当前位置:文档之家› 导电高分子材料的简介

导电高分子材料的简介

导电高分子材料的简介
导电高分子材料的简介

导电高分子材料的简介、应用和发展前景

摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。

关键词:导电高分子制备方法导电机理性能应用发展趋势

1.简介

高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料。导电高分子又称导电聚合物,自从1976年,美国宾夕法尼亚大学的化学家Mac Diarmid领导的研究小组首次发现掺杂后的聚乙炔(Poly acetylene,简称PA)具有类似金属的导电性(导电高分子的导电性如图);1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。人们对共轭聚合物的结构和认识不断深入。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。

现有的研究成果表明,发展导电高分子兼具有机高分子材料的性能及半导体和金属的电性能, 具有密度小,易加工成各种复杂的形状,耐腐蚀,可大面积成膜及可在十多个数量级的范围内进行调节等特点,因此高分子导电材料不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。

1.1导电高分子材料的分类

按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。复合型导电材料是由高分子和导电剂(导电填料)通过不同的复合工艺而构成的材料。结构型结构型导电高分子又称本征型导电高分子(Intrinsically conducting polymer,简称ICP),是指高分子材料本身或经过少量掺杂处理而具有导电性能的材料,其电导率可达半导体甚至金属导体的范围。

1.2 高分子导电材料的制备方法

复合型导电高分子所采用的复合方法主要有两种:一种是将亲水性聚合物或结构型导电高分子进行混合,另一种则是将各种导电填料填充到基体高分子中。结构型导电聚合物一般用电子高度离域的共轭聚合物经过适当电子给体或受体进行掺杂后制得。

1.3 导电机理

高分子聚合物导电必须具备两个条件:一要能产生足够数量的载流子( 电子、空穴或离子等);二大分子链内和链间要能够形成导电通道。在离子型导电高分子材料中, 聚醚、聚酯等的大分子链呈螺旋体空间结构,与其配位络合的阳离子在大分子链段运动作用下, 就能够在螺旋孔道内通过空位迁移;或被大分子“溶剂化”了的阴阳离子同时在大分子链的空隙间跃迁扩散(“动力学扩散理论”)。对于电子型导电高分子材料,作为主体的高分子聚合物大多为共轭体系(至少是不饱和键体系),长链中的π键电子较为活泼, 特别是与掺杂剂形成电荷转移络合物后, 容易从轨道上逃逸出来形成自由电子[3]。大分子链内与链间电子轨道重叠交盖所形成的导电能带为载流子的转移和跃迁提供了通道。在外加能量和大分子链振动的推动下, 便可传导电流。

复合型导电高分子材料存在着导电通道、隧道效应、场致发射3种导电机理,复合型导电高分子的导电性能是这3种导电机理作用的竞争结果。在不同情况下出现以其中一种机理为主导的导电现象。

2 导电高分子材料的应用

2.1 电磁屏蔽材料

导电塑料代替金属作为电子产品的外壳可以有效的起到电磁屏蔽作用,且质量轻、耐腐蚀。

2.2 导电液晶材料

液晶高聚物材料具有高强度、高模量、耐高温、低膨胀系数、低成型收缩率以及良好的介电性和耐化学腐蚀性等一系列优异的综合性能。具有与π电子结构相关联的线性聚烯烃和芳杂环等的共轭聚合物通过分子改性可以获得导电液晶聚合物,并且这些材料具有可溶性和可加工性。

2.3 催化剂载体

利用杂多酸对导电高分子的氧化或掺杂作用可将具有催化活性的凯金型或道森型杂多酸催化剂固定在聚乙炔、聚吡咯、聚噻吩和聚苯胺的粉末,此时导电高分子可视为一种新的催化剂载体,能提高杂多酸的催化性能。

2.4 气体分离膜

现代气体分离技术中,膜分离技术由于能耗和成本比其他分离方法低,并且无环境污染,因而十分引人注目。已广泛应用于石油开采、化工、食品包装、保鲜、炼油厂、废气回收、工业燃烧炉节能以及环保等方面。

2.5军事隐身(隐形)材料

隐身材料是指能够减少军事目标的雷达特征、红外特征、光电特征及目视特征的材料的系统。雷达吸波材料的作用就是将人射的雷达电磁波吸收衰掉而使武器不被雷达所发现雷达吸波材料是现代隐身技术的重点。美国密里肯公司通过控制现场聚合条件将聚吡咯与纤维复合,制备了商品名为Centex和Intrigue的导电纤维,并制成了轻型伪装网,美国国防部已经将其以用于隐形轰炸机的隐身涂料。中国新一代隐形战机歼-20成功试飞曾引起了世界各国的广泛关注,歼-20之所以能吸引如此多的目光,最主要是因为其隐身战斗的特性,中国已占领隐身材料的制高点。

2.6其他

导电聚合物还可以作为抗静电材料、二次电池的电极材料、太阳能电池材料、电致变色材料、自然温发热材料等,在此方面的研究已取得了很大程度的进展,且有些已经在生产中得到应用

3导电高分子的发展前景

各类高分子因有不同电子结构,故各具有不同光电、导电、电化学等特性,因而有不同应用方向。如引进不同机能之机团于主链及侧链,更可调节其光电特性及溶解性,扩大应用范围。未经掺杂者为半导体,经掺杂后为导体,除各具有与无机半导体及导体类似之特性外,在组件制作时尚有可低温加工、可大面积化、可挠曲等特性,故具有低制作成本及独特组件特性之优点,对未来电子及信息工业将产生巨大影响。导电高分子之应用,大致可分三类:半导体特性,导体特性,电化学掺杂/去掺杂之可逆性。其工业化目前尚在萌芽阶段,仅有少数工业品出现,例如利用其导体特性的固态电容器、抗静电及防蚀涂料等。

本征型导电高分子材料目前的应用前景不在于导线上,而在于特殊的光电磁和机械性能上。一是说不能获得赢电导率的本征型导电商分子材料,二是获得的本征型导电高分子材料在空气中不稳定,电导率会很快下降。而经过修饰的本征型导电高分子材料在光电磁学方面都有特殊的性质,往往认为在纳米微米器件上会有很广阔和应用前景。在现实应用上,本征型导电高分子材料目前也还处在突破的前夜,真正的实用化还未取得质的进步,需要进一步验证。关键在于其性能、价格以及市场需要与无机材料竞争;它的稳定性也需要加强,脱掺杂问题需要很好的解决;在加工性能和力学性能上,它也比工程塑料差。这些问题都需要在规模化应用之前解决。

