当前位置:文档之家› 上海长江大桥技术特点

上海长江大桥技术特点

上海长江大桥技术特点
上海长江大桥技术特点

上海长江大桥技术特点

邵长宇卢永成

(上海市政工程设计研究总院上海 200092)

内容提要:建设中的上海长江大桥位于长江入海口,水下地形复杂,地质条件差,受台风影响频繁。为适应复杂的自然与建设条件,采用了多种结构形式,越江桥梁包括主跨730m斜拉桥、主跨105m连续组合箱梁、70m跨度整孔预制吊装PC箱梁、60m跨度节段预制拼装PC箱梁、50m跨度移动模架现浇PC箱梁、主跨140m挂蓝现浇PC箱梁等结构形式。同时,大桥需要预留轨道交通过桥功能,特别是主航道主跨730m斜拉桥是世界最大跨度的公路与轨道交通合建斜拉桥。因此,设计不仅要面对复杂的自然与施工条件,还要处理好公路与轨道交通合建带来的技术问题。本文简要介绍上海长江大桥的技术特点。

关键词:上海长江大桥斜拉桥连续组合箱梁整孔预制吊装节段预制拼装公轨合建

1.概况

崇明越江通道工程由南向北以隧道形式下穿长江南港,过长兴岛后以桥梁形式跨越长江北港,到达崇明岛,全长25.5km。跨越长江北港的上海长江大桥(成桥建筑效果如图1),全长16.55km,越江桥梁约10km。大桥按照双向六车道高速公路标准,设计行车速度100km/h,宽度33m,考虑崇明三岛建设与发展的需要,为有效利用资源、为未来交通留有更大的空间,设计需要考虑预留轨道交通过桥的功能。因此,在双向六车道高速公路标准的基础上,将两侧3m宽连续紧急停车带加宽至4.15m,桥面宽度成为35.3m。使之在保持六个车道的情况下另设两条轨道交通线路。汽车荷载标准为公路Ⅰ级;列车荷载按每辆车满载48t、长度16.5m、10辆编组考虑;轨道系荷载双线66kN/m,维修、逃生通道10kN/m。

本工程地处长江入海口,受台风影响频繁,抗风性能要求高;江面开阔,呈南北两个水道,水下砂体较多、地形复杂;桥区为典型软土地区,地质环境条件相对较为脆弱;主通航孔需考虑5万吨级船舶通航要求,桥墩基础的抗船撞要求高;施工条件复杂、施工时受水文、气象的影响较多;工程处于淡水与盐水交替环境,需研究针对性的防腐措施。因此,本桥设计不仅要面对复杂的自然与施工条件,还要处理好公路与轨道交通合建带来的技术问题,同时作为长江口标志性工程需要重视桥梁建筑景观。

2.总体布置

2.1桥式布置

大桥工程越江桥梁部分主要由主通航孔、辅通航孔、非通航孔桥梁等组成,越江桥梁总体布置见图2。其中,非通航孔桥梁包括两岸引桥与近岸浅滩区桥梁、江中深水区桥梁以及浅水浅滩区桥梁。越江部分桥梁总体布置及基本情况如表1。

表1

桥梁位置桥型与跨度

(m)

桥长

(m)

下部结构形式

与施工方法

上部结构形式

与施工方法

北岸陆上 30m跨PC连续梁 480混凝土管桩、现浇桥墩预应力箱梁,支架现浇近岸 50m跨PC连续梁 750钻孔灌注桩、现浇桥墩预应力箱梁,移动模架现浇辅航道主跨140mPC连续梁 440钻孔灌注桩、现浇桥墩预应力箱梁,挂蓝逐段现浇江中浅滩 60m跨PC连续梁1920钻孔灌注桩、现浇桥墩预应力箱梁,节段预制拼装江中深水 70m跨PC连续梁 630钢管打入桩、预制桥墩预应力箱梁,整孔预制吊装

