当前位置:文档之家› 东大模电实验三极管放大电路设计

东大模电实验三极管放大电路设计

东大模电实验三极管放大电路设计
东大模电实验三极管放大电路设计

东南大学电工电子实验中心

实验报告

课程名称:模拟电子电路基础

第三次实验

实验名称:三极管放大电路设计

院(系):专业:

姓名:学号:

实验室: 105 实验组别:

同组人员:实验时间:2015年05月04日评定成绩:审阅教师:

实验三三极管放大电路设计

一、实验目的

1.掌握单级放大电路的设计、工程估算、安装和调试;

2.了解三极管、场效应管各项基本器件参数、工作点、偏置电路、输入阻抗、输出阻抗、

增益、幅频特性等的基本概念以及测量方法;

3.了解负反馈对放大电路特性的影响。

4.掌握多级放大电路的设计、工程估算、安装和调试;

5.掌握基本的模拟电路的故障检查和排除方法,深化示波器、稳压电源、交流毫伏表、

函数发生器的使用技能训练。

二、预习思考:

1.器件资料:

上网查询本实验所用的三极管9013的数据手册,画出三极管封装示意图,标出每个管脚的名称,将相关参数值填入下表:

注:额——表示Absolute maximum ratings,最大额定值。

2.偏置电路:

图3-3中偏置电路的名称是什么?简单解释是如何自动调节晶体管的电流I C以实现稳定直流工作点的作用的,如果R1、R2取得过大能否再起到稳定直流工作点的作用,为什么?

答:

①图3-1偏置电路名称:分压式偏置电路。

②自动调节晶体管电流Ic以实现稳定直流工作点的作用的原理:

当温度升高,会引起静态电流ICQ(≈IEQ)的增加,此时发射极直流电位UEQ=IEQ*RE 也会增加,而由于基极电位UBQ基本固定不变,因此外加在BJT发射结上的电压UBEQ=UBQ-UEQ将减小,迫使IEQ减小,进而抑制了ICQ的增加,使ICQ基本维持不变,达到自动稳定静态工作点的目的。同理,当温度降低时,ICQ减小,UEQ同时减小,而UBEQ则上升促使IEQ增大,抑制了ICQ 的减小,进而保证了Q点的稳定。

③若R1、R2取得过大,则不能再起到稳定工作点的作用。这是因为在此情况下,

流入基极的电流不可再忽略,UB不稳定导致直流工作点不稳定。

3.电压增益:

(I)对于一个低频电压放大器,一般希望电压增益足够大,根据您所学的理论知识,分

析有哪些方法可以提高电压增益,分析这些方法各自优缺点,总结出最佳实现方案。

答:提高电压增益的方法:从增益的公式来看,可以通过提高β值与Rc、减小rbe 值来提高增益,但各有其弊端。提高β虽可行但选择范围有限,改变Rc、rbe会影响到静态工作点。还可以在电路中引入正反馈,可这种方法会影响电路工作的稳定性,因而不常用。此外,还可以通过多级放大电路实现,这种方法往往增益大、输入电阻大、输出电阻小,在工程中广为应用。

(II)实验中测量电压增益的时候用到交流毫伏表,试问能否用万用表或示波器,为什么?

答:不能,因为实验中所测信号幅度很小,用示波器测量将把噪声计入幅值,万用表测量的灵敏度低。

4.输入阻抗:

1)放大器的输入电阻R i反映了放大器本身消耗输人信号源功率的大小,设信号源内

阻为R S,试画出图3-3中放大电路的输入等效电路图,通过连线回答下面的问题,

并做简单解释:

R i = R S放大器从信号源获取较大电压

R i << R S放大器从信号源吸取较大电流

R i >> R S放大器从信号源获取最大功率

①答:放大电路输入等效电路图:

简单解释:

放大器从信号源获得的功率为P=I2*Ri,I=Us/(Rs+Ri),两式联立,解得,当Ri=Rs ,放大器从信号源获取最大功率,最大功率为Pmax=Us2/(4Rs)。也可直接看出,Ri越小,放大器从信号源获取的电流越大。Ui=I*Ri,当Ri越大,放大器从信号源获取的电压越大。

2)图3-1是实际工程中测量放大器输入阻抗的原理图,试根据该图简单分析为什么串

接电阻R S的取值不能太大也不能太小。

图3-1 放大器输入阻抗测量原理图

答:由图得,Ri=Ui*Rs/(Us-Ui)。若Rs太大,Ui太小;Rs过小,Us与Ui太接近,测量困难。

3)对于小信号放大器来说一般希望输入阻抗足够高,根据您所学的理论知识,分析

有哪些方法可以提高图3-3中放大电路的输入阻抗。

答:在输出不失真的情况下,降低电路的直流工作点;增大R1、R2并保证不影响UBE 的稳定。

5.输出阻抗:

1)放大器输出电阻R O的大小反映了它带负载的能力,试分析图3-3中放大电路的输

出阻抗受那些参数的影响,设负载为R L,画出输出等效电路图,通过连线回答下

面的问题,并做简单解释。

R O = R L负载从放大器获取较大电压

R O << R L负载从放大器吸取较大电流

R O >> R L负载从放大器获取最大功率

答:输出等效电路图:

简单解释:

负载从放大器获取的电压P=I2*RL,Uo=RL*Uo’/(RL+Ro)。当Ro=RL,负载从放大器获取最大功率。也可以直接看出,Ro越小,负载获得的电压越大,电流也越大。