总之,结构型导电高分子材料主要的开发应用方向是大功率蓄电池、微波吸收材料、太阳能电池、新型感光材料。复合型导电高分子材料是目前开发应用的重点, 主要集中在抗静电材料和电磁屏蔽产品。

[1] 赵文元王义军功能高分子材料化学第二版北京化学工出版社2003

[2] 龚文化.曾黎明. 聚合物基导电复合材料研究进展[J] . 化工新型材料, 2002

[3] 叶明泉贺丽丽韩爱军.填充复合型导电高分子材料导电机理及导电性能影响因素研究概况化工新型材料.2008 -11 第36 卷第11 期

[4] 李英.赵地顺.导电高分子材料.河北科技大学学报2000 第2期

[6] 付东升.张康助.张强.导电高分子材料研究进展.现代塑料加工应用2004-2.第16 卷第1 期

[7] Sachdev V K, Kumar R, Singh A et al. Electrically conducting polymers, Proc ICSM T 96.104~109

[8] 张光敏.阎康平.本征导电高分子材料的进展.电子元件与材料1999-8 .41-42

[9] 贺丽丽. 叶明泉. 韩爱军.共混复合型导电高分子材料研究进展.第35卷增刊. 塑料工业.2007-6 第35卷

[10] 何莉.刘军.沈强.张联盟.导电高分子的应用.化学试剂.2003 ,25 (3) ,145~149

[11] 何白天胡汉杰功能高分子与新技术北京化学工业出社2001

[12] 焦冬生任宗文等乙炔炭黑填充导电硅胶的研究[J] 材料工程2007

[13] 宫兆合,梁国正,任鹏刚,王旭东,导电高分子材料在隐身技术中的应用,高分子材料科学与工程,2004

[14] 赵稼祥,海湾战争与隐身材料,兵器材料科学与工程,1992

[15] 郑国禹,导电高分子在隐身材料中的应用,工程塑料应用,2007

[16]哈恩华,黄大庆,丁鹤雁,新型轻质雷达吸波材料的应用研究及进展材料工程2006

导电高分子材料的应用、研究状况及发展趋势(精)

导电高分子材料的应用、研究状况及发展趋势 熊伟 武汉纺织大学化工学院 摘要:与传统导电材料相比较 , 导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键字:导电高分子分类制备现状 Abstract : Compared with conventional conductive materials, conductive polymer material has many unique properties. Conducting polymers can be us ed as radar absorbing materials, electromagnetic shielding materials, antistatic materials. Describes the structure of conductive polymer materials, types and conducting mechanism, synthesis methods, the application of conductive poly mer materials, research status and development trend. Keywords : conductive polymer categories preparation status 1 导电高分子的结构、种类 按照材料结构和制备方法的不同可将导电高分子材料分为两大类 :一类是结构型 (或本征型导电高分子材料,另一类是复合型导电高分子材料 [3]。 结构型导电高分子材料是指高分子本身或少量掺杂后具有导电性质的高分子材料。 根据加入基体聚合物中导电成分的不同 , 复合型导电高分子材料可分为两类 :填充复合型导电高分子材料和共混复合型导电高分子材料 [5]。

导电高分子

1. 概述 1.1 导电高分子的基本概念 物质按电学性能分类可分为绝缘体、半导体、导体和超导体四类。高分子材料通常属于绝缘体的范畴。但1977年美国科学家黑格(A.J.Heeger)、麦克迪尔米德和日本科学家 白川英树(H.Shirakawa)发现掺杂聚乙炔具有金属导电特性以来,有机高分子不能作为导电材料的概念被彻底改变。 导电性聚乙炔的出现不仅打破了高分子仅为绝缘体的传统观念,而且为低维固体电子学和分子电子学的建立打下基础,而具有重要的科学意义。上述三位科学家因此分享2000年诺贝尔化学奖。所谓导电高分子是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。它完全不同于由金属或碳粉末与高分子共混而制成的导电塑料。 通常导电高分子的结构特征是由有高分子链结构和与链非键合的一价阴离子或阳离子共同组成。即在导电高分子结构中,除了具有高分子链外,还含有由“掺杂”而引入的一价对阴离子(p型掺杂)或对阳离子(n型掺杂)。导电高分子不仅具有由于掺杂而带来的金属特性(高电导率)和半导体(p和n型)特性之外,还具有高分子结构的可分子设计性,可加工性和密度小等特点。为此,从广义的角度来看,导电高分子可归为功能高分子的范畴。 导电高分子具有特殊的结构和优异的物理化学性能使它在能源、光电子器件、信息、传感器、分子导线和分子器件、电磁屏蔽、金属防腐和隐身技术方面有着广泛、诱人的应用前景。导电高分子自发现之日起就成为材料科学的研究热点。经过近三十年的研究,导电高分子无论在分子设计和材料合成、掺杂方法和掺杂机理、导电机理、加工性能、物理性能以及应用技术探索都已取得重要的研究进展,并且正在向实用化的方向迈进。本章主要介绍导电高分子的结构特征和基本的物理、化学特性,并评述导电高分子的重要的研究进展。 迄今为止,国内外对结构型导电高分子研究得较为深入的品种有聚乙炔、聚对苯硫醚、聚苯胺、聚吡咯、聚噻吩以及TCNQ传荷络合聚合物等。其中以掺杂型聚乙炔具有最高的导电性,其电导率可达5×103~104Ω-1·cm-1(金属铜的电导率为105Ω-1·cm-1) 目前,对结构型导电高分子的导电机理、聚合物结构与导电性关系的理论研究十分活跃。应用性研究也取得很大进展,如用导电高分子制作的大功率聚合物蓄电池、高能量密度电容器、微波吸收材料、电致变色材料,都已获得成功。 但总的来说,结构型导电高分子的实际应用尚不普遍,关键的技术问题在于大多数结构型导电高分子在空气中不稳定,导电性随时间明显衰减。此外,导电高分子的加工性往往不

有机高分子磁性材料研究综述

有机磁性材料研究综述 摘要:有机磁性材料是最近二十多年发展起来的新型的功能材料,因为其结构的多样性,可用化学方法合成,相比传统磁性材料具有比重低、可塑性强等等优点,因此在新型功能材料方面有着广阔的应用前景。本文综述了高分子有机磁性化合物的发展和研究近况,及其有机高分子磁性材料的分类及其应用前景。 关键词:有机磁性材料结构型复合型 Review on the research of organic magnetic material Abstract: organic magnetic material is a new functional material in recent twenty years, because of the diversity of its structure, synthetized by chemical method , compared with the traditional magnetic materials with a low specific gravity, high plasticity, and so on, so it has a broad application prospect in the new functional materials.This paper reviews the development and research status of high polymer organic magnetic materials’compounds, classification and its application prospect. Key word: organic magnetic material intrinsic complex

