同开发。

?再生﹕提供活性碳再生、活性炭装填、回收更换等服务。

?其它服务:提供应用技术咨询,活性炭价格查询,进口高档活性炭定做等

污泥制备活性炭及其应用研究报告

科技大学高新学院 结 课 论 文 科目:化工安全 :泽根 学号:1204060229 班级:安单1201

污泥制备活性炭及其应用研究 [摘要]国污水处理事业的迅猛发展使得城市污水污泥数量与日俱增。若污泥处理处置不当,必将造成严重的二次污染。因此必须高度重视污水污泥的科学处理处置问题。分析污泥的来源与组分,对污泥制备活性炭的国外研究现状及实际应用进行研究,提出了污泥制备活性炭目前存在的问题。 近年来,活性炭在环境保护领域的应用越来越广泛,吸附工艺也越来越成熟,同时活性炭的需求量也越来越大。我国是活性炭生产大国,1997年活性炭产量仅次于美国,位居世界第二。但是我国的活性炭质量一直都比较低,并且以煤和木材为原材料的话活性炭加工工艺对环境破坏非常大。而城市污水处理厂大规模兴起和生物处理发的迅速发展,必将产生大量活性污泥。作为污水处理的副产物,城市污泥是一类特殊的固体废物,其产生量大,成分复杂,由胶体、无机颗粒、有机残片、细菌菌体等组成,是组成非常复杂的非均质体,含有60%~80%的有机物,被世界水环境组织命名为“生

物固体”,表明了污泥具有资源化的潜质。将污泥制成活性炭是很有发展前景的污泥资源化的处置方式之一,它在保证了污泥不会造成二次污染的基础之上,还能制得活性炭吸附材料。 1污泥的来源与组分从元素的角度来讲,污泥中的有机物主要包含碳(C)、氢(H)、氧(0)、氮(N)、硫(S)、氯(C l)等六种元素。从化学组成的角度来讲,污泥中的有机物组成包含毒性有机物、有机生物质和有机官能团化合物和微生物。污水处理厂的剩余活性污泥的主要组成成分为有机物,粗蛋白质大概占60%~70%,碳水化合物大约占25%左右,其无机灰分的含量仅为5%左右。 2污泥制备活性炭的国外研究现状污泥基活性炭的活化方法主要有物理活化、化学活化和化学-物理联合活化等。 2.1物理活化法物理活化法主要包括直接热解法和气体活化法。 2.1.1直接热解法直接热解法是指在氮气气氛的保护作用下,将污泥置于电阻炉中,将污泥加

射频同轴电缆特性阻抗Zc的测试

射频同轴电缆特性阻抗Z C 的测试 胡 树 豪 这里介绍射频同轴电缆特性阻抗Z C 的6种测试方法。它们同样也适合于双绞线,只不过仪器要转换为差分系统而已。 一、λ/4线接负载法 1、测试方法与步骤: ·待测电缆一段,长约半米(无严格要求),两端装上连接器。扫频范围由仪器低频扫到百余兆赫即可。对于其它长度的电缆,扫频范围请自定。 ·仪器工作在测反射(或回损)状态,作完校正后画面应选阻抗圆图。 ·在测试端口接上待测电缆,电缆末端接上精密负载。 ·画面不外三种情况: 轨迹集中为一点,则Z C = Z 0(测试系统特性阻抗,一般为50Ω)。 轨迹呈圆弧或圆圈状,在圆图右边,则Z C > Z 0 。 轨迹呈圆弧或圆圈状,在圆图左边,则Z C < Z 0 。 ·将光标移到最接近实轴的点上,记下此点的电阻值R in (不管电抗值)。 n i C R Z Z 0= 例如:R in = 54Ω,则Z C = 52Ω,若R in = 46Ω,则Z C = 48Ω。 若轨迹不与实轴相交,则扫频范围不够或电缆太短;若交点太多,则扫频范围太宽或电缆太长。 2、优点 轨迹直观连续,不易出错。 连接器的反射可以通过λ/4线抵消。 3、缺点 必须截取短样本。 必须两端装连接器。 电缆质量必须较好,否则不同频率的测试结果起伏较大,不好下结论。 4、物理概念与对公式的理解 λ/4线有阻抗变换作用,其输入阻抗Z in 与负载阻抗Z L 之间满足Z in = Z C 2/Z L 关系。 现在Z L = Z 0,Z in = R in ,代入展开即得上面的Z C 计算公式。 λ/4线的阻抗变换公式是众所周知的,但作为特性阻抗的测试方法却未曾见。在测阻抗曲线试验中发现,与实轴相交的这一点是可用来测特性阻抗的;因为它把矛盾扩大了,反而更容易测准。由于曲线是很规矩的,不易出错。但必须用第一个交点,即除原点以外的最低频率的与实轴最近的一点,用第二点就可能出问题。换句话说,待测电缆的电长度应为λ/4的奇数倍,不能是偶数倍。 二、λ/8线开、短路法 1、测试方法与步骤: ·样本与扫频方案 对于已装好连接器的跳线,长度已定,只能由长度定扫频方案而对于电缆原材料,则可以按要求频率确定下料长度。此时待测电缆一头装连接器即可。