江中深水 105m跨连续组合箱梁 700钢管打入桩、预制桥墩组合箱梁,整孔制作吊装

主航道主跨730m双塔斜拉桥 1430基础全部为钻孔灌注桩

辅助墩与边墩桥墩现浇

混凝土桥塔逐段现浇,钢箱

梁由梁上吊机对称吊装

江中深水 105m跨连续组合箱梁 700钢管打入桩、预制桥墩组合箱梁,整孔制作吊装江中深水 70m跨PC连续梁1610钢管打入桩、预制桥墩预应力箱梁,整孔预制吊装近岸 50m跨PC连续梁 750钻孔灌注桩、现浇桥墩预应力箱梁,移动模架现浇南岸陆上 30m跨PC连续梁 450混凝土管桩、现浇桥墩预应力箱梁,支架现浇南岸陆上21m跨PC连续梁 108混凝土管桩、现浇桥墩预应力空心板梁

2.2线形布置

在有关水文、通航等专题研究成果的基础上,按照水中桥轴线尽量与水流流向正交,满足两岸用地规划,使两岸接线占地拆迁少的原则,对桥轴线进行了布设。越江桥梁的平面路线呈“S”型,不仅使主通航孔桥轴线与水流夹角更加合理,同时桥梁景观也更加流畅多变。

纵断面设计分别考虑了通航净高要求、设计水位、桥梁景观、工程造价、线路技术指标等因素,并把比重最大的非通航孔桥作为重点,结合平面线形设计对全桥纵断面线形进行了高中低三个方案的比较后,选用了具有明显优势的低方案。

本桥结构形式多样、高低起伏,跨度布置也随所处位置变化,但是跨度与桥梁高度基本协调。另外,主通航孔桥,绝大部分为梁式桥,为此,对墩形与梁式桥的外形进行了协调;桥墩基本保持一致,梁的悬臂板长度及腹板倾斜度等外形尺寸也基本保持一致。

3.结构设计

3.1主航道斜拉桥

主航道桥为双塔双索面钢箱梁斜拉桥,跨度布置为107+243+730+243+107=1430m,见图3。桥塔为“人”字型混凝土结构,桥面以上为独柱形式,桥面以下分叉为倒V型与承台衔接;上部斜拉索锚固区采用钢锚箱结构,施工时分段吊装,桥塔结构如图4。钢箱梁为分离式结构,两个分离钢箱之间间距10m,由纵向间距15m的箱型钢横梁连接成整体;钢箱梁梁高4m,桥面全宽51.5m(含中间联系横梁和风嘴);采用强度高Q345qD钢材,顶面钢板厚度分16mm、14mm两种,底面钢板与内腹板厚度分为12mm、16mm、20mm、30mm四种,外侧锚固腹板厚度分为30mm、40mm、50mm、60mm四种加劲梁。钢梁截面如图5。标准节段长以及梁上标准索距均为15m,斜拉索采用空间扇形双索面布置形式,全桥共192根斜拉索,塔上索距为2.3m。拉索采用PE材料防护的预制平行高强度镀锌钢丝,钢丝直径为7mm,抗拉强度为1670Mpa,锚具采用冷铸锚。

主墩、辅助墩及边墩基础,均采用大直径钻孔灌注桩。主墩基础选择第⑾层为桩基持力层,辅助墩、边墩基础选择⑨2层为桩基持力层。主墩、辅助墩及边墩基础分别采用60根、18根、12根直径2500~3200mm变截面钻孔灌注桩,采用桩底后注浆工艺,以提高桩的承载能力,承台采用钢筋混凝土结构。主塔墩基础如图6所示。

本桥决定采用阻尼限位约束体系,约束参数综合考虑地震作用下的梁端位移、塔梁之间的相对位移、结构内力限制等,最终确定的阻尼系数C=10000,阻尼器的速度指数α=0.3。刚性限位的额定行程主要考虑正常运营作用下、以及发生地震的情况下阻尼器有足够的行程,确保不发生限制位移的情况,为有效限制纵风作用下的结构反应,同时为轨道交通创造尽可能有利的条件,应尽可能取较小的行程,本桥的额定行程最终取值为62cm。