导电高分子材料

导电高分子材料 高分子材料自问世至今,已经有一百多年的历史。1856年硝化纤维作为第一个塑料专利问世,20世纪60年代;许多性能优良的工程塑料相继投入工业化生产;20世纪80年代,材料科学已渗透各个领域,可以说已经进入高分子时代。 大多数高分子材料都是不导电的,因而高分子材料被广泛地作为绝缘材料使用。1862年,英国Letheby在硫酸中电解苯胺而得到少量导电性物质;1954年,米兰工学院G.Natta用 Et3Al-Ti(OBu)4为催化剂制得聚乙炔;1970年,科学家发现类金属的无机聚合物聚硫氰(SN)x具有超导性,有机高分子与无机高分子导电聚合物的开发研究合在一起开始了探寻之旅。1974年日本筑波大学H.Shirakawa在合成聚乙炔的实验中,偶然地投入过量1000倍的催化剂,合成出令人兴奋的有铜色的顺式聚乙炔薄膜与银白色光泽的反式聚乙炔。1980年,英国Durham大学的W.Feast得到更大密度的聚乙炔。1983年,加州理工学院的H.Grubbs以烷基钛配合物为催化剂将环辛四烯转换了聚乙炔,其导电率达到35000S/m,但是难以加工且不稳定。1987年,德国康采思巴斯夫公司BASF科学家N.Theophiou对聚乙炔合成方法进行了改良,得到的聚乙炔电导率与铜在同一数量级,达到107S/m。导电高分子材料的研究和发展开始逐渐走向成熟,并且亟待着可以走向应用领域,导电高分子材料已经在功能高分子材料及导电体中占有重要的地位。 一.导电高分子的定义与导电机理 导电高分子又称为导电聚合物,是由具有共轭π键的高分子经化学或电化学“掺杂”使其由绝缘体转变为导体的一类高分子材料。导电高分子材料是一类兼具高分子特性及导电体特征的高分子材料。按结构和制备方法不同,可将导电高分子材料(CPs)分为复合型与本征(结构)型两大类。结构性导电高分子本身具有“固有”的导电性,由聚合物结构提供导电载流子(包括电子、离子或空穴)。这类聚合物经掺杂后,电导率可大幅度提高,其中有些甚至可达到金属的导电水平。复合型导电高分子是在本身不具备导电性的高分子材料中掺混入大量导电物质,如炭黑、金属粉、箔等,通过分散复合、层积复合、表面复合等方法构成的复合材料。 根据电荷载流子的种类,导电聚合物被分为电子导电聚合物和离子导电聚合物:以自由电子或空穴为载流子的导电聚合物称为电子导电聚合物,电子导电型聚合物的共同特征是分子内含有大的线性共轭π电子体系。以正、负离子为载流子的导电聚合物被称为离子导电聚合物。离子导电聚合物的分子具有亲水性、柔性好,允许体积较大的正、负离子在电场作用下在聚合物中迁移的特性。

导电高分子材料演讲ppt演讲材料

3 电导率 σ =1/ρ=1/(Ω*m )=S/m ρ—电阻率,ρ=RS/L 单位:mS/m , S/cm , μS/cm … 5 1862年:英国伦敦医学专科学校 H.Letheby 在硫酸中电解苯胺而得到少量导电性物质(可能是聚苯胺)。 1954年:米兰工学院 G.Natta 用 Et 3Al-Ti(OBu)4为催化剂制得聚乙炔, 虽然有非常好的结晶体和规则的共轭结构,然而难溶解、难熔化、不易加工和实验测定,这种材料未得到广泛利用。 1970年:科学家发现类金属的无机聚合物聚硫氮(SN)x 具有超导性。 1975年:A.G.MacDiarmid 、A.J.Heeger 与H.Shirakawa 合作研究,将无机导电聚合物研制与有机导电聚合物研制相结合。发现未掺卤素的顺式聚乙炔的导电率为10-8~10-7S/m ;未掺卤素的反式聚乙炔为10-3~10-2 S/m ,而当聚乙炔曝露于碘蒸气中进行掺杂氧化反应后,其电导率可达3000S/m 。 1980年:英国 Durham 大学的W. Feast 得到更大密度的聚乙炔。 1983年:加州理工学院的 Robert H. Grubbs 以烷基钛配合物催化剂将环辛四烯转换成了聚乙炔,导电率35000S/m ,但难以加工且不稳定。 7 9 1导电高分子定义:具有π-共轭体系,经过“掺杂”后具有导电性的一类高分子材料 的统称。 2结构通式:[P+x·xA-]n (p —型掺杂) [P-x·xA+]n (n —型掺杂) 式中:P+、P-——带正电和带负电的π-共轭体系高分子链;

A- 、A+——一价对阴离子和一价对阳离子;x——掺杂度。 3离子与链间作用:对阴离子和对阳离子与高分子链之间没有化学键合,仅 起到正负电荷平衡的作用 4纯净无缺陷的理想π共轭结构高分子:绝缘体,不导电。 5导电行为的产生:激发使π共轭结构出现缺陷,最常用的方法是掺杂(doping), 其他有光激发等物理方法。 6导电高分子的掺杂:在π共轭结构高分子链上发生电荷转移或氧化还原反应,是实现由绝缘体向半导体、导体转变的必要途径。 (CH)n + nx A→ [(CH)+x · xA-1] n 氧化掺杂(I2、ASF5) (CH)n + nx A→ [(CH)-x · xA+1] n 还原掺杂(Na、K) x——掺杂度,即高分子被氧化还原的程度;聚乙炔:x=0~0.1 7掺杂目的:降低能带隙 8掺杂的结果:在聚合物的空轨道中加入电子或从占有轨道中拉走电子,从而改变原有π电子能带的能级,产生能量居中的半充满能带,减小能带间的能级差,使自由电子迁移阻力降低。电子迁移阻力降低了,就更容易导电了。 12 1.导电率变化范围宽 随掺杂度变化,可在绝缘体-半导体-金属态之间变化 13 2.掺杂-脱掺杂过程可逆 导电高分子不仅可以掺杂, 而且还可以脱掺杂, 并且掺杂-脱掺杂的过程完全可逆。 3.具有光学性能(光诱导吸收、光致发光等非线性光学特性)、磁学性能、电化学性 能(随氧化/还原过程,颜色发生变化)等 15 聚吡咯Polypyrrole(PPy) 五元环,稳定性相对较好。 电化学合成法化学氧化法 掺杂剂:金属盐类FeCl3,卤素I2、Br2,质子酸H2SO4及路易斯酸BF3等 具有生物相容性,无毒害,用作生物医用领域及研制人工肌肉、气体和生物传感器、电磁屏蔽、隐身材料、抗静电材料、导电纤维等 聚苯撑/聚对苯Poly(p-phenylene) 含有芳环结构的有机聚合物具有相当好的热稳定性,结构规整的高结晶度的聚苯撑可稳定到800~900 ℃。 弱点:缩合型交联剂,有低分子挥发物,受限制 聚噻吩Polythiophene (PTh) 五元杂环,无活泼氢。本征态聚噻吩为红色无定型固体,掺杂后则显绿色。这一颜色变化可应用于电致变色器件。 聚合和掺杂性与PPy 相似,多为电化学聚合法。 聚苯胺Polyaniline