活性炭吸附和脱附原理

活性炭吸附原理 1、依靠自身独特的孔隙结构 活性炭是一种主要由含碳材料制成的外观呈黑色,内部孔隙结构发达、比表面积大、吸附能力强的一类微晶质碳素材料。活性炭材料中有大量肉眼看不见的微孔,1克活性炭材料中微孔,将其展开后表面积可高达800-1500平方米,特殊用途的更高。也就是说,在一个米粒大小的活性炭颗粒中,微孔的内表面积可能相当于一个客厅面积的大小。正是这些高度发达,如人体毛细血管般的孔隙结构,使活性炭拥有了优良的吸附性能。、 2、分子之间相互吸附的作用力 也叫“凡德瓦引力”。虽然分子运动速度受温度和材质等原因的影响,但它在微环境下始终是不停运动的。由于分子之间拥有相互吸引的作用力,当一个分子被活性炭内孔捕捉进入到活性炭内孔隙中后,由于分子之间相互吸引的原因,会导致更多的分子不断被吸引,直到添满活性炭内孔隙为止。 活性炭脱附的几种方法 (1)升温脱附。物质的吸附量是随温度的升高而减小的,将吸附剂的温度升高,可以使已被吸附的组分脱附下来,这种方法也称为变温脱附,整个过程中的温度是周期变化的。微波脱附是由升温脱附改进的一种技术,微波脱附技术已应用于气体分离、干燥和空气净化及废水处理等方面。在实际工作中,这种方法也是最常用的脱附方法。 (2)减压脱附。物质的吸附量是随压力的升高而升高的,在较高的压力下吸附,降低压力或者抽真空,可以使吸附剂再生,这种方法也称为变压吸附。此法常常用于气体脱附。 (3)冲洗脱附。用不被吸附的气体(液体)冲洗吸附剂,使被吸附的组分脱附下来。采用这种方法必然产生冲洗剂与被吸附组分混合的问题,需要用别的方法将它们分离,因此这种方法存在多次分离的不便性。 (4)置换脱附。置换脱附的工作原理是用比被吸附组分的吸附力更强的物质将被吸组分置换下来。其后果是吸附剂上又吸附了置换上去的物质,必须用别的方法使它们分离。例如,活性炭对Ca2+、C1-有一定的吸附能力,这些离子占据了吸附活性中心,可对活性炭吸附无机单质或有机物产生不利影响。因此,用活性炭吸附待分离溶液中的物质后,选用CaCl2作为脱附剂可降低活性炭对吸附质的吸附稳定性,从而达到降低脱附活化能的目的。 (5)磁化脱附。由于单分子水的性质比簇团中的水分子活泼得多,能充分显示它的偶极子特性,从而使水的极性增强。预磁处理能增大水的极性,这就能充分解释经过预磁处理后活性炭的吸附容量减小的现象。当磁场强度增大时,分离出的单个水分子越多,则阻碍作用就越大,从而吸附容量减小得也就越多。活性炭

射频阻抗匹配与史密斯_Smith_圆图:基本原理详解

阻抗匹配与史密斯(Smith)圆图:基本原理
在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下, 需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、 功率放大器输出(RFOUT)与天线之间的匹配、 LNA/VCO 输出与混频器输入 之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。
在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹 以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。 需要用计算值确定电路的结构类型和相应的目标元件值。
有很多种阻抗匹配的方法,包括
?
计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的 格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途 制造的,否则电路仿真软件不可能预装在计算机上。
? ? ?
手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。 经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。
本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹 配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的 影响以及进行稳定性分析。
图 1. 阻抗和史密斯圆图基础
基础知识
在介绍史密斯圆图的使用之前,最好回顾一下 RF 环境下(大于 100MHz) IC 连线的电磁波传播现象。这对 RS-485 传输线、PA 和天线之间 的连接、LNA 和下变频器/混频器之间的连接等应用都是有效的。

活性炭改性方法及其在水处理中的应用

活性炭改性方法及其在水处理中的应用 活性炭是用生物有机物质(包括煤、石油和沥青等在内)经过炭化、活化等过程制成的一种无定形炭。它具有多孔结构、巨大的比表面积、吸附容量大、速度快和饱和可再生等特点,能够有效地去除水中的臭味、天然和合成溶解的有机物、微污染物以及一些大气中的污染气体等,但是普通活性炭比表面积小、孔径分布不均匀和吸附选择性能差,故普通活性炭需要进一步的改性,满足实验和工程需要。现在常采用工艺控制和后处理技术对活性炭的孔隙结构进行调整,对表面化学性质进行改性,进而提高其吸附性能。 标签:活性炭;改性方法;水处理 活性炭是一种吸附性很强的环境友好型吸附剂,有很好的吸附性能和催化性能。活性炭的原料来源广泛并且具有很高的安全性和稳定性,具有耐酸碱、耐热、易再生等特点。实践表明,活性炭对水中溶解的有机溶剂有很好的吸附性能,对水质浑浊有明显的澄清作用,并且能够去除水中的异味、臭味等,还能够过滤水中的微生物,因此在水处理行业中有着非常广泛的应用。本文就活性炭的改性方法和其在水处理方面的应用进行了简述,旨在为活性炭及其改性产物在水处理行业中的应用提供一定参考。 1、活性炭的改性方法 1.1表面氧化改性 表面氧化改性是通过氧化剂对活性炭进行处理,从而使活性炭表面的官能团发生氧化,提高含氧的官能团(羧基、酚羟基、酯基等)数量,增强活性炭的亲水性能,即极性,增强对极性物质的吸附能力的改性方法,常用的氧化剂主要是双氧水、硝酸、臭氧、高氯酸等。其中硝酸的氧化性最强,能够产生许多的酸性基团,其他氧化剂则相对温和,可以用于调整活性炭的表面酸性。氧化改性后的活性炭材料表面几何形状更加均匀,并且使用不同的氧化剂能够得到韩阳官能团数量和极性不同的活性炭材料,其中,酸性含氧官能团含量的多少与氧化程度有很大的关系。 1.2 活性炭表面化学性质的改性方法 活性炭表面化学性质的改变主要是通过一定的方法改变活性炭表面的官能团以及表面负载的离子和化合物,从而改变其表面的化学性质达到活性炭的吸附能力的提高。活性炭表面化学性质改性方法可分为:表面氧化法、表面还原法、负载原子和化合物法、酸碱法等。在改性过程中常常联合不同的改性方法对活性炭进行改性,从而达到更好的改性效果。 1.2.1 表面氧化法