2)图3-2是实际工程中测量放大器输出阻抗的原理图,试根据该图简单分析为什么电

阻R L的取值不能太大也不能太小。

图3-2 放大器输出阻抗测量原理图

答:Ro=(Uo’-Uo)*RL/Uo,若RL太小,Uo也太小,难以测量;RL太大,Uo’与Uo 相当,Uo’-Uo太小。

3)对于小信号电压放大器来说一般希望输出阻抗足够小,根据您所学的理论知识,

分析有哪些方法可以减小图3-3中放大电路的输出阻抗。

答:Ro=Rd,可以减小Rd但此法将影响静态工作点;此外也可以引入负反馈的方法来减小输出电阻。

6.计算图3-3中各元件参数的理论值,其中

已知:V CC=12V,U i=5mV,R L=3KΩ,R S=1KΩ,T为9013

指标要求:A u>50,R i>1 KΩ,R O<3KΩ,f L<100Hz,f H>100kHz(建议I C取2mA)

用Multisim软件对电路进行仿真实验,仿真结果填写在预习报告中。

1)仿真原理图

Multisim仿真电路图:

2) 参数选择计算

设UBEQ=0.7V,β=100。其中ICQ最好取2mA。

令UBQ=5.7V,UEQ=5V,又ICQ=2mA≈IEQ,RE=UEQ/ICQ=2.5kΩ,取RE=2kΩ+510Ω。

rbb’=200Ω,rbe≈1.5kΩ。取Rc=2kΩ。RL’= Rc||RL=1.2 kΩ。R1=14.7 kΩ,R2=6.8kΩ。

Au=-β(Rc||RL)/rbe=80>50

Ri=R1||R2||rbe=1.134 kΩ>1 kΩRo=Rc==2kΩ<3kΩ

满足要求。

其中电容尽量取大。

3)仿真结果

7.对于小信号放大器来说一般希望上限频率足够大,下限频率足够小,根据您所学的理论

知识,分析有哪些方法可以增加图3-3中放大电路的上限频率,那些方法可以降低其下限频率。

答:增加上限频率:选择rbb’,Cb’c 小、fT高的三极管。在不能选择三极管的情况下,可通过减小R1、R2来实现上限频率的增大,但要注意输入电阻与增益随之改变。

降低下限频率:提升C1、C2、CE(旁路电容)值,这三个值是影响下限频率的主要因素。

8.负反馈对放大器性能的影响

答:电路中引入负反馈之后,增益减小,带宽、输入阻抗、输出阻抗增大,对噪声温漂等干扰有抗干扰能力,总的来说负反馈能有效提高电路的性能。

9.设计一个由基本放大器级联而成的多级放大器,

已知:V CC=12V,U i=5mV,R L=1KΩ,T为9013

要求满足以下指标:| A u |>100,R i>1 KΩ,R O<100Ω

1)仿真原理图

2)参数选择计算

多级放大器中各级放大电路往往各有其功能,比如本次设计的三级放大电路,第一级共源放大,主要用于增大输入电阻,第二级共射放大,主要用于信号放大,最后一级

共集放大用于减小输出电阻。

从这一基本设计思想出发,依次确定各级放大电路的参数。Vcc=12V。

第一级目的在于增大输入电阻,并对信号进行小幅放大:

Ri=R G3+R G1//R G2>1MΩ,取R G3=2MΩ。

令U GQ=5V,则R G1=270kΩ,R G2=200kΩ。

若I DQ=2mA,UGSQ=2.2V,USQ=2.8V,R s≈1.4kΩ,可取Rs=2kΩ,相应的可取RD=2kΩ,仿真时为了保证合适的放大倍数这个值有所调整,只是计算大概

参数范围。此时gm≈2.24,Au≈2.8。

第二级目的在于放大:

U B2Q=2.5V,取R B1=20kΩ,R B2=5.1kΩ。

I E2Q=0.5mA,R E=3.3kΩ,Rc=6.8Ω。

第三级目的在于减小输出电阻:

U B3Q=8.6V,ICQ=2mA,图中R6≈3.65kΩ取3.3kΩ,负载RA取4.7 kΩ。

关于电容的选择,要使交流信号通过时电容相当于短路,电容值要尽量大,本电路中所取电容为47μF、100μF。

我的第一、二级电路间采用电容耦合,静态工作点相互独立;第二、三级电路则采用直接耦合,因为尽管它们的静态工作点相互影响,但参数值计算简单,而且直接耦合能够减少元器件,方便搭电路与检查错误。

3)仿真结果

其中Channel_A为输出信号,Channel_B为输入信号。

三、实验内容

1. 基本要求:

图3-3 射极偏置电路

1)研究静态工作点变化对放大器性能的影响

(1)调整R W,使静态集电极电流I CQ=2mA,测量静态时晶体管集电极—发射极之间电压U CEQ。

记入表3-3中。

(2)在放大器输入端输入频率为f=1kHz的正弦信号,调节信号源输出电压U S 使Ui=5mV,

测量并记录U S、U O和U O’(负载开路时的输出电压)的值并填于表3-1中。注意:用双踪示波器监视U O及Ui的波形时,必须确保在U O基本不失真时读数。

(3)根据测量结果计算放大器的A u、Ri、Ro。

相关波形图:

由图可知:放大倍数约为97倍,符合要求。

实验结果分析:

测量静态工作点时,输入端接地,误差并不大,在正常范围内。当Ui=5mV时,Us的理论值与测量值即出现较大误差,这是因为,本身Ui值太小,接线过程中不免产生噪声与干扰,这个噪声值使本来就比较小的电压产生较大的偏差,此外信号在电路中的耦合也会有所损耗,所以Us的误差较大也是可以理解的。