浅谈导电高分子材料的应用

浅谈导电高分子材料的应用 摘要:与传统材料相比,导电高分子材料有着易加工、密度小、结构易变、耐 腐蚀、可大面积成膜的优势,本文主要针对导电高分子材料的类型与应用展开分析。 关键词:导电高分子材料;类型;应用 0 引言 导电高分子材料是一种具有导电功能的聚合物材料,它具有密度小、可加工性好的特性,并且具有良好的耐腐蚀性,可以大面积成膜。这些良好的特性,使导电高分子材料可以在某 些领域替代多种金属材料和无机导电材料,有效降低成本。经过几十年的发展,高分子材料 作为优良的电绝缘体,已经成为许多先进工业部门和尖端技术领域里一种重要的材料。 1 导电高分子材料的分类 按照材料的结构,导电高分子材料可以分为复合型导电高分子材料和结构性导电高分子 材料两种类型。 1.1 复合型导电高分子材料 复合型导电高分子材料是利用不同的加工手段,将各种不同的导电材料填充到聚合物基 体当中,制作成一种新型的导电材料。最常采用的方法就是把各种高效导电粒子或者导电纤 维等作为填充物,如金属粉末、各种金属纤维直径在7毫米左右的材料等。从技术上来说, 复合型导电高分子材料的加工工艺更为成熟,产品使用更为普及。 1.2 结构型导电高分子材料 结构性导电高分子材料,采用具有一定的导电性材料,通过对自身进行一定比例的掺杂,提高导电性能的聚合物。按照导电状态下的载流子种类可以将结构型高分子材料分为离子型 和电子型两种类型。离子型导电高分子的导电载流子是离子,有的学者也称它为高分子固体 电解质;电子型高分子的载流子为电子,它以共轭高分子为主体。离子型导电高分子材料是 目前世界上的重点开发内容。 2 导电高分子材料的应用 导电高分子材料在很多应用领域比金属材料有着更为优越的性能,如它的可塑性好、耐 腐蚀性、电导率较高、可逆氧化还原性等。主要应用在导电衬料、光电显示材料、信息记忆 材料等多个方面。 2.1 在电子元器件开发中的应用 (1)导电高分子材料在防静电和电磁屏蔽上的应用 导电高分子材料最早是应用在防静电和电磁屏蔽方面。具体操作是将SDBS和TSOH混合,掺杂PANI和ABS,制备出杂多酸掺杂PANI/ABS复合材料。经过试验证明复合材料的屏蔽性 能跟PANI的含量有着直接的关系,PANI的含量越高,复合材料的屏蔽性能越好。 (2)导电高分子材料在芯片开发中有着重要作用 由于导电高分子材料可塑性好,质量轻、体积小,广泛地应用到了带有微芯片的卡片以 及条码读取设备中。这一技术的发明,为计算机制造技术带来了重大变革,有效减小了计算 机的体积,并且在很大程度上提高了计算机的运行速度。 (3)导电高分子材料在显示材料中的应用 在半导体有机膜两端安装电极以后就制成了有机发光二极管。在它的两端加上少量电压,是电子在其上面进行移动,当两个相对运用的政府电荷载体相遇以后,就形成了“电子—空穴对”,此时能量就以发光的形式释放出来。发光二极管发出的光强度高、色彩绚丽,广泛用到了手机、手掌电脑等电子产品的显示屏上。另外还可以自动调光玻璃等产品,受到了电子产 业的广泛关注。 2.2 导电高分子材料在塑料薄膜太阳能电池开发中的应用 面对资源快速消耗的问题,能源科研人员一直在寻找一种能够替代矿物燃料的能源。然 而传统的硅太阳能加工成本昂贵,在生产过程中也消耗的大量的能源,不是理想的新能源材料。而塑料薄膜电池生产成本低廉、加工过程简单节能,加工工艺一旦成熟,就能够进行大 批量生产,将会是以后一种非常好的新能源。

现代高分子材料综述(非常好!!)

现代高分子材料综述 材料学王晓梅学号:112408 摘要 高分子材料作为新时期的全新全能型材料,是现代人类发展的重要支柱,是发展高新科技的基础与先导,高分子材料的应用将会使人类支配改造自然的能力和社会生产力的发展带到一个新的水平,对人类的发展将会出现前所未有的促进。本文将从高分子材料的定义、主要种类、应用和以塑料为例介绍与人类生活息息相关的高分子材料的相关常识。本文综述了各类高分子材料的研究及发展,主要论述了导电高分子材料、功能高分子材料、工程高分子材料、复合高分子材料以及生物高分子材料等应用领域。 前言 高分子材料是由相对分子质量比一般有机化合物高得多的高分子化合物为主要成分制成的物质。一般有机化合物的相对分子质量只有几十到几百,高分子化合物是通过小分子单体聚合而成的相对分子质量高达上万甚至上百万的聚合物。巨大的分子质量赋予这类有机高分子以崭新的物理、化学性质:可以压延成膜;可以纺制成纤维;可以挤铸或模压成各种形状的构件;可以产生强大的粘结能力;可以产生巨大的弹性形变;并具有质轻、绝缘、高强、耐热、耐腐蚀、自润滑等许多独特的性能。于是人们将它制成塑料、橡胶、纤维、复合材料、胶粘剂、涂料等一系列性能优异、丰富多彩的制品,使其成为当今工农业生产各部门、科学研究各领域、人类衣食住行各个环节不可缺少、无法替代的材料[1]。 由于高分子化学反应和合成方法对高分子化学学科发展的推动,促进了高分子合成材料的广泛应用。同时,随着高分子材料的发展,纳米技术与生物技术之间的界限变得越来越小,并与更多的传统分子科学与技术相结合。因此,我们相信,高分子技术的发展促使使各类高分子材料得到更加迅速的发展,推广和应用。 1