ADS阻抗匹配原理及负载阻抗匹配

功率放大器设计的关键:输出匹配电路的性能 2008-05-15 17:51:20 作者:未知来源:电子设计技术 关键字:功率放大器匹配电路匹配网络s参数串联电阻输出功率Cout耗散功率网络分析仪高Q值对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。 因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。 匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。 损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。 例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。 耗散损失 现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel 到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图1c)上的总功率,PL是传输到负载的那部分功率。 了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。 这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输功率以及耗散功率。反射功率没有计算进去。 由此可知,这个比例就等于匹配网络工作时的功率增益GP。而工作时的功率增益完整表达式为: 这里,是负载反射系数,是匹配网络的s参数, 损失就是增益的倒数。因此,耗散损失可以定义为: Ldiss = 1/GP。 对于功率放大器而言,我们为它设计的负载一般是50Ω。通常,我们用来测量s参数的系统阻抗也是50Ω。如果系统阻抗和负载都是50Ω,那么就为0,于是,上面的表达式就可以简化为: 在计算一个匹配网络的耗散损失时,只需要知道它的传输值和反射散射参数的大小,这些可以很容易地从s参数的计算过程中得到,因为网络分析仪通常都会采用线性的方式来显示s参数的值。在评估输入和级间耗散损失时,负载的阻抗不是50Ω,但是上述的规律依然适用。 因为反射和耗散损失很容易混淆,射频工程师有时就会采用错误的方法来计算耗散损失。而最糟糕的方法就是采用未经处理的s21来进行计算。一个典型的匹配网络在1GHz(图2)时,对功率放大器而言,是数值为4+j0Ω的负载阻抗。匹配网络采用的是无损耗元件来进行模拟的,所以在匹配网络中不存在功率的耗散问题。然而,s21却是-6dB,因为在50Ω的源阻抗和4Ω的负载之间存在着巨大的不匹配问题。作为一个无损耗网络,除了一些数字噪音外,模拟的耗散损失为0dB。 在电路的模拟当中,我们可能可以采用s21来求出正确的耗散损失。这一过程包括采用复杂模拟负载线的共轭

活性炭在生活中的作用

活性炭在生活中的作用 人类生活中活性炭的使用越来越广泛,比如:自来水厂用活性炭脱臭、饮用水净化、糖的脱色、军用防毒面具、香烟过滤嘴、空气净化器、解毒、醒酒、治理放射元素污染,降低土壤中残留农药,调理土壤性能,治理室内甲醛,蔬菜保鲜等等。 这主要是因为: 1、活性炭自身独特的孔隙结构,活性炭是一种主要由含碳材料制成的外观呈黑色,内部孔隙结构发达、比表面积大、吸附能力强的一类微晶质碳素材料。活性炭材料中有大量肉眼看不见的微孔,1克活性炭材料中微孔,将其展开后表面积可高达800-1500平方米,特殊用途的更高。 也就是说,在一个米粒大小的活性炭颗粒中,微孔的内表面积可能相当于一个客厅面积的大小。正是这些高度发达,如人体毛细血管般的孔隙结构,使活性炭拥有了优良的吸附性能。 2、活性炭分子之间相互作用力,也叫“凡德瓦引力”。虽然分子运动速度受温度和材质等原因的影响,但它在微环境下始终是不停运动的。 由于分子之间拥有相互吸引的作用力,当一个分子被活性炭内孔捕捉进入到活性炭内孔隙中后,由于分子之间相互吸引的原因,会导致更多的分子不断被吸引,直到添满活性炭内孔隙为止。 3、活性炭能吸附各种有害物质,不同材料和用途的活性炭,其内孔径大小也不一样。一般而言,优质椰壳活性炭吸附有害物质的质量可以接近甚至达到其本身的质量。 活性炭吸附有害物质的特性活性炭为物理吸附原理,在作用过程中,依靠空气作为媒介,因此被界定为被动空气净化材料。 广州怡森环保设立有活性炭制作加工工厂,专业生产各类煤质活性炭产品,广泛应用于环保、飞机制造、石油、家具、化工、医药、印刷等工业领域,为有机废气治理提供核心材料。