而由于本电路中并没有负反馈,电路对噪声、温漂等抗干扰能力弱,导致U BEQ与U CEQ 产生较大误差。

2)观察不同静态工作点对输出波形的影响

(1) 改变R W的阻值,使输出电压波形出现截止失真,绘出失真波形,并将测量值记录

表3-2中。

(2) 改变R W的阻值,使输出电压波形出现饱和失真,绘出失真波形,并将测量值记录

表3-2中。

表3-2 不同静态工作点对输出波形的影响

完全截止截止失真饱和失真

完全饱和RW变化对失真的影响

测量值UBQ(V) 1.279 1.427 5.992 6.33 Rw增大易出现截止失

真,Rw减小易出现饱

和失真;Rw越大(小),

截止(饱和)失真越厉

害。

UCQ(V) 9.76 9.59 5.931 6.18

UEQ(V)

0.694 0.838

6.59

5.68

波形如下如下如下如下——

计算值ICQ(mA) 1.12 1.205 3.0345 2.91 / UBEQ(V) 0.585 0.589 -0.598 0.65 / UCEQ(V) 9.086 8.752 -0.659 0.5 / R1 57k 50.38k 6.82k 6.09k /

相关波形图如下:

①完全截止

②截止失真

③饱和失真

④完全饱和

(实验提示:测量截止失真波形时可以加大输入信号幅度)

实验结果分析:

在以上失真波形中只调节了Rw的值,输入信号幅度没改变。

通过调节Rw的值使得静态工作点改变,Rw越小静态工作点越高,反映在输出波形上,波形越容易出现底部失真,即饱和失真;反之,Rw越大静态工作点越低,越容易出现截止失真。在计算时,设R1=14.7kΩ,实际调节时,可保留R1’=4.7kΩ,串入电位器;此外,必要的话,将4.7kΩ去掉直接用电位器代替。

和之前的相联系,要求在输出信号基本不失真时读数就是为了保证电路的静态工作点设置合理。

3)测量放大器的最大不失真输出电压

分别调节R W和U S,用示波器观察输出电压U O波形,使输出波形为最大不失真正弦波。测量此时静态集电极电流I CQ和输出电压的峰峰值U OP-P。

带负载时测量I CQ= 2mA ,U OP-P = 1.88V

此时输入信号有效值为Uirms = 35mV

实验图如下:

实验结果分析:

波形产生失真的原因可能有多种,可能是由于工作点设置不合理——过高或过低,而产生饱和失真或截止失真,如前一内容所测波形。在静态工作点设置合理的情况下,如果输入信号幅度过大仍然会导致波形失真,本内容即在这种情况下测定最大不失真输出电压。

4)测量放大器幅频特性曲线

(1)使用扫频仪测出放大器的幅频特性曲线并记录曲线,读出下限频率f L、上限频率f H。(2)调整I CQ=2mA,保持Ui=5mV不变,完成以下内容,计入表3-3中:

(I)参考(1)中测得曲线,分别在低频区(取f L)、中频区(任取)和高频区(取f H)

各取一点测量U O值,记录下限频率f L、上限频率f H,计算带宽BW。

(II)输入Ui=5mV,f=f L,用示波器双踪显示输入输出波形,记录波形,并测量两者间的相位差Φ;

(III)输入Ui=5mV,f=f H,用示波器双踪显示输入输出波形,记录波形,并测量两者间的相位差Φ。

表3-3 放大电路的幅频特性

f/kHz f L=53.0Hz f=3.8kHz f H=132kHz

U O/V 0.24 0.365 0.413

Vi超前Vo

108.87°————190.08°

Φ= ?t/T ?3600

带宽BW = 132kHz

实验结果分析:与仿真结果相比,下限频率有所减小,而上限频率却大大降低,不排除在扫频仪上下限频率读的不准的情况,测出上限频率=132kHz却让人难以理解,观察数据,发现在此频率下输出信号幅度并没有衰减,可以判断此时并非在上限频率附近,即上限频率测定值错误。(可是为什么扫频仪显示的是132kHz?)

理论上Vi相位应超前Vo相位180°,实际上在上限截止频率出有附加相移约10°,在下限频率处附加相移表现得更为明显,在中频区相移基本稳定在180°,体现了电路的频率响应。

f=f L时的输入输出波形图:

实验结果分析:

测出此时Uo=240mV,与理论输出电压相Uo=385mV比有明显衰减,240/385=0.623,这说明fL=53Hz的确在下限频率点附近。本次测定是正确的。

f=f H时的输入输出波形图:

实验结果分析:

此时虽有附加相移,但从幅度角度分析,幅度并未衰减,甚至有所增加,增加量可以是输入端的噪声干扰引起的,则可推断出信号幅值并未衰减,说明132kHz不在上限频率附近,测定出的fH值是错的,但错银尚不能解决。