3.2非通航孔连续组合箱梁桥

全桥共2联,分别布置在主通航孔桥两侧,跨度布置为90m+5×105m+85m,全长1400m。上下行车道分成两幅桥,均采用单箱单室截面,上翼缘混凝土板宽17.15m,两端悬臂长各 4.0m,槽型钢梁下翼缘底板宽7.0m,主梁横断面由斜腹板槽形钢梁与混凝土桥面板通过连接件结合而成,等高度梁梁高5m,其中钢梁高 4.5m,断面布置如图7。钢梁钢板厚度沿顺桥向变化,其中钢梁上翼缘板采用24mm~44mm,腹板采用18mm~28mm,底板采用24mm~46mm。混凝土桥面板厚度沿横桥向变化,悬臂端为200mm,钢翼缘上方为500mm,跨中为300mm。

每片箱梁钢结构拼装成整体,接着完成桥面板施工与钢梁结合形成组合截面,再整孔吊装。但是相应于中支点位置的20m长桥面板留待吊装后再施工形成组合截面。预制混凝土桥面板横桥向划分成4块,纵向每块长4.5m(块件之间留有50cm现浇接缝),桥面板配有横向预应力束。

负弯距区采用允许混凝土桥面板开裂,限制裂缝宽度的设计方法,因此桥梁纵向无预应力束。为了改善负弯矩区钢梁底板的受力性能,在各中支点处20m范围,下翼缘浇注厚度40cm混凝土板形成双层组合作用。同时采用支座顶升和高配筋率两种方法相结合,使负弯矩区混凝土桥面板在恒载作用下有一定的压应力储备,但在活载等后续荷载作用下使混凝土裂缝宽度限制在一定范围内。基础采用钢管打入桩,桩径1200mm,单幅桥每墩14~16根钢管桩。

3.3非通航孔70m跨PC连续梁桥

全桥总长2240m,基本跨度布置6×70m一联。采用等高、等宽度的单室箱梁,分成两幅桥,每幅箱梁桥面宽17.15m、高4.0m,断面布置如图8。采用整孔预制、整孔吊装的施工方法。安装施工时先简支,在浇注墩顶接缝段形成连续梁。预应力采用体内预应力体系,在以往跨海桥梁经验的基础上,为了便于预制、提高制梁设备通用性,箱梁底板与腹板内的正弯距束,在预制时锚于梁端,箱梁底板无锚固块。由于箱梁预制在东海大桥梁场进行,考虑到利用既有设备的需要,箱梁采用斜腹板以保持底板宽度适应既有制梁台座;对于预制梁重量进行了严格控制,中孔约2300t、边孔约2350t,以避免更大增加引起架梁对吊装船舶更高等级的要求。曲线段梁体的设计与直线段相同,顶板悬臂长度根据曲率调整,梁体预制长度保持不变,曲线段引起的长度差异通过墩顶接缝现浇段调节。基础采用钢管打入桩,桩径φ1200mm,单幅桥每墩11~13根钢管桩。

3.4非通航孔60m跨PC连续梁桥

全桥总长1920m,跨度布置7×60m,每联长度420m。采用等高、等宽度的单室箱梁,分成两幅桥,每幅箱梁桥面宽17.15m、高3.6m,断面布置如图9。采用节段预制、架桥机对称拼装的施工方法。拼装施工时逐孔推进,预制节段梁从已完成梁上运送;由于采用等跨连续梁,边跨施工时需要考虑架桥机承受半跨的节段重量。为了便于预制与拼装施工,箱梁底板与腹板变厚在三个节段内以台阶状进行,每个节段保持等厚;预制时按照无横坡进行,拼装时形成桥面横坡,在支座处设有调节垫块。节段划分以吊重120t为控制条件,标准节段长4m,墩顶段长度除重量控制外,需考虑利用架桥机施工的工作要求,跨中合拢段20cm;曲线段引起的梁体长度差异分散在各预制节段调节。预应力采用体内与体外束混合体系,顶板悬臂束以体内束为主,每跨合拢后底板束和弯起连续束两者兼用。基础采用φ1600mm钻孔灌注桩,单幅桥每墩6根、靠近辅通航孔段每墩7根。