导电高分子材料的简介

导电高分子材料的简介、应用和发展前景 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的结构、种类及导电机理、合成方法、导电高分子材料的应用、研究现状及发展趋势。 关键词:导电高分子制备方法导电机理性能应用发展趋势 1.简介 高分子材料在很长一段时期都被用作电绝缘材料.随着不同应用领域的需要以及为进一步拓宽高分子材料的应用范围,一些高分子材料被赋予某种程度的导电性以致成为导电高分子材料。导电高分子又称导电聚合物,自从1976年,美国宾夕法尼亚大学的化学家Mac Diarmid领导的研究小组首次发现掺杂后的聚乙炔(Poly acetylene,简称PA)具有类似金属的导电性(导电高分子的导电性如图);1977年,日本白川英树等人才发现用五氟化砷或碘掺杂的聚乙炔薄膜具有金属导电的性质,电导率达到10S/m。这是第一个导电的高分子材料。人们对共轭聚合物的结构和认识不断深入。以后,相继开发出了聚吡咯、聚苯硫醚、聚酞菁类化合物、聚苯胺、聚噻吩等能导电的高分子材料。这个新领域的出现不仅打破了高分子仅为绝缘体的传统观念,而且它的发现和发展为低维固体电子学,乃至分子电子学的建立和完善作出重要的贡献,进而为分子电子学的建立打下基础,而具有重要的科学意义。 现有的研究成果表明,发展导电高分子兼具有机高分子材料的性能及半导体和金属的电性能, 具有密度小,易加工成各种复杂的形状,耐腐蚀,可大面积成膜及可在十多个数量级的范围内进行调节等特点,因此高分子导电材料不仅可作为多种金属材料和无机导电材料的代用品,而且已成为许多先进工业部门和尖端技术领域不可缺少的一类材料。 1.1导电高分子材料的分类 按结构和制备方法不同将导电高分子材料分为复合型与结构型两大类。复合型导电材料是由高分子和导电剂(导电填料)通过不同的复合工艺而构成的材料。结构型结构型导电高分子又称本征型导电高分子(Intrinsically conducting polymer,简称ICP),是指高分子材料本身或经过少量掺杂处理而具有导电性能的材料,其电导率可达半导体甚至金属导体的范围。 1.2 高分子导电材料的制备方法 复合型导电高分子所采用的复合方法主要有两种:一种是将亲水性聚合物或结构型导电高分子进行混合,另一种则是将各种导电填料填充到基体高分子中。结构型导电聚合物一般用电子高度离域的共轭聚合物经过适当电子给体或受体进行掺杂后制得。 1.3 导电机理

导电性高分子诞生的故事

導電性高分子誕生的故事 取材自:江文彥教授(大同大學化學工程學系) [導電性高分子的出現與科學上的偶然] (科學發展:2002年11月,359期,68~71頁) 閱讀以下文章,並回答文末的問題…. 一種能導電的塑膠 塑膠基本上是聚合物,就好像珍珠項鍊一般具有長鏈而且以固定的單元不斷重複的結構,當它要變得能導電時就必須能模擬金屬的行為,亦即電子必須能不受原子的束縛而能自由移動,要達到此目的的第一個條件就是這個聚合物應該具有交錯的單鍵與雙鍵,亦稱為「共軛」的雙鍵,透過乙炔所聚合而得的聚乙炔(下圖)即具有這樣的結構。具有這樣構造的聚合物如何特別呢? 意外發現的聚乙炔皮膜 一切要從聚乙炔皮膜開始談起。這是一個偶然開展的故事…… 一九六六年,白川英樹還是池田研究室的助理,正研究乙炔生成聚乙炔的機制。一九六七年九月,一位已在池田研究室很久的韓籍研究生邊衡直,希望嘗試乙炔聚合的研究,白川英樹指導他以常用的配方,觸媒為三乙基鋁/四丁氧鈦。而四丁氧鈦濃度是每公升0.25毫莫耳,進行聚合。由於研究生已非新人,且這個聚合並不難,白川英樹也就沒有跟隨在旁,不久研究生邊衡直發現,乙炔壓力不下降,反應都不進行,好像失敗了。原來為了使單體乙炔能溶入溶液,都會施加攪拌,可是所得的聚乙炔卻不溶於溶劑,所以攪拌必然生成粉末。當白川英樹前往觀看實驗時,果然反應瓶中沒有粉末,攪拌器也呈停止狀態,但在溶液表面,似乎有一層銀色薄膜狀物,經分析的結果,確定就是聚乙炔。 十一月十六日,白川英樹想要再現聚乙炔皮膜的合成,經檢查上次實驗之配方,才發現觸媒濃度居然加的是每升0.25莫耳,這是正常配方濃度的一千倍。事後

推斷,可能是研究生將毫莫耳聽成莫耳之故吧。這一個偶然的錯誤,又加上攪拌器又湊巧停止,才使聚乙炔皮膜因觸媒濃度提高而生成,又因無攪拌而沒被攪成粉末。真是一個「無意的」、「偶然的」、「很幸運的」發現。 導電性高分子的誕生 麥克戴阿密德教授出生於紐西蘭,在紐西蘭大學、美國威斯康辛大學、及英國劍橋大學接受高等教育後,一九五五年起擔任美國賓州大學化學系教授。一九七三年開始研究無機硫氮高分子。一九七五年開始對有機導電性高分子發生興趣,就在該年前往日本訪問時,經介紹與已經製得皮膜狀聚乙炔,時任東京工業大學資源化學研究所助理的白川英樹博士見面,目賭如同鋁箔狀的聚乙炔皮膜後,乃邀請白川英樹前往賓州大學,並與在半導體與導電性高分子材料之基礎物性方面有相當成就的希格教授共同研究。 三人於一九七六年十一月廿三日發現聚乙炔膜可以用溴和碘加以化學摻雜改質,因摻雜1%的碘,使聚乙炔膜導電度,較之未摻雜改質的聚乙炔膜導電度提升十億倍。並在一九七六年,以〈有機導電性高分子的合成-含鹵素的聚乙炔衍生物〉為題,發表在英國化學會化學通訊(J. Chem. Soc., Chem. Commun., 578, 1977)。這個現象的發現,開啟了導電性高分子的時代,也使化學和物理學兩領域產生了重大的進展。因為這個發現二○○○年諾貝爾化學獎,由日本筑波大學物質工學系白川英樹(Hideki Shirakawa)名譽教授、美國賓州大學化學系麥克戴阿密德(Alan G. MacDiarmid)教授,和加州大學聖塔巴巴拉校區物理系及高分子暨有機固體學院希格(Alan J. Heeger)院長等三人共同獲得。獲獎的理由是「導電性高分子的發現與開發」。 二○○○年諾貝爾化學獎得主,白川英樹教授(Hideki Shirakawa,圖中)、麥克戴阿密德教授(Alan G. MacDiarmid,圖左)、希格院長(Alan J. Heeger,圖右)。