阻抗匹配与史密斯圆图:基本原理

阻抗匹配与史密斯圆图:基本原理 摘要:本文是关于使用史密斯圆图进行射频阻抗匹配计算的教程。本文还提供了一些示例以描绘如何计算反射系数、阻抗、导纳等参数。本文还提供了一个样例,使用图形方法计算工作在900MHz下的MAX2472的匹配网络。 经过实践证明,史密斯圆图仍然是用于判定传输线路阻抗的基本工具。 当处理射频应用的实际实现时,总会碰到一些噩梦般的任务。其中之一就是需要匹配各个互连模块之间的不同的阻抗。通常,这些包括天线到低噪声放大器(LNA),功率放大器输出(RFOUT)到天线,以及LNA/VCO输出到混频器输入。对于信号与能量从“源”到“负载”的正确传输来说,匹配任务是必需的。 在高频率的射频电路中,寄生元素(例如导线电感、层间电容、导体电阻等等)对匹配网络有着显著,但无法预料的影响。在几十兆赫兹频率以上的电路中,理论上的计算与仿真常常是不足够的。在射频实验室测量现场,伴随着调谐工作,必须仔细考虑才能决定合适的最终取值。必须使用计算值以便于建立结构类型与目标元件的取值。 有很多方法可用于计算阻抗匹配,包括: ●计算机仿真:原理复杂但是使用简单,仿真器一般用于区别设计功能,而不是进行阻抗 匹配。设计者必须熟悉需要键入的多重数据输入,以及这些数据输入的正确格式。他们同样需要专门的知识,以便于在大量的结果数据中找到有用的数据。另外,除非计算机被用于进行电路仿真这样的工作,电路仿真软件就不会预安装在计算机上。 ●手动计算:由于计算方程的长度(“上公里的”),以及要进行计算的数字的复杂性,这 种方式被普遍认为是非常单调乏味的。 ●经验直觉:只有当一个人在射频领域中工作过很多年以后,才能取得这样的能力。简而 言之,这种方法只适用于非常资深的专家。 ●史密斯圆图:本文所专注的内容。 本文的主要目标就是回顾史密斯圆图的构造与背景,并且总结如何使用史密斯圆图的实践方式。本文提出的主题包括了参数的实际说明,例如找到匹配网络元件的取值。当然,我们使用史密斯圆图不仅仅只能进行最大功率传输的匹配。史密斯圆图同样能够帮助设计者计算出最佳的噪声系数,确保质量因素的影响,以及评估稳定性分析等等。

活性炭活化原理

活性炭的活化机理及应用 材研1407 朱明2014200483 活性炭是一种非常优良的吸附剂,它是利用植物原料(木屑、木炭、果壳、果核)、煤 和其它含碳工业废料作原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。根据活化介质的不同,活性炭活化方法分 为物理活化法、化学活化法和物理—化学复合活化法。物理活化水蒸汽、二氧化碳、空气 或它们的混合气体对环境污染小,因其依靠氧化碳原子形成孔隙结构,活化温度较高且活 性炭得率低。化学活化法活性炭得率较高,孔隙发达,吸附性能好。但此法对设备腐蚀性大,环境污染严重。热解能量循环利用困难。而且活性炭中残留化学药品.在应用方面受 到限制。 一.活性炭的活化机理 1.物理活化法 物理活化法一般分两步进行,先将原料在500℃左右炭化,再用水蒸汽或CO2 等气体在高温下进行活化。高温下,水蒸汽及二氧化碳都是温和的氧化剂,碳材料内部C原子与活化剂结合并以CO+H 2或CO的形式逸出,形成孔隙结构。物理活化法所需的活化温度一般较化学活化法高,而且活化所需的时间也更长,因此耗能比较大,成本高。尽管有这些缺点,物理活化法在实际生产中的应用仍然十分广泛,原因在于其制得的活性炭无需过多 的后处理步骤,不像化学活化法制得的活性炭需要除去残留的活化剂。 将炭化材料在高温下用水蒸气、二氧化碳或空气等氧化性气体与炭材料发生反应,使炭材料中无序炭部分氧化刻蚀成孔,在材料内部形成发达的微孔结构。炭化温度一般在600℃,活化温度一般在800℃∽900℃。其主要化学反应式如下: C+2H2O 2H2+CO2 △H=18kcal C+H2O H2+CO △H=31kcal CO2+C 2CO △H=41kcal 上述三个化学反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃,上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补充外加热源,以保证活化炉活化反应区域的活化温度。 活化反应属于气固相系统的多相反应,活化过程中包括物理和化学两个过程,整个过程包括气相中的活化剂向炭化料外表面的扩散、活化剂向炭化料内表面的扩散、活化剂被炭化料内外表面所吸附、炭化料表面发生气化反应生成中间产物(表面络合物)、中间产物分解

阻抗匹配概念

阻抗匹配概念 阻抗匹配概念 阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。对于不同特性的电路,匹配条件是不一样的。 在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。 当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。这种匹配条件称为共扼匹配。 阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。 大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。 要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。 改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。 调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配 阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。最大功率传输定理,如果是高频的话,就是无反射波。对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。高速PCB布线时,为了防止信号的反射,要求是线路的阻抗为50欧姆。这是个大约的数字,一般规定同轴电缆基带50欧姆,频带75欧姆,对绞线则为100欧姆,只是取个整而已,为了匹配方便. 阻抗从字面上看就与电阻不一样,其中只有一个阻字是相同的,而另一个抗字呢?简单地说,阻抗就是电阻加电抗,所以才叫阻抗;周延一点地说,阻抗就是电阻、电容抗及电感抗在向量上的和。在直流电的世界中,物体对电流阻碍的作用叫做电阻,世界上所有的物质都有电阻,只是电阻值的大小差异而已。电阻小的物质称作良导体,电阻很大的物质称作非导体,而最近在高科技领域中称的超