3.5辅航道主跨140mPC连续梁桥

辅航道桥跨度布置为80+2×140+80m,全长440m。分成两幅,采用变高单室箱梁,桥面宽17.15m、高4.0m~8.5m,断面布置如图10。采用挂蓝分节段现浇施工,节段长度以4m为标准长度,中支点附近节段长度采用3m。采用三向预应力体系,全部采用体内预应力束。基础采用钻孔灌注桩,单幅桥主墩采用19根φ2500mm钻孔桩。由于桩身强度受地震力控制,采用变截面桩,上部桩身直径加大到3000mm。

4.斜拉桥主要计算结果

4.1结构变形

根据计算结果,主梁跨中挠度,汽车荷载作用下为66.5cm、挠跨比1/1100;汽车荷载与轨道交通荷载共同作用下为137.7cm、挠跨比1/530,梁端转角为3.0‰。

4.2梁塔受力

根据总体分析计算结果,成桥状态,主梁上缘最大压应力为97MPa,主梁下缘最大压应力为109MPa。主要组合下,主梁上缘最大压应力为135MPa,最大拉应力为16MPa;主梁下缘最大压应力为139MPa,最大拉应力为25MPa。在纵向、横向静风荷载、温度荷载等其他荷载组合下,同时考虑主梁的第二体系、第三体系应力,主梁应力均满足要求。

根据长江大桥的特点,对裸塔,最大双悬臂、最大单悬臂和成桥等四个主要阶段进行了重点计算,各阶段均考虑了纵向、横向以及纵横耦合的情况。在主要组合下,主塔最大压应力为15.9MPa,无拉应力出现;在极端风荷载、地震荷载作用下,构件按照普通钢筋混凝土构件控制其极限承载能力,裂缝宽度控制在0.2mm内。计算表明,主塔在施工过程以及成桥正常运营状态均满足受力要求。

4.3稳定分析

本桥塔高,跨径大,设计基准风速高,其施工过程以及成桥阶段的稳定性直接影响工程的安全。采用了弹性稳定、弹塑性稳定分析两种方法对结构进行了稳定分析。弹性稳定计算表明各施工阶段以及成桥阶段正常运营情况下稳定系数都大于4。

弹塑性稳定分析采用边缘纤维屈服准则作为极限强度判别标准,以结构构件边缘应力达到屈服强度时的荷载与施工阶段的实际荷载的比值作为稳定安全系数,得到成桥状态和主要施工阶段在主要荷载工况下的弹塑性稳定系数都大于1.7。

4.4抗风和抗震

本桥风环境较为严峻,通过结构选型、CFD数值仿真模拟和风洞试验深入研究了大桥的抗风稳定性,以确保施工和成桥状态下的抗风安全。研究结果表明,本桥具有良好的抗风稳定性能,裸塔状态的风致响应在结构允许的范围之内,主梁双伸臂施工状态设有抗风临时墩后可满足抗风要求,成桥状态具有足够的抗风安全性。

抗震分析除采用反应谱方法对结构进行了地震反应分析外,还采用时程分析方法对结构进行了分析,给出了100年10%(P1概率)和100年3%概率(P2概率)地震时程作用下全桥结构的地震反应。经计算表明,在地震作用下,主墩高桩承台基础结构的受力相当大并控制设计;辅助墩、边墩支座剪力较大,常规支座不符合P1概率水平的抗震性能目标,必须选用特殊支座。

5.轨道交通过桥研究

5.1技术特点

本桥考虑城市轨道交通过桥,采用公路铁路同平面共建形式,既不同于典型公路桥,也不同于典型的轨道交通桥梁。本桥设计从总体上具有较多公路桥梁的特征,同时必须考虑轨道交通的技术要求。从轨道交通对桥梁的技术要求看,本桥需要针对各类桥梁的不同特点,结合具体情况采取相应的技术措施。需要注意的是城市轻轨和大铁路、高速铁路对桥梁刚度要求之间的区别。大铁路货运列车荷载大、振动大,桥梁刚度要求最严;高速铁路荷载轻但车速高,列车过桥时,车桥都将产生较大振动,对桥梁刚度要求也很严;城市轨道交通荷载小、过桥速度低,对桥梁刚度要求可以有较大的放松。另外,公路铁路同平面一体的桥梁形式具有较大的横向刚度,这使得上部梁的横向刚度不再成为控制因素,甚至主通航孔大跨度斜拉桥也可自然满足列车运行对于桥梁横向刚度的要求。