关于导电高分子材料的研究进展

湖北汽车工业学院 本科生课程论文 《新材料导论》 论文题目关于导电高分子材料的研究进展学生专业班级 学生姓名(学号) 指导教师(职称) 完成时间

关于导电高分子材料的研究进展 摘要:与传统导电材料相比较,导电高分子材料具有许多独特的性能。导电高聚物可用作雷达吸波材料、电磁屏蔽材料、抗静电材料等。介绍了导电高分子材料的概念、分类、导电机理及其应用领域,综述了近些年来国内外科研工作者对导电高聚物的研究进展状况并对其发展前景进行了展望。 关键词:导电高分子;功能材料;导电机理;应用;述评。 自从1976年美国宾夕法尼亚大学的化学家MacDiarmid领导的研究小组首次发现掺杂后的聚乙炔(Polyacetylene,简称PA)具有类似金属的导电性以后,人们对共轭聚合物的结构和认识不断深入和提高,新型交叉学科)))导电高分子领域诞生了。在随后的研究中科研工作者又逐步发现了聚吡咯、聚对苯撑、聚苯硫醚、聚噻吩、聚对苯撑乙烯撑、聚苯胺等导电高分子。导电高分子特殊的结构和优异的物理化学性能使它成为材料科学的研究热点,作为不可替代的新兴基础有机功能材料之一,导电高分子材料在能源、光电子器件、信息、传感器、分子导线和分子器件,以及电磁屏蔽、金属防腐和隐身技术上有着广泛、诱人的应用前景。到目前为止,导电高分子在分子设计和材料合成、掺杂方法和掺杂机理、可溶性和加工性、导电机理、光、电、磁等物理性能及相关机理以及技术上的应用探索都已取得重要的研究进展。本文介绍了导电高分子的结构特征、导电机理及其应用领域,综述了近些年来导电高分子材料研究领域的进展状况。 1 导电高分子材料的分类 高分子导电材料通常分为复合型和结构型两大类: ①复合型高分子导电材料。 由通用的高分子材料与各种导电性物质通过填充复合、表面复合或层积复合等方式而制得。主要品种有导电塑料、导电橡胶、导电纤维织物、导电涂料、导电胶粘剂以及透明导电薄膜等。其性能与导电填料的种类、用量、粒度和状态以及它们在高分子材料中的分散状态有很大的关系。常用的导电填料有炭黑、金属粉、金属箔片、金属纤维、碳纤维等。 ②结构型高分子导电材料。 是指高分子结构本身或经过掺杂之后具有导电功能的高分子材料。根据电导率的大小又可分为高分子半导体、高分子金属和高分子超导体。按照导电机理可分为电子导电高分子材料和离子导电高分子材料。电子导电高分子材料的结构特点是具有线型或面型大共轭体系,在热或光的作用下通过共轭π电子的活化而进行导电,电导率一般在半导

导电高分子的应用(精)

导电高分子的应用 学校名称:华南农业大学 院系名称:材料与能源学院 时间:2017年2月27日

由于导电高分子具有特殊的结构和优异的物化性能, 使其在电子工业、信息工程、国防工程及其新技术的开发和发展方面都具有重大的意义。其中因聚苯胺具有原料易得、合成工艺简单、化学及环境稳定性好等特点而得到了更加广泛的研究和开发, 并在许多领域显示出了广阔的应用前景。 1在电子元器件开发中的应用 1.1用于防静电和电磁屏蔽方面 导电高聚物最先应用是从防静电开始 的。将特定比例的十二烷基苯磺酸和对甲苯磺酸混合酸掺杂的PANI与聚(丙烯腈-丁二烯-苯乙烯)树脂(ABS)共混挤出,制备了杂多酸掺杂PANI/ABS复合材料,通过现场聚合的方法在透明聚酯表面聚合了一层导电PANI,表面电阻可控制在 106-109Ω。通过对复合材料EMI屏蔽的研究,发现在101 GHz下,复合材料的屏蔽效能随其中PANI含量的增大而增大。 1.2 导电高分子材料在芯片开发上的运用 在各种带有微芯片的卡片以及条码读取设备 上,高分子聚合物逐渐取代硅材料。塑料芯片的 价格仅为硅芯片的1%-10%,并且由于其具有可溶 性的特性而更易于加工处理。目前国际上已经研 制出集成了几百个电子元器件的塑料芯片,采用 这种导电塑料制造的新款芯片可以大大缩小计算 机的体积,提高计算机的运算速度。 1.3 显示材料中的导电高分子材料 有机发光二极管是由一层或多层半导体有机膜,加上两头电极封装而成。在发光二极管的两端加上3伏-5伏电压,负极上的电子向有机膜移动,相反,