新型碳材料及其应用

谈谈新型碳材料及其应用

谈谈新型碳材料及其应用 碳材料是一种古老而又年轻的材料,即有古老的产品也有现代科学技术进步所创新的产品,而新型碳材料就是由传统的碳材料经过一系列的加工工艺而制的一种新型材料。新型碳材料主要有活性炭、碳纤维、石墨烯、石墨、纳米碳管、金刚石、富勒烯、其他新型碳材料。新型碳材料具有密度小、强度大、刚性好、耐高温、抗化学腐蚀、抗辐射、抗疲劳、高导电、高导热、耐烧蚀、热膨胀小、生理相容性好登一系列优异的特性,是军民两用的新材料,被称为是第四类工业材料。应用于冶金、化工、机械、汽车、医疗、环保、建筑日常生活等领域。特别是航天和核工业部门不可缺少的工程结构材料。新型碳材料的发展和应用对提高军事实力和工业产品是竞争力都是至关重要的,已经成为衡量一个国家科技水平、军事和经济实力是标志之一。 活性炭是被其广泛使用的一种新型碳材料,其又称活性炭黑,是黑色粉末状或颗粒状的无定形碳,活性炭主成分除了碳以外还有氧、氢等元素,活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产生碳组织缺陷,因此它是一种多孔碳,堆积密度低,比表面积大。在石化行业,活性炭在无碱脱臭乙烯脱盐水工艺中起到了关键的作用;在电力行业,活性炭被用于电厂水质处理及保护;在化工行业活性炭用于化工催化剂及载体、气体净化、溶剂回收、及油脂等的脱色、精制过程中;在食品行业,它被用于饮料、酒类、味精母液及食品的精制、脱色、提纯、除臭,在黄金行业,在黄金提取和尾液回收起到至关重要的作用;环保行业,被用于污水处理、

废气及有害气体的治理、气体净化,总之活性炭被其广泛的用于各行各业中。 碳纤维是新型碳材料家族中的又一个典型代表,它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。不仅杨氏模量大,而且在有机溶剂、酸、碱中不溶不胀,耐蚀性也出类拔萃。碳纤维可加工成织物、毡、席、带、纸及其他材料。碳纤维作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,可以构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。总之碳纤维是被广泛用于民用,军用,建筑,化工,工业,航天以及超级跑车领域的。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。在纳电子器件方面,利用石墨烯加入电池电极材料中可以大大提高充电效率,并且提高电池容量;也可以应用于许多其他潜在的能源存储领域如超级电容器、电磁炮等。石墨烯可以代替硅生产超级计算机;在光子传感器、基因电子测序和隧穿势垒材料也有重要的用途。 纳米碳管,管状的纳米级石墨晶体,是单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝纳米级管,每层的C是sp2杂化,形成六边形平面的圆柱面。各国都加紧了碳纳米管的应用研究,研制出具备良好储氢性能的碳纳米管和具备初步显示功能的碳纳米管显

阻抗测试方法

成品阻抗测试方法: 1、仪器设置: 网络分析仪:CENTER:200MHz SPAN:2MHz(视被测电缆的长度进行设定)MEAS:S12 或S21 FORMA T:Phase 直通校准 注意:校准完毕为一条数值为零的直线,SPAN更改不同的数值需要重新校准。 2、电容测量仪测试电容值。(数值现实稳定可以读取数值)。 3、相位差的测量: 网络分析仪连接被测电缆,显示相位值,按照以下方式进行读取数值: 打开菜单MARKER SERACH,target value设置为0,打开multi target search , 记录两个标记点的频率值(注意:选择红圈内数值最接近的标记点)。 如上图所示:应选择标记点1、2。 δf=(f m -f n )/m-n 4、按照特性阻抗的公式: 平均特性阻抗=1000/(δf*c) δf单位为MHz, C为测量的电容值:单位nf。 注意事项:1、测试频率差时被测电缆的接头状态必须和测试电容的接头状态保持一致。 2、target value设置为0,以避免产生误差。 3、保证校准状态有效。

相对传播速度的测量方法: 1:相对传播速度的定义:信号在介质中的传播速度与自由空间的传播速度之比。 2、仪器的设置: 网络分析仪进行测试: CENTER:200MHz SPAN:1MHz MEAS:S12 或S21 FORMA T:Group delay 直通校准 校准后为一条数值为零的直线。 3、连接被测电缆,打开Marker Factions ,将统计功能打开。读取平均值即为延迟时间t。 4、按照下列公式计算相对传播速度: V =L/(t?c) ?100% V:相对传播速度。L:电缆的实际长度(米)c=3.0?108米/秒 t :延迟时间(秒)。 电缆相位及电长度测试及计算方法: 1、仪器的设置: 网络分析仪设置: CENTER:要求测试频点SPAN:10MHz(或者按照通知单要求设置起始终止频率)MEAS:S12 或S21 FORMA T:Extend Phase 直通校准 校准后为一条数值为零的直线。 2、连接被测电缆,读取要求频率点的数值。

意念力理论及其作用

意念力理论及其作用 由想而产生的力就叫意念力。思维属于阴性物质在释放能量,阴性物质的特性决定它一起步即是超光速,思维在超光速中所产生的能量非常大,因此意念力在一定情况下,往往大于机械力。现在你首先把精神和身体都放松下来,随着我的思维做一次意念力的试验。每个人的手腕处都有两道横纹,你现在把双手腕的横纹比齐后,两手掌相对合并在一起,看一看两只手的手指是否一样长,然后放下一只手。这时你闭目观想没有放下的这只手,似乎好象看见了这只手在一节一节地向上长,长得象《西游记》中如来佛的大手,象五根柱子插入云天,就这样放松地去观想三分钟,然后把两只手的横纹对齐