三极管共射极放大电路-实验报告

课程名称: 电路与模拟电子技术实验 指导老师:实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习共射放大电路的设计方法与调试技术; 2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响; 3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法; 4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法; 5.进一步熟悉示波器、函数信号发生器的使用。 二、实验内容和原理 1.静态工作点的调整与测量 2.测量电压放大倍数 3.测量最大不失真输出电压 4.测量输入电阻 5.测量输出电阻 6.测量上限频率和下限频率 7.研究静态工作点对输出波形的影响 三、主要仪器设备 示波器、信号发生器、万用表 共射电路实验板 四、操作方法和实验步骤 1.静态工作点的测量和调试 实验步骤: (1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。 (2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。 (3)将放大器电路板的工作电源端与15V 直流稳压电源接通。然后,开启电源。此时,放大器处于工作状态。 (4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。 (5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。 2.测量电压放大倍数(R L =∞、R L =1k Ω) 实验步骤: (1)从函数信号发生器输出1kHz 的正弦波,加到电路板上的Us 端。 (2)用示波器检查放大电路输出端是否有放大的正弦波且无失真。 (3)用示波器测量输入Ui 电压,调节函数信号发生器幅度,使电路输入Ui= 10mV(有效值)。 (4)负载开路,用示波器测出输出电压Uo 有效值,求出开路放大倍数。 (5)负载接上1k Ω,再次测Uo ,求出带载放大倍数。 3.测量最大不失真输出电压(R L =∞、R L =1k Ω) (1)负载开路,逐渐增大输入信号幅度,直至输出刚出现失真。 (2)用示波器测出此时的输出电压有效值,即为最大不失真输出电压Vomax 。 (3)负载接上1k Ω,再次测Vomax 。 4.测量输入电阻Ri(R L =1k Ω)

模电实验报告

模拟电子技术 实验报告 实验题目:放大电路的失真研究 学院:电子信息工程学院 专业: 姓名: 学号: 指导教师: 【2017年】

目录 一、实验目的与知识背景 (3) 1.1实验目的 (3) 1.2知识背景 (3) 二、实验内容及要求 (3) 2.1基本要求 (3) 2.2发挥部分 (4) 三、实验方案比较及论证 (5) 3.1理论分析电路的失真产生及消除 (5) 3.2具体电路设计及仿真 (8) 四、电路制作及测试 (12) 4.1正常放大、截止失真、饱和失真及双向失真 (12) 4.2交越失真 (13) 4.3非对称失真 (13) 五、失真研究思考题 (13) 六、感想与体会 (16) 6.1小组分工 (16) 6.2收获与体会 (16) 6.3对课程的建议 (17) 七、参考文献 (17)

一、实验目的与知识背景 1.1实验目的 1. 掌握失真放大电路的设计和解决电路的失真问题——针对工程问题,收集信息、查阅文献、分析现有技术的特点与局限性。提高系统地构思问题和解决问题的能力。 2. 掌握消除放大电路各种失真技术——依据解决方案,实现系统或模块,在设计实现环节上体现创造性。系统地归纳模拟电子技术中失真现象。 3. 具备通过现象分析电路结构特点——对设计系统进行功能和性能测试,进行必要的方案改进,提高改善电路的能力。 1.2知识背景 1.输出波形失真可发生在基本放大、功率放大和负反馈放大等放大电路中,输出波形失真有截止失真、饱和失真、双向失真、交越失真,以及输出产生的谐波失真和不对称失真等。 2.基本放大电路的研究、乙类功率放大器、负反馈消除不对称失真以及集成运放的研究与应用。 3.射极偏置电路、乙类、甲乙类功率放大电路和负反馈电路。 二、实验内容及要求 2.1基本要求 1.输入一标准正弦波,频率2kHz,幅度50mV,输出正弦波频率2kHz,幅度1V。

三极管及放大电路基础教案..

第 2 章三极管及放大电路基础 课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。4.理解三极管的主要参数的含义。【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2 学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和 集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电 流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。

三极管三个电极的电流(基极电流1 B、集电极电流l C、发射极电流l E)之间的关系为: I E| |I C I C l B l C、 l B l B 2.1.3三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1.输入特性曲线 输入特性曲线是指当集-射极之间的电压V CE为定值时,输入回路中的基极电流I B与加在基-射极间的电压V BE之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2.输出特性曲线 输出特性曲线是指当基极电流I B为定值时,输出电路中集电极电流I C与集-射极间的 电压V CE之间的关系曲线。I B不同,对应的输出特性曲线也不同。 截止区:I B 0曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反 偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管 没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1?性能参数:电流放大系数、,集电极-基极反向饱和电流I CBO,集电极-发射极反向饱和电流I CEO。 2.极限参数:集电极最大允许电流I CM、集电极-发射极反向击穿电压V(BR)CEO、集电 极最大允许耗散功率P CM 。 3.频率参数:共发射极截止频率 f 、特征频率f T 。 2.1.5 三极管的分类三极管的种类很多,分类方法也有多种。分别从材料、用途、功率、频率、制作工艺等方面对 三极管的类型予以介绍。 三、课堂小结1.三极管的结构、类型和电路符号。2.三极管的电流放大作用。 3.三极管三种工作状态的特点。4.三极管的主要参数。 四、课堂思考 P37 思考与练习题1、2、3。

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

模电实验报告答案1

(此文档为word格式,下载后您可任意编辑修改!) 简要说明:本实验所有内容是经过十一年的使用并完善后的定稿;已经出版的较为成熟的内容,希望同学们主要参考本实验内容进行实验。 实验一常用电子仪器使用 为了正确地观察电子技术实验现象、测量实验数据,实验人员就必须学会常用电子仪器及设备的正确使用方法,掌握基本的电子测试技术,这也是电子技术实验课的重要任务之一。在电子技术实验中,所使用的主要电子仪器有:SS-7804型双踪示波器,EE-1641D函数信号发生器,直流稳压电源,DT890型数字万用表和电子技术实验学习机。学习上述仪器的使用方法是本实验的主要内容,其中示波器的使用较难掌握,是我们学习的重点,要进行反复的操作练习,达到熟练掌握的目的。 一、实验目的 1.学习双踪示波器、函数信号发生器、直流稳压电源的正