与有机膜相连的正极上的电子向负极移动,这样产生了相反运动方向的正负电荷载体,两对电荷载体相遇,形成了“电子-空穴对”,并以发光的形式将能量释放。由于它发光强度高、色彩亮丽,光线角几乎达到180度,可用于制造新一代的薄壁显示器,应用在手机、掌上电脑等低压电器上,也应用于金融信息显示上,使图像生动形象,并可图文通显。利用电致变色机理,还可用于制造电致变色显示器、自动调光窗玻璃等。 2在塑料薄膜太阳能电池开发中的应用 传统的硅太阳能电池不仅价格昂 贵,而且生产过程中消耗大量能源, 因此成本昂贵,无法成为替代矿物燃 料的能源,而塑料薄膜电池最大的特 点就是生产成本低、耗能少。一旦技 术成熟,可以在流水线上批量生产, 使用范围也很广。制造塑料薄膜太阳 能电池需要具有半导体性能的塑料。奥地利科学家用聚苯乙烯和碳掺杂形成富勒式结构的材料,再将它们加工成极薄的膜,然后在膜层上下两面蒸发涂上铟锡氧化物或铝作为电极。由于聚苯乙烯受到光照时会释放出电子,而富勒式结构则会吸收电子,如果将灯泡接在这两个电极上,电子开始流动就会使灯泡发光。 3在生物材料开发中的应用 在生命科学领域,导电高分子材料可制成智能材料,用于医疗和机器人制造方面。由于导电有机聚合物在微电流刺激下可以收缩或扩张,因而具备将电能转化为机械能的潜力,这类导电聚合物组成的装置在较小电流刺激下同样表现出明显的弯曲或伸张/收缩能力。为了把聚合物变成伸屈的手指活动,加上了含PPY 的三层复合膜[PPY/缘塑料膜/PPY],其中一层PPY供给正电荷,另一层PPY供给负电荷。机器人手指工作:提供正电荷的一侧凹陷进去,即体积收缩;提供负电

完整word版,功能高分子材料综述

功能高分子材料综述 【文摘】功能高分子材料是高分子学科中的一个重要分支,它是研究各种功能性高分子材料的分子设计和合成、结构和性能关系以及作为新材料的应用技术,它的重要性在于所包含的每一类高分子都具有特殊的功能。它主要包括化学功能高分子材料、光功能高分子材料、电、磁功能高分子材料、声功能高分子材料、高分子液晶、医用高分子材料几部分,这一领域的研究主要包括研究分子结构、组成与形成各种特殊功能的关系,也就是从宏观乃至深入到微观,以及从半定量深入到定量,从化学组成和结构原理来阐述特殊功能的规律性,从而探索和合成出新的功能性材料。本文主要论述了在工程上应用较广和具有重要应用价值的一些功能高分子材料,如吸附分离功能高分子、反应型功能高分子、光功能高分子、电功能高分子、医用功能高分子、液晶高分子、高分子功能膜材料等。 【关键词】材料;高分子;高分子材料;功能材料; 功能高分子材料的定义为:与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能的聚合物大分子(主要指全人工和半人工合成的聚合物)都应归属于功能高分子材料范畴。而以这些材料为研究对象,研究它们的结构组成、构效关系、制备方法,以及开发应用的科学,应称为功能高分子材料科学。 功能高分子材料科学是研究功能高分子材料规律的科学,是高分子材料科学领域发展最为迅速,与其他科学领域交叉度最高的一个研究领域。它是建立在高分子化学、高分子物理等相关学科的基础之上,并与物理学、医学甚至生物学密切联系的一门学科。功能高分子材料是对物质、能量、信息具有传输、转换或贮存作用的高分子及其复合材料的一类高分子材料,有时也被称为精细高分子或者特种高分子(包括高性能高分子) 。其于20 世纪60年代末迅速发展起来的新型高分子材料,内容丰富、品种繁多、发展迅速,已成为新技术革命必不可少的关键材料。 功能高分子是指具有某些特定功能的高分子材料。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。例如吸水树脂,它是由水溶性高分子通过适度交联而制得,遇水时将水封闭在高分子的网络内,吸水后呈透明凝胶,因而产生吸水和保水的功能。 在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能(如化学活性、光敏性、导电性、催化活性、生物相容性、药理性能、选择分类性能等)而制得的一类高分子。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要。 1 功能高分子材料研究 1.1 导电高分子材料 近几年来,导电性高分子的研究取得了长足的发展,形成了一个十分活跃的边缘学科领域,它对电子工业、信息工业及新技术的发展具有重大的意义。现有的研究成果表明,发展导电高分子不仅可以满足人们对导电材料的需要,而且由于它兼具有机高分子材料的性能及半导体和金属的电性能,具有重量轻,易加工成各种复杂的形状,化学稳定性好及电阻率可在较大范围内调节等特点。此外在电子工业中的应用日趋广泛,促进了现代科学技术的发展。因此,自然引起了学术界和工业界的广泛兴趣。 导电高分子材料根据材料的组成可以分成复合型导电高分子材料(composite conductive polymers)和本征型导电高分子材料(intrinsic conductive polymers)两大类。复合型导电高分子材料是由普通高分子结构材料与金属或碳等导电材料,通过分散、层合、梯

导电高分子材料综述

课题名称:导电高分子材料的研究进展及发展趋势 检索主题词:导电高分子材料 检索工具:万方数据知识服务平台 检索途径及步骤:登录学校图书馆网站,从“中文资源”分类中找到“万方数据资源(主网站)”,选择“高级检索”,规定好想要检索的文献类型,出版时间,主题等进行检索。 导电高分子材料的研究进展及发展趋势综述 高材1208 2012012247 曹凯 摘要:介绍了导电高分子材料的类型,分析了导电材料的导电机理,对其在实际中的应用进行了研究和总结,并且在此基础上展望了导电高分子材料的未来发展趋势。 关键词:导电;高分子材料;机理;应用;发展 引言: 近年来, 导电高分子的研究取得了较大的进展, 科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究, 已成为一门相对独立的学科。按导电性质的不同,导电高分子材料分为复合型和结构型两种。前者是利用向高分子材料中加人各种导电填料来实现导电,而后者是通过改变高分子结构来实现导电。在社会的发展中,需要这种材料的地方有很多,这也使得对进行加工和应用的研究受到了人们着重地关注。 1导电高分子材料分类 按照材料的结构与组成,可将导电高分子材料分为两大类。一类是复合型导电高分子材料,另一类是结构型(或本征型)导电高分子材料。 1.1复合型导电高分子材料 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。几乎所有的聚合物都可制成复合型导电高分子材料。其一般的制备方法是填充高效导电粒子或导电纤维,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维。复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填充型和金属填充型。 1.2结构型导电高分子材料 结构型(又称作本征型)导电高分子是指那些高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料本身具有“固有”的导电性,由其结构提供导电载流子,一旦经掺杂后,电导率可大幅度提高,甚至可达到金属的导电水平。从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。离子型导电高分子通常又称为高分子固体电解质,它们导电时的载流子主要是离子。电子型导电高分子指的是以共轭高分子为主体的导电高分子材料。导电时的载流子是电子(或空穴),这类材料是目前世界导电高分子中研究开发的重点。 2电高分子材料的导电机理 2.1复合型高分子材料导电机理 复合型导电高分子材料导电性主要取决于填料的分散状态”J。根据渗流理论,原来孤立分散的填料微粒在体积分散达到某一临界含量以后,就会形成连续的导电通路。这时离子