5.2相关技术要求

(1)设计活载

关于公铁合建桥梁,现行铁路桥梁规范规定双线铁路活载组合时,可以取用0.9的折减系数,同时在与公路活载组合时,在多线公路活载按照公路规范折减的情况下,仍然对折减后的公路活载予以折减;地铁设计规范则规定双线铁路活载组合时不予折减,主要考虑到城市轨道交通满载几率高,对于公铁一体化桥梁公路与铁路活载组合时是否折减未作规定。考虑到城市轨道交通满载率高、行车密度大,对双线铁路活载组合时不予折减,轨道交通活载与公路活载组合时也不予折减,仅对公路活载根据其车道数按规范进行折减。(2)竖向挠度

根据国内外铁路与地铁设计规范,对于梁式桥,采用L/1500的刚度标准;对于主航道大跨度斜拉桥,根据国内外实际建设经验,采用L/500的刚度标准。经过计算分析,本桥各类桥梁结构均可满足以上主梁竖向挠度标准的要求。

关于大跨度桥梁,各国铁路规范均无明确的刚度限制标准,从国内外已经建成的公铁两用桥情况看,斜拉桥的挠跨比在1/350~1/550之间,悬索桥的挠跨比在1/200~1/250之间。这些桥梁的竖向刚度大大小于有关规范关于中小跨度铁路桥梁的规定值,但这些桥梁的运营情况均很好。

(3)桥墩纵向刚度

桥墩纵向刚度的限值规定,主要有两个目的,一是满足无缝线路的要求,二是满足列车运营安全要求。本桥非通航孔桥连续长度在350m以上,多跨长联结构梁缝处的温度变形较大,桥上设置超长无缝线路是困难的。本桥大多为高桩承台,且桥墩较高,通过增加桥墩刚度满足无缝线路的设置要求,经济上极不合理,设计上也存在困难,要采用简支体系的桥梁结构,则更加不合理。为此,将轨道在梁缝处断开,设置轨道伸缩调节装置,对基础设计不再受断轨力控制,对桥墩的纵向水平刚度要求也可放宽;至于行车安全的问题,正如前所述,城市轨道交通荷载小、过桥速度低,对桥梁刚度要求可以有较大的放松,为此进行了列车走行性分析研究,结论是完全可行的。

(4)梁端转角

不同的铁路桥梁规范,针对不同的列车标准,对梁端转角作出了不同的要求,本桥根据城市轨道交通列车的情况,梁端折角采用3‰的限值。计算表明除主通航孔斜拉桥外,其它桥梁在公路与轨道交通活载的共同作用下均可控制在3‰以内,主航道斜拉桥在公路与轨道交通活载的共同作用下,梁端折角可控制在3‰,但与邻跨叠加后超过3‰。为此,考虑设置伸缩缓冲装置来解决,或采用适当措施降低梁端折角值。

(5)轨道平顺性控制标准

根据铁路及地铁规范,对本桥轨道不平顺控制确定了如下标准:①扭曲(纵向3m梁段发生扭曲变形,轨距范围轨面平整度)≤3mm;②轨面水平度≤11mm;③轨面纵向高低(纵向3m)≤11mm。根据计算分析本桥在考虑结构总体变形与局部变形的情况下,适当采取措施可以满足要求。