确使用方法。 2.学习数字万用表的使用方法及用数字万用表测量元器 件、辩别二极管和三极管的管脚、类型。 3.熟悉实验装置,学会识别装置上各种类型的元件。 二、实验内容 (一)、示波器的使用 1.示波器的认识 示波器是一种测量、观察、记录电压信号的仪器,广泛应用于电子技术等领域。随着电子技术及数字处理技术的发展,示波器测量技术日趋完善。示波器主要可分为模拟示波器和数字存贮示波器两大种类。 模拟示波器又可分为:通用示波器、取样示波器、光电存储示波器、电视示波器、特种示波器等。数字存贮示波器也可按功能分类。 即便如此,它们各有各的优点。模拟示波器的优点是: ◆可方便的观察未知波形,特别是周期性电压波形; ◆显示速度快;

◆无混叠效应; ◆投资价格较低廉。 数字示波器的优点是: ◆捕捉单次信号的能力强; ◆具有很强的存储被测信号的功能。 示波器的主要技术指标: ①. 带宽:带宽是衡量示波器垂直系统的幅频特性,它指的是输入信号的幅值不变而频率变化,使其显示波形的幅度下降到3dB时对应的频率值。 ②. 输入信号范围: ③. 输入阻抗: ④. 误差: ⑤. 垂直灵敏度:指垂直输入系统的每格所显示的电压值,通常为2mV-5VDIV。 ⑥. 扫描时间:指水平系统的时间测量范围,通常低限为0.5SDIV,高限与带宽有关。 2. SS-7804(8702)型示波器的面板及其各键钮的功能 SS-7804型示波器是双踪示波器,它可以同时观察两个信

三极管及放大电路基础教案..

第2章三极管及放大电路基础 【课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。 4.理解三极管的主要参数的含义。 【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流(基极电流B I 、集电极电流C I 、发射极电流E I )之间的关系为: C B E I I I +=、B C I I = --β、B C I I ??=β 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1. 输入特性曲线 输入特性曲线是指当集-射极之间的电压CE V 为定值时,输入回路中的基极电流B I 与加在基-射极间的电压BE V 之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2. 输出特性曲线 输出特性曲线是指当基极电流B I 为定值时,输出电路中集电极电流C I 与集-射极间的电压CE V 之间的关系曲线。B I 不同,对应的输出特性曲线也不同。 截止区:0=B I 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1. 性能参数:电流放大系数- -β、β,集电极-基极反向饱和电流CBO I ,集电极-发射极反向饱和电流CEO I 。 2. 极限参数:集电极最大允许电流CM I 、集电极-发射极反向击穿电压CEO BR V )(、集电极最大允许耗散功率CM P 。

三极管共射放大电路实验报告

实验名称:三极管共射放大电路 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、学习共射放大电路的设计方法。 2、掌握放大电路静态工作点的测量与调整方法。 3、学习放大电路性能指标的测试方法。 4、了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法。 5、进一步熟悉示波器、函数信号发生器、交流毫伏表的使用。 二、实验内容 1、静态工作点的调整和测量 2、测量电压放大倍数 3、测量最大不失真输出电压 4、测量输入电阻和输出电阻 5、测量上限频率和下限频率 6、研究静态工作点对输出波形的影响 三、主要仪器设备 1、示波器、信号发生器、晶体管毫伏表 2、共射电路实验板 四、实验原理与实验步骤 单管共射放大电路 1、放大电路静态工作点的测量和调试 准备工作: (1) 对照电路原理图,仔细检查电路的完整性和焊接质量。 (2) 开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。确认后,先关

闭直流稳压电源。 (3) 将电路板的工作电源端与12V 直流稳压电源接通。然后,开启直流稳压电源。此时,放大电路处于工作状态。 静态工作点的调整,调节电位器,使Q 点满足要求(ICQ =1.5mA)。 直接测电流不方便,一般采用电压测量法来换算电流。 测电压时,要充分考虑到万用表直流电压档内阻对被测电路的影响 。因此应通过测电阻Rc 两端的压降VRc ,然后计算出ICQ 。 (若测出VCEQ <0.5V ,则说明三极管已饱和;若VCEQ ≈+VCC ,则说明三极管已截止。若VBEQ>2V ,则说明三极管已被击穿) 2、测量电压放大倍数 (1) 必须保持放大电路的静态工作点不变! (2) 从信号发生器输出1kHz 的正弦波,作为放大电路的输入(Vi=10mV 有效值) 。 (3) 用示波器监视输出波形,波形正确后再用交流毫伏表测出有效值。 3、测量最大不失真输出电压 (1) 静态工作点不变,用示波器监视输出波形。 (2) 逐渐增大输入信号幅度,直至输出刚出现失真。 (3) 测量时通常以饱和失真为准(当Q 点位于中间时)。 (4) 交流毫伏表测出有效值。 4、测量输入电阻 实验原理: 放大电路的输入电阻可用电阻分压法来测量,图中R 为已知阻值的外接电阻,分别测出Vs 和Vi ,则 实验步骤: (1) 输入正弦波(幅度和频率?) 。 (2) 用示波器监视输出波形,要求不失真。 (3) 用交流毫伏表测出Vs 和Vi ,计算得到Ri 。 5、测量输出电阻 实验原理: 放大电路的输出电阻可用增益改变法来测量,分别测出负载开路时的输出电压Vo'和带上负载RL 后的输出电压Vo ,则 R V V V R V V V I V R i s i i s i i i i -=-== /) ('o L o L o V R R R V +=L o o o R V V R ???? ??-=1'