导电高分子综述

导电高分子材料及其应用 摘要: 导电高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可 在绝缘体- 半导体- 金属态(10-9 到105 S/cm)的范围里变化。所以自从1977 年来,导电高分子材料的研究受到了普遍的重视和发展。本文介绍了国内外导 电高分子材料的分类、特点、应用及近年来研究发展的概况。同时还展望了导 电高分子有待发展的方向。 关键词:导电高分子;分类;应用 1导电高分子简介 20 世纪70 年代,白川英树、Heeger 和MacDiarmid等人首次合成了聚乙炔薄膜,后来又经掺杂发现了可导电的高聚物,这就是导电高分子材料。经过40 多年的发展,导电高分子材料也从最初的聚乙炔发展到聚苯胺、聚吡咯、聚噻吩等数十种高分子材料,成为 金属材料和无机导电材料的优良替代品。[1]但是导电高分子在变形过程中不仅仅存在弯曲 移动,而且还会产生蠕动现象,在器件的层间会发生快速分层的行为,溶剂易于挥发,使 用寿命有限、低的能量转换效率等等缺点使其在应用中具有难以突破的难点技术。[2] 2 高分子材料的分类及导电机理 导电高分子材料通常是指一类具有导电功能(包括半导电性、金属导电性和超导电性)、电导率在10-6S/cm 以上的聚合物材料。按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。 2.1结构型高分子导电材料 结构型高分子导电材料。是指高分子结构本身或经过掺杂之后具有导电功能的高分子 材料。最早发现的结构型高分子聚合物是用碘掺杂后形成的聚乙炔。这种掺杂后的聚乙炔 的电导率高达105 S/cm。后来人们又相继开发出了聚苯硫醚、聚吡咯、聚噻吩、聚苯胺等导电高分子材料。这些材料掺杂后电导率可达到半导体甚至金属导体的导电水平。结构型 高分子导电材料用于试制轻质塑料蓄电池、太阳能电池、传感器件、微波吸收材料以及试 制半导体元器件等[3] 。但目前这类材料由于还存在稳定性差(特别是掺杂后的材料在空气中的氧化稳定性差)以及加工成型性、机械性能方面的问题,尚未进入实用阶段。 2.1.1 聚乙炔( PA) 纯净聚乙炔掺进施主杂质(碱金属(Li、Na、K)等)或受主杂质(卤素、AsF5、PF5 等)后才能导电。与半导体不同的是,掺杂聚乙炔导电载流子是孤子。聚乙炔是目前世界

导电高分子材料

导电高分子材料 导电高分子材料概述 摘要导电高分子材料具有高电导率等与一般聚合物不同的特性。文章综述了导电高分子的分类,研究进展,制备方法以及在作为导电材料,电极材料,显示材料,电子器件,电磁屏蔽材料及催化材料方面的应用。 关键词:导电高分子,制备,应用 Abstract :Conductive polymeric materials have the properties such as high conductivity that different from traditional polymeric materials.This paper reviews the classification of conductive polymers, research progress,Preparation methods and Conductive polymeric materials applied as the conductive material, electrode materials, display materials, electronic devices, electromagnetic shielding materials and the application of catalytic materials. Keywords: Conductive polymeric materials, Preparation,application 传统高分子材料的体积电阻率一般介于1010,1020Ω?cm之问,一直作为电绝缘材料使用。自从1997年,美国化学家MacDiarmid、物理学家Herger和日本化学家Shirakawa[1]发现掺杂聚乙炔具有良好导电性后,世界各国科学家纷纷投入到导电聚合物的研究当中,各种有机导电聚合物相继出现,其应用范围也日益扩大,广泛应用于各种家用电器、航空航天、抗静电涂料、雷达吸波材料、电磁屏蔽材料和传感器等方面,极大地丰富和改善了人们的生活。 1.导电聚合物的分类

导电高分子材料

导电高分子材料的应用与发展 材料化学3班 【摘要】:主要论述了导电高分子材料的种类、发展概况及其应用,对新近开发的复合型导电高分子材料产品进行了介绍,介绍了导电高分子材料的分类、导电机制、在各领域中的应用及研究进展并对导电高分子材料的发展进行了展望。 【关键词】:导电高分子材料;复合型导电高分子;结构型导电高分子材料;制备;应用传统的高分子材料为绝缘材料,在使用时存在静电积累、电磁波干扰等危害,如用其制造的传送带,在传送煤炭的过程中易发生火灾和爆炸;油船因静电引起火灾;塑料薄膜在生产过程中常因静电发生事故。随着大规模集成电路的迅速发展,静电及电磁波公害更加突出。随着电子线路集成化水平的提高,电磁波的影响将会引起误动等危害。这些问题的出现已严重阻碍了高分子材料的发展,因此,必须研制开发导电高分子材料来解决上述问题。 1.导电高分子材料的种类 按照材料的结构与组成,可将导电高分子材料分为两大类。一类是复合型导电高分子材料,另一类是结构型(或本征型)导电高分子材料。 1.1复合型导电高分子材料 复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的材料。几乎所有的聚合物都可制成复合型导电高分子材料。其一般的制备方法是填充高效导电粒子或导电纤维,如填充各类金属粉末、金属化玻璃纤维、碳纤维、铝纤维、不锈钢纤维及锰、镍、铬、镁等金属纤维,填充纤维的最佳直径为7um。 复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势,用量最大最为普及的是炭黑填充型和金属填充型。 1.2结构型导电高分子材料 结构型(又称作本征型)导电高分子是指那些高分子材料本身或经过掺杂后具有导电功能的聚合物。这种高分子材料本身具有“固有”的导电性,由其结构提供导电载流子,一旦经掺杂后,电导率可大幅度提高,甚至可达到金属的导电水平。 从导电时载流子的种类来看,结构型导电高分子材料又被分为离子型和电子型两类。离子型导电高分子通常又称为高分子固体电解质,它们导电时的载流子主要是离子。电子型导电高分子指的是以共轭高分子为主体的导电高分子材料。导电时的载流子是电子(或空穴),这类材料是目前世界导电高分子中研究开发的重点[1]。 2.导电高分子材料的导电方式以及特性 2.1复合型导电高分子材料 复合型导电高分子材料是指经物理改性后具有导电性的材料一般是指将导电性填料经

相关主题
文本预览
相关文档 最新文档