再比一下,这时你会惊奇地发现,这只手果然长了一厘米左右。然后还是这只手,闭目再观想一下,观想这只手迅速地在缩小,小得只有一厘米左右,这样想半分钟就可以了,再比一下,你可能又惊奇地发现这只手又短了一些。物理学中做功的公式是W = F*S 。物体在一定力的作用下,使它发生位移或形变这就是做功。W代表做功,F表示力,S表示距离或位移。在以上的实验中,手产生了位移和形变,其间并未运用机械力,只是想了一会儿。由此证明,想是一种意念能转化的意念力。这就是意念力的作用。我们可以再做一个试验,在两只手相比一样长的情况下,不加任何意念,只是用一只手抓住并用力拉另一只手的手指,然后再比一下,似乎一点也没有长。这两个试验可以证实,在一

定情况下,意念力大于机械力。你试想一下,这么想一会儿,手就能长能短,那么,能不能把腰想的细一点,能不能把瘤子想化,能不能把钢针想断------以至各种神通神变等,都是意念力的作用。通过两次实验,可以证明意念力远远大于机械力。那么其原理何在呢?我们再看一下力的公式:F = М*α,公式中F表示力,М表示质量,α表示加速度。速度越快,作用力越大。由于这个加速度是超光速的意念能,在质量Μ不变的情况下,得出来的力F必然远大于机械力。 心物辩证法是指心(思维、意念、精神)和物在一定条件下可以相互转化。前面的试验不正是在意念力的作用下,使心能力量转化为物质的位移和形变吗?而这个“一定条件下”就是松、静中的一种“定

影响活性炭吸附能力的三大主要因素

活性炭水处理所涉及的吸附过程和作用原理较为复杂,影响活性炭吸附能力的因素也较多。活性炭吸附能力的影响因素主要有以下三点: 一、活性炭的性质 由于吸附现象发生在吸附剂表面上,所以吸附剂的比表面积是影响吸附的重要因素之一,比表面积越大,吸附性能越好;活性炭的微孔分布是影响吸附的另一重要因素;此外活性炭的表面化学性质、极性及所带电荷,也影响吸附的效果。 二、吸附质(溶质或污染物)的性质 同一种活性炭对于不同污染物的吸附能力有很大差别。 (一)溶解度 对同一族物质的溶解度随链的加长而降低,而吸附容量随同系物的系列上升或分子量的增大而增加。溶解度越小,越易吸附。 (三)极性 活性炭基本可以看成是一种非极性的吸附剂,对水中非极性物质的吸附能力大于极性物质。 (四)吸附物的浓度 吸附质的浓度在一定范围时,随着浓度增高,吸附容量增大。因此吸附质(溶质)的浓度变化,活性炭对该种吸附质(溶质)的吸附容量也变化。 三、溶液pH 由于活性炭能吸附水中氢、氧离子,因此影响对其他离子的吸附。活性炭从水中吸附有机污染物质的效果,一般随溶液pH值的增加而降低,pH值高于9.0时,不易吸附,pH值越低时效果越好。在实际应用中,通过试验确定最佳pH值范围。 水处理分为上水处理和下水处理:

上水通常指生活用水、工业用水、纯水等经过人工处理后使用的水;下水通常指生活污染水、工业污水等。1.上水的活性炭处理:20世纪末我国有些水厂开始应用臭氧与活性炭滤池联合使用的生物活性炭法。实践表明,有如下作用: 能去除水中容解的有机物;能降低UV的吸收值,降低水中总有机碳(total otganic carbon,TOC)、化学需氧量及氯的含量;能将低进水中三卤甲烷前体;对色度、铁、锰、酚有去除效果;能使致实验为阳 性的水分显阴性。韩研活性炭采用先进的水质深度处理技术,结合城市自来水使用分配的实际情况,将椰壳活性炭投入小型、高效,且能去除致癌、致突变、致畸等污染物的净化装置,以自来水为原料作更深度的加工,保证饮用水的高质量。这样既确保了居民的健康,又在居民经济承受范围之内。2.下水活性炭处理:1953年发生在日本的水俣病事件,就是含甲基汞工业废气污染水体,使水俣湾打批居民发生神经性中毒的公害大事。韩研活性炭上引入聚硫脲有利于提高对汞吸附能力。该活性炭对汞的吸附能力最佳。含二氯乙烷的废水可以用活性炭柱吸附,饱和后用蒸汽再生,蒸汽冷凝后分成去水,常可定量地回收二氯甲烷。 xx公司相关产品介绍: 水处理活性炭系列介绍 污水处理粉末活性炭http: 煤质污水处理活性炭http: 果壳净水活性炭http:

阻抗匹配和阻抗变换是什么-阻抗变换和阻抗匹配的详细概述

阻抗匹配和阻抗变换是什么?阻抗变换和阻抗匹配的详细概述阻抗匹配是无线电技术中常见的一种工作状态,它反映了输入电路与输出电路之间的功率传输关系。当电路实现阻抗匹配时,将获得最大的功率传输。反之,当电路阻抗失配时,不但得不到最大的功率传输,还可能对电路产生损害。阻抗匹配常见于各级放大电路之间、放大器与负载之间、测量仪器与被测电路之间、天线与接收机或发信机与天线之间,等等。例如,扩音机的输出电路与扬声器之间必须做到阻抗匹配,不匹配时,扩音机的输出功率将不能全部送至扬声器。如果扬声器的阻抗远小于扩音机的输出阻抗,扩音机就处于过载状态,其末级功率放大管很容易损坏。反之,如果扬声器的阻抗高于扩音机的输出阻抗过多,会引起输出电压升高,同样不利于扩,音机的工作,声音还会产生失真.因此扩音机电路的输出阻抗与扬声器的阻抗越接近越好。又例如,无线电发信机的输出阻抗与馈线的阻抗、馈线与天线的阻抗也应达到一致。如果阻抗值不一致,发信机输出的高频能量将不能全部由天线发射出去。这部分没有发射出去的能量会反射回来,产生驻波,严重时会引起馈线的绝缘层及发信机末级功放管的损坏。为了使信号和能量有效地传输,必须使电路工作在阻抗匹配状态,即信号源或功率源的内阻等于电路的输人阻抗,电路的输出阻抗等于负载的阻抗。在一般的输入、输出电路中常含有电阻、电容和电感元件,由它们所组成的电路称为电抗电路,其中只含有电阻的电路称为纯电阻电路. 下面对纯电阻电路和电抗电路的阻抗匹配问题分别进行简要的分。1、纯电阻电路在中学物理电学中曾讲述这样一个问题:把一个电阻为R的用电器,接在一个电动势为E、内阻为r的电池组上(见图1),在什么条件下电源输出的功率最大呢?当外电阻等于内电阻时,电源对外电路输出的功率最大,这就是纯电阻电路的功率匹配。假如换成交流电路,同样也必须满足R=r这个条件电路才能匹配。 2、电抗电路电抗电路要比纯电阻电路复杂,电路中除了电阻外还有电容和电感.元件,并工作于低频或高频交流电路。在交流电路中,电阻、电容和电感对交流电的阻碍作用叫阻抗,用字母Z表示.其中,电容和电感对交流电的阻碍作用,分别称为容抗及和感抗而.容

教育理论的属性及其对教育实践的功能

教育理论的属性及其对教育实践的功能 教育理论是人们借助一系列教育概念、教育判断和推理所表达出来的关于教育的本质及其规律的知识体系。它源于人们对教育规律的理性追求,是人们在对教育现象和教育实践抽象;概括和总结的基础上形成的专门化;系统化酌理性认识,是对教育现象和事实的抽象概括和间接反映。它既是十种事实性认识,又是十种价值性认识,也是一种相对性认识。它包含着对教育的价值性判断,渗透着教育研究者对生活实践的关怀、人生价值的追求和文化理想,体现了教育研究者对于人生、人性、集体、社会、国家、民族等基础的巨大的价值载体的经验、洞察和认同。就其性质说,它并不是纯粹理性的或实证的知识体系,而是—个主观的、价值的、有限的领域,它尽可能地提示教育规律,但本身并不是纯规律的知识体系。因而,教育理论对实践的作用无论是在普适性上还是在具体作用于教育实践的过程上都不具有客观科学知识对实践的指导意义,也不具备强制性的效力。 实践型的教育理论旨在给教育实践者以理性指导而求得理性的教育行动,有较强的现实性与功利性。观念型的教育理论,指向的是教育的未来,目的在于达到对教育的理性

解释和对未来教育理想图景的勾画。这两种教育理论服务于实践都不是直接的、具体的、对应的,而是多层次 的。它们对于教育实践具有以下价值和功能。 一、认识功能:教育理论揭示了教育的本质和发展规律,对过去和当前的教育现象作出科学的说明和阐释,有利于人们推导出对未来教育现象的科学判断;在深层次上,教育理论揭示了教育的本质、本性和本源的内涵,探讨了教育的内在机制和运行规律,形成了基本的理论框架,能对教育的基本概念和基本原理作出有科学根据的解释,从而增进人们对于教育的完整理解以及对教育诸多要素之间逻辑关联的把握,为教育实践者有的放矢地反思教育行为提供了不可或缺的认识依据。 二、价值的启迪与唤醒功能:这是教育理论对教育实践深层次的价值意义。它体现在①启发教育实践者的教育自觉,增进他们对教育真谛、教育价值和意义的领悟。②促进教育实践者对原有教育理念的理性批判,并在此基础上为实

活性炭室内空气净化的吸附应用原理

活性炭空气净化的吸附应用原理 1 室空气品质 随着科学技术的飞速发展,人类在生活居室环境方面获得了巨大的改善。空调的广泛使用给人们创造了一个以温湿度为主的舒适性环境,但同时也带来了室空气品质问题,尤其是无新风系统的空调房间,导致了“病态建筑综合症”、“建筑相关病”和多种化学物过敏症。“ 病态建筑综合症”的常见症状主要有头痛、神经疲劳、皮肤干燥、鼻塞、流鼻涕、流泪、眼痒等等。“建筑相关病”是指由空气中的某种成分直接引起的病症,比较严重的有“军团病”、“超敏性肺炎”等,有时甚至能带来生命危险。 所谓室空气品质,一般是指在某个具体的环境,空气中的某些要素对人群工作、生活的适宜程度,是反映了人们的具体要求而形成的一种概念。这种概念是建立在“以人为本”的基础上的。显然,人们不仅要求适宜的室温湿度,而且人们还要求室空气是新鲜的,无污染的,从而引发了对室空气品质的广泛研究。 室空气基本污染物与污染源如下表一室主要污染物及其来源:悬浮微粒、燃烧、抽烟、人体、烟草烟雾、人的吸烟行为、石棉、保温材料、氡及其蜕变物、墙体和地基、建筑材料、家具、挥发性有机物(vocs)油漆、清洁剂、建筑材料、一氧化碳、燃烧、吸烟、二氧化碳、燃烧、呼吸、微生物、家畜、人体、过敏物、动物、毛发、昆虫、花粉、臭氧