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

完整版三极管及放大电路原理

测判三极管的口诀 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准, 动嘴巴。’下面让我们逐句进行解释吧。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分 为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。 测试三极管要使用万用电表的欧姆挡,并选择R X100或RX1k挡位。图2绘出了万用电表 欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试 的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用 电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基 极(参看图1、图2不难理解它的道理)。 二、PN结,定管型 找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的 导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被 测管即为PNP型。 三、顺箭头,偏转大 找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透 电流ICEO的方法确定集电极c和发射极e。 (1)对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的 黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转 角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔TC 极~b极极T红表笔,电流流向正好与三极管符号中的箭头方向一致(顺箭头”,)所以此 时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

模电共射放大电路实验报告

实验一BJT单管共射电压放大电路 实验报告 自动化一班 李振昌 一、实验目的 (1)掌握共射放大电路的基本调试方法。 (2)掌握放大电路电压放大倍数、输入电阻、输出电阻的基本分析方法。(3)进一步熟练电子仪器的使用。 二、实验内容和原理 仿真电路图

静态工作点变化而引起的饱和失真与截止失真 静态工作点的调整和测量 : 调节RW1,使Q 点满足要求(ICQ =。测量个点的静 态电压值 RL =∞及RL =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。 装 订 线

RL=∞时,最大不失真输出电压Vomax(有效值)≥3V : 增大输入信号幅度与调节RW1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压Vomax 。输入电阻和输出电阻的测量 : 采用分压法或半压法测量输入、输出电阻。 放大电路上限频率fH、下限频率fL的测量 : 改变输入信号频率,下降到中频段输出电压的倍。 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。 三、主要仪器设备 示波器、函数信号发生器、12V稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等 四、操作方法和实验步骤 准备工作: 修改实验电路 将K1用连接线短路(短接R7); RW2用连接线短路; 在V1处插入NPN型三极管(9013); 将RL接入到A为RL=2k,不接入为RL=∞(开路) 。 开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。 确认输出电压为12V后,关闭直流稳压电源。 用导线将电路板的工作电源与12V直流稳压电源连接。

三极管共射极放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习共射放大电路的设计方法与调试技术; 2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响; 3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法; 4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法; 5.进一步熟悉示波器、函数信号发生器的使用。 二、实验内容和原理 1.静态工作点的调整与测量 2.测量电压放大倍数 3.测量最大不失真输出电压 4.测量输入电阻 5.测量输出电阻 6.测量上限频率和下限频率 7.研究静态工作点对输出波形的影响 三、主要仪器设备 示波器、信号发生器、万用表 共射电路实验板 四、操作方法和实验步骤 1.静态工作点的测量和调试 实验步骤: (1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。 (2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。 (3)将放大器电路板的工作电源端与15V 直流稳压电源接通。然后,开启电源。此时,放大器处于工作状态。 (4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。 (5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。 2.测量电压放大倍数(R L =∞、R L =1k Ω) 专业: 姓名: 学号: 日期: 地点: 学生序号6

三极管放大电路实验报告

三极管放大电路 1、问题简述: 要求设计一放大电路,电路部分参数及要求如下: (1)信号源电压幅值:0.5V; (2)信号源内阻:50kohm; (3)电路总增益:2倍; (4)总功耗:小于30mW; (5)增益不平坦度:20 ~ 200kHz范围内小于0.1dB。 2、问题分析: 通过分析得出放大电路可以采用三极管放大电路。 2.1 对三种放大电路的分析 (1)共射级电路要求高负载,同时具有大增益特性; (2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1; (3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。 综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。 2.2 放大电路的设计思路 在此放大电路中采用两级放大的思路。 先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。 3、实验目的 (1)进一步理解三极管的放大特性; (2)掌握三极管放大电路的设计; (3)掌握三种三极管放大电路的特性; (4)掌握三极管放大电路波形的调试; (5)提高遇到问题时解决问题的能力。 4、问题解决 测量调试过程中的电路: 增益调试: 首先测量各点(电源、基极、输出端)的波形:

结果如下:

绿色的线代表电压变化,红色代表电源。调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3。 V A=R2//R3//(1+β)R5 / [R2//R3//(1+β)R5+R1],其中由于R1较大因此R2、R3也相对较大。 第一级放大输出处的波形调试(采用共射级放大电路): 结果为: 红色的电压最大值与绿色电压最大值之比即为放大倍数。 则需要适当增大R2,减小R3的阻值。 总输出的调试: 如果放大倍数不合适,则调节R4与R5的阻值。即当放大倍数不足时,应增大R4,减小R5。 如果失真则需要调节R6,或者适当增大电源的电压值,必要时可以返回C极,调节C极的输出。 功率的调试: 由于大功率电路耗电现象非常严重,因此我们在设计电路时,应在满足要求的情况下尽可能的减小电路的总功耗。减小总功耗的方法有: (1)尽可能减小输入直流电压; (2)尽可能减小R2、R3的阻值; (3)尽可能增大R6的阻值。 电路输入输出增益、相位的调试: 由于在放大电路分别采用了共射极和共集电极电路,因此输出信号和输入信号相位相差180度。体现在波形上是,当输入交流信号电压达到最大值是,输出信号到达最小值。 由于工作频率为1kHz,当采用专门的增益、相位仪器测量时需要保证工作频率附近出的增益、相位特性比较平稳,尤其相位应为±180度附近。一般情况下,为了达到这一目的,通常采用的方法为适当增大C6(下图为C1)的电容。 最终调试电路:

三极管共射放大电路实验报告

实验报告 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.掌握放大电路静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大电路性能的影响。 2.学习放大电路的电压放大倍数和最大不失真输出电压的测量方法。 3.学习放大电路输入、输出电阻的测量方法以及频率特性的测量方法。 二、实验内容和原理 仿真电路图 专业:姓名:学号:日期:地点: 实验名称:_______________________________姓名:________________学号:__________________ 静态工作点变化而引起的饱和失真与截止失真 1. 静态工作点的调整和测量: 调节R W1,使Q 点满足要求(I CQ =1.5mA)。测量个点的静态电压值 2. R L =∞及R L =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器

监视输出波形,交流毫伏表测出有效值。 3. R L =∞时,最大不失真输出电压V omax (有效值)≥3V : 增大输入信号幅度与调节R W1,用示波器监视输 出波形、交流毫伏表测出最大不失真输出电压V omax 。 4. 输入电阻和输出电阻的测量: 采用分压法或半压法测量输入、输出电阻。 5. 放大电路上限频率f H 、下限频率f L 的测量 : 改变输入信号频率,下降到中频段输出电压的0.707 倍。 6. 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。 三、主要仪器设备 示波器、函数信号发生器、12V 稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等 四、操作方法和实验步骤准备工作: a) 修改实验电路 ◆ 将K 1用连接线短路(短接R 7); ◆ R W2用连接线短路; ◆ 在V 1处插入NPN 型三极管(9013); ◆ 将R L 接入到A 为R L =2k ,不接入为R L =∞(开路) 。 b) 开启直流稳压电源,将直流稳压电源的输出调整到12V ,并用万用表检测输出电压。 c) 确认输出电压为12V 后,关闭直流稳压电源。

模电实验报告

模拟电子技术基础实验报告 姓名:蒋钊哲 学号:2014300446 日期:2015、12、21 实验1:单极共射放大器 实验目的: 对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。 实验原理: 静态工作点的测量就是指在接通电源电压后放大器输入端不加信号(通过隔直电容 将输入端接地)时,测量晶体管集电极电流I CQ 与管压降V CEQ 。其中集电极电流有两种测量 方法。 直接法:将万用表传到集电极回路中。 间接法:用万用表先测出R C 两端的电压,再求出R C 两端的压降,根据已知的R E 的阻值,计 算I CQ 。 输出波底失真为饱与失真,输出波顶失真为截止失真。 电压放大倍数即输出电压与输入电压之比。 输入电阻就是从输入端瞧进去的等效电阻,输入电阻一般用间接法进行测量。 输出电阻就是从输出端瞧进去的等效电阻,输出电阻也用间接法进行测量。实验电路:

实验仪器: (1)双路直流稳压电源一台。 (2)函数信号发生器一台。 (3)示波器一台。 (4)毫伏表一台。 (5)万用表一台。 (6)三极管一个。 (7)电阻各种组织若干。 (8)电解电容10uF两个,100uF一个。 (9)模拟电路试验箱一个。 实验结果: 经软件模拟与实验测试,在误差允许范围内,结果基本一致。 实验2:共射放大器的幅频相频 实验目的: 测量放大电路的频率特性。 实验原理: 放大器的实际信号就是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容与晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。 放大器的幅频特性就是指放大器的电压放大倍数与输入信号的频率之间的关系。在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0、707倍时,对应的低频与高频频率分别对应下限频率与上限频率。 通频带为: f BW=f H-f L 实验电路:

模电、数电实验报告

模拟电子技术实验指导书 周明编写 实验一实验台、万用表、示波器和信号发生器的使用 内容:略 实验二单级交流放大器(一) 一、实验目的 1、学习晶体管放大电路静态工作点的测试方法,进一步理解电路元件参数对静 态工作点的影响,以及调整静态工作点的方法。 2、进一步熟悉常用电子仪器的使用方法。 二、实验设备 1、实验台 2、示波器 3、计算机 4、数字万用表 三、预习要求 1、熟悉单管放大电路,掌握不失真放大的条件。 2、了解负载变化对放大倍数的影响。 四、实验内容及步骤 实验前校准示波器。 1、测量并计算静态工作点 ●按图2-1接线。 图2-1 ●将输入端对地短路,调节电位器R P2,使V C=Ec/2 (取6~7伏),测静态工作点 V C、V E、V B及V b1的数值,记入表2-1中。 ●按下式计算I B 、I C,并记入表2-1中。

表2-1 2、测量电压放大倍数及观察输入、输出电压相位关系。 在实验步骤1的基础上,把输入与地断开,接入f=1KHz 、V i =5mV 的正弦信号,负载电阻分别为R L =2K Ω和R L =∞,用毫伏表测量输出电压的值,用示波器观察输入电压和输出电压波形,并比较输入电压和输出电压的相位,画于表2-3中,在不失真的情况下计算电压放大倍数:Av=Vo/V 1,把数据填入表2-2 中: 表2-3 3、观察R C =3K ,R L =2K 时对放大倍数的影响。 在实验步骤2的基础上,把R C 换成3K ,重新测定放大倍数,将数据填入表2-4 中。 表2-4 4 、测量电压参数,计算输入电阻和输出电阻。按照图3-1接线 调整RP2,使V C =Ec/2(取6~7伏),测试V B 、V E 、V b1的值,填入表3-1中。 表3-1