室空气有害物的种类繁多,但一般都是以低浓度的形式存在,有时还远远低于人的嗅觉阈值,但这并不意味着人体无害,恰恰相反,人一生中有五分之四的时间在室度过,长期受低浓度污染物的直接毒害,其后果还是相当严重的。 为了清除室空气中的有害物质,通风是一种非常有效的办法,但是它也有缺点:在室外大气污染日趋严重的今天,燃料的燃烧、工业生产及机动车辆排放的废气使得室外空气的质量也很差,而且室外空气与室空气的交换会带来巨大的能耗。 局部通风有时也因为污染源较分散或根本就不知道气态污染物从何而来而无法实现。目前通用的过滤器只是过滤灰尘,还不具备清除有害气体和细菌的功能。成功分离低浓度的气态污染物质和细菌对改善室陆空气品质至为重要。 活性炭吸附材料对室气态污染物具有优秀的吸附性能,使活性炭过滤器逐渐应用于民用建筑空调系统中。在通风量不变的条件下,它能使室空气得到更全面的净化。 2 活性炭的发展历史及分类 使用活性炭作为一种吸附材料已具有悠久的历史。早在古埃及时代,人类就会利用木炭来消除伤口散发的气味;1773年,勒首次科学地证明了木炭对气体具有吸附力;1808年,木炭被用到蔗糖业;第一次世界大战期间,为了消除化学武器的威胁,活性炭防毒面具问世,这是活性炭第一次应用于空气净化领域;上个世纪六十年代,具有独特化学结构、物理结构且吸附性能优异的新型纤维状活性炭材料研制成功。目前对吸附材料的研究集中于非均匀吸附剂的加工工艺、微观特征、能量不均匀性及吸附性能

活性炭的应用及发展过程

官网地址:https://www.doczj.com/doc/2918357057.html, 活性炭的应用及发展过程 活性炭是含碳的物质经过炭化和活化制成的多孔性人造炭质吸附剂。它具有发达的孔隙结构和巨大的比表面积,可用作吸附剂,催化剂和催化剂载体。 活性炭作为人造材料,是在1900年到1901年发明的,其发明者是拉费尔·王·奥斯特莱科,他采用化学活化法和物理活化法制造活性炭而获得专利。1911年,门高德博士在维也纳附近的工厂首次将活性炭工业化生产。当时的产品是粉状活性炭,这是世界上第一家工业化生产工厂。 回顾世界活性炭的发展历史,有两个主要的事件推动了活性炭事业的发展,一是第一次世界大战化学武器的应用;二是1927年发生在美国芝加哥自来水厂的饮用水恶臭事件。 1914年欧洲爆发了第一次世界大战,1915年4月22日,德国军队在欧洲战场伊普番河上使用了毒气;5月18日,在华沙附近的拉夫卡河又向俄国军队施放了毒气。1915年德军在比利时对毫无准备的英法联军使用6000个钢瓶施放化学毒气氯气18万公斤,造成士兵伤15000余人,其中约5000人丧生。 有“矛”必然会发明“盾”,有化学毒气必然会发明防毒武器。两个星期后,军事科学家就发明了防护氯气武器,他们给前线的每个士兵发了一种特殊的口罩,这种口罩里有用硫代硫酸钠和碳酸钠溶液浸过的棉花。 这两种药品都有除氯的功能,能起到防护的作用。但是如果敌方改用第二种毒气,这种口罩就无用武之地了。事实也是如此。此后不到一年,双方已经用过几十种不同的化学毒气,包括人们现今熟知的介子毒气及氢氰化合物。

官网地址:https://www.doczj.com/doc/2918357057.html, 因此人们一直在寻找一种能使任何毒气都失去毒性的物质才好。这种百灵 的解毒剂在1915年才被科学家找到,它就是活性炭。到1917年,交战双方的 防毒面具里都装上了活性炭,毒气对交战士兵的危害程度就大大降低了。 第二次世界大战中德国首次利用介子气引发了毒气战争,人们就开始寻求 避免受到毒气侵害的方法,而活性炭正是因为其能高效防止毒气的侵害,被广 泛应用于战争。这样就刺激了世界各国对活性炭的研究和生产。 1927年美国芝加哥自来水厂发生了广大居民难以接受的自来水恶臭事件。 这是由于原水中苯酚和消毒用的氯发生异臭所致。后来,德国等地的自来水厂 也发生了同样的事件,而这些事件都是用活性炭处理解决的。从此以后,环境 保护日益受到重视,政府的法令也日趋严格,不仅在净水方面,在其他领域也 得到广泛应用,由此,活性炭进入全面发展阶段。 50年代以前, 我们国家还没有活性炭的加工企业,每年进口30-50t;50年 代到1981年,国产活性炭开始上市,特别是1966年,从苏联引进斯列普活化 炉后有了规模化生产,国内生产能力逐步提升至10000t/a; 80年代末期到90年代末期,进入改革开放以后,国内开始建设大量的活 性炭厂,其规模也飞速发展,生产能力逐步从10万t/a发展到12万t/a;2000 年到2008年,生产能力持续增长,现已达到每年20余万t。

相关主题
文本预览
相关文档 最新文档