半导体三极管及放大电路基础

半导体三极管及放大电 路基础 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第二章半导体三极管及放大电路基础 第一节学习要求 第二节半导体三极管 第三节共射极放大电路 第四节图解分析法 第五节小信号模型分析法 第六节放大电路的工作点稳定问题 第七节共集电极电路 第八节放大电路的频率响应概述 第九节本章小结 第一节学习要求 (1)掌握基本放大电路的两种基本分析方法--图解法与微变等效电路法。会用图解法分析电路参数对电路静态工作点的影响和分析波形失真等;会用微变等效电路法估算电压增益、电路输入、输出阻抗等动态指标。 (2)熟悉基本放大电路的三种组态及特点;掌握工作点稳定电路的工作原理。 (3)掌握频率响应的概念。了解共发射极电路频率特性的分析方法和上、下限截止频率的概念。 第二节半导体三极管(BJT) BJT是通过一定的工艺,将两个PN结结合在一起的器件,由于PN结之间的相互影响,使BJT表现出不同 于单个 PN结的特性而具有电流放大,从而使PN结的应 用发生了质的飞跃。本节将围绕BJT为什么具有电流放 大作用这个核心问题,讨论BJT的结构、内部载流子的 运动过程以及它的特性曲线和参数。 一、BJT的结构简介 BJT又常称为晶体管,它的种类很多。按照频率分,有高频管、低频管;按照功率分,有小、中、大功

率管;按照半导体材料分,有硅管、锗管;根据结构不同,又可分成NPN型和PNP型等等。但从它们的外形来看,BJT都有三个电极,如图所示。 图是NPN型BJT的示意图。它是由两个 PN结的三层半导体制成的。中间是一块很薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。从三块半导体上各自接出的一根引线就是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。虽然发射区和集电区都是N 型半导体,但是发射区比集电区掺的杂质多。在几何尺寸上,集电区的面积比发射区的大,这从图也可看到,因此它们并不是对称的。 二、BJT的电流分配与放大作用 1、BJT内部载流子的传输过程 BJT工作于放大状态的基本条件:发射结正偏、集电结反偏。 在外加电压的作用下, BJT内部载流子的传输过程为: (1)发射极注入电子 由于发射结外加正向电压V EE,因此发射结的空间电荷区变窄,这时发射区的多数载流子电子不断通过发射

三极管放大实验报告

(一)、实验目的 1.对晶体三极管进行实物识别,了解它们的命名方法和主要技术指标; 2.学习放大电路动态参数(电压放大倍数等)的测量方法; 3.调节电路相关参数,用示波器观测输出波形,对饱和失真失真的情况进行研究; 4.通过实验进一步熟悉三极管的使用方法及放大电路的研究方法。 (二)、实验原理 一、三极管 1. 三极管基本知识 三极管,是一种电流控制电流的半导体器件·其作用是把微弱信号放大成辐值较大的电信号,也用作无触点开关。三极管的分类方式很多,按照材料可分为硅管和锗管;按照结构可分为NPN和PNP;按照功能可分为开关管、功率管、达林顿管、光敏管等;按照功率可分为小功率管、中功率管和大功率管;按照工作频率可分为低频管、高频管和超频管;按照安装方式可分为插件三极管和贴片三极管。 三极管是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,根据排列方式的不同可将三极管分为PNP和NPN两种。 从三个区引出相应的电极,分别为基极b发射极e和集电极c。发射区和基区之间的PN 结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大。 两种不同类型三极管的表示方式如图1所示,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。

图1 不同类型三极管表示方式 2.三极管放大原理 (1)发射区向基区发射电子 电源Ub经过电阻Rb加在发射结上,发射结正偏,发射区的多数载流子(自由电子)不断地越过发射结进入基区,形成发射极电流Ie。同时基区多数载流子也向发射区扩散,但由于多数载流子浓度远低于发射区载流子浓度,可以不考虑这个电流,因此可以认为发射结主要是电子流。 (2)基区中电子的扩散与复合 电子进入基区后,先在靠近发射结的附近密集,渐渐形成电子浓度差,在浓度差的作用下,促使电子流在基区中向集电结扩散,被集电结电场拉入集电区形成集电极电流Ic。也有很小一部分电子(因为基区很薄)与基区的空穴复合,扩散的电子流与复合电子流之比例决定了三极管的放大能力。 (3)集电区收集电子 由于集电结外加反向电压很大,这个反向电压产生的电场力将阻止集电区电子向基区扩散,同时将扩散到集电结附近的电子拉入集电区从而形成集电极主电流Icn。另外集电区的少数载流子(空穴)也会产生漂移运动,流向基区形成反向饱和电流,用Icbo来表示,其数值很小,但对温度却异常敏感。 3.三极管的工作状态 截止状态:当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。 放大状态:当加在三极管发射结的电压大于PN结的导通电压,并处于某一恰当的值时,三极管的发射结正向偏置,集电结反向偏置,这时基极电流对集电极电流起着控制作用,使三极管具有电流放大作用,其电流放大倍数β=ΔIc/ΔIb,这时三极管处放大状态。 饱和导通状态:当加在三极管发射结的电压大于PN结的导通电压,并当基极电流增大到一定程度时,集电极电流不再随着基极电流的增大而增大,而是处于某一定值附近不怎么变化,这时三极管失去电流放大作用,集电极与发射极之间的电压很小,集电极和发射极之间相当于开关的导通状态。三极管的这种状态我们称之为饱和导通状态。

相关主题
文本预览
相关文档 最新文档