5.3列车走行性分析

本桥主通航孔斜拉桥跨度大、刚度低,为了论证刚度的合理性及行列安全与舒适性,开展了车桥耦合振动仿真分析研究。分析研究中,桥梁采用空间杆系有限元模形,建立了列车与汽车模形,考虑了道路与轨道的不平顺。仿真计算结果表明,车辆最大横向加速度为1.01m/s,最大竖向加速度为0.887m/s,有足够的抗脱轨安全度;车辆过桥斯佩林指标,横向最大值2.25,横向最大值2.01,乘坐的舒适度指标达到优秀。

在特殊气候条件对过桥车辆走行性的影响,目前国内外的研究并不深入。从已有的研究成果看,有风时,车辆的运行性能指标一般会有一定程度的降低,但在一定的风速下,其安全性和舒适性可以得到保证;风速更大需减速运行,通常当风速达到25m/s(9级风)时,车辆停运。具体需进一步开展专题研究,并提出工程与管理措施。

6.结语

上海长江大桥为适应复杂的自然条件与建设条件,采用了多种结构形式,同时还要考虑轨道交通过桥的要求,设计者要面对多种多样的技术问题,面临更多、更大的挑战,本桥主航道是目前跨度最大的公铁合建斜拉桥、高墩区桥梁大规模采用了大跨度连续组合箱梁等新技术。要求设计者必须随科技水平的提高及时更新观念、重视先进建设经验与相关研究的新进展,合理地应用于具体工程之中。本文简要介绍了上海长江大桥的技术特点,希望对桥梁技术发展有所裨益。

参考文献

[1]上海市政工程设计研究总院上海崇明越江通道工程上海长江大桥设计文件

[2]同济大学桥梁工程系上海长江大桥主桥合理刚度值与列车走行性分析研究报告,2005.11

图1

图3

图4 图6

图5

图7 图8

图9 图10

上海长江大桥作文.doc

上海长江大桥作文 上海长江大桥跨江段10公里,全桥长16.5公里,其设计方案为技术成熟的斜拉桥桥型,按双向6车道设计,时速为每小时100公里。以下是我为大家整理的作文上海长江大桥,希望你们喜欢。 上海长江大桥作文篇1 观上海长江大桥有感 本月比较忙,去下属我部门所管辖的内设医疗机构进行年终考核检查,前天考核地是长兴岛,岛上有江南造船厂门诊部和振华港机卫生所都是大型企业。公私兼顾,大桥正式开通有近三个星期了,我们车子从上海长江大桥上经过,正好也参观一下这座大桥,大桥建造得正是气势宏伟,非常的壮观,放眼望去一望无际滔滔长江水尽收眼底,真的好美! 而更实际点来说应该说彻底改变了崇明岛上的人们自故只能依靠水路出行的状况,现在即使刮风雾天都能出岛,所以这对生活在岛上的人来说无疑是一件天大的好事。对企业来说更是好处多多。 不顾美中不足,设计时没有考虑周全的是崇明陈家镇那边上桥前很好的四车道,忽又并成了一车道一段,而后再是四车道,那么多来来往往的车子全要经过这窄窄的一车道,很堵,崇明不缺土地,设计成这样,这实在是一大败笔。 到了长兴岛,检查完工作,顺便在路边集市上买桔子,长兴岛的土质适宜种桔,桔子远近有点名气很甜,又很便宜,买了50斤,回到办公室给大家品尝。

上海长江大桥作文篇2 上海长江大桥 上海长江大桥跨江段10公里,全桥长16.5公里,其设计方案为技术成熟的斜拉桥桥型,按双向6车道设计,时速为每小时100公里。不过,这座长江大桥的主塔造型不同于杨浦大桥的倒Y型,也不同于徐浦大桥的A字型,更不同于南浦大桥的H型,而是形如"人"字,平直的桥面从腰际穿过。因此,作为今后的"长江门户第一桥",秀丽而大气的景观也将是上海长江大桥的特色之一。 连接崇明岛和长兴岛的上海长江大桥主通航孔跨径达到730米,这一标准超过了上海已建的任何一座大桥,比东海大桥主通航孔还大300多米,在国内仅次于苏通大桥和香港的昂船洲大桥,在世界上位居第五。据介绍,这一跨度能满足规模3万吨的集装箱货轮及5万吨的散装货轮的双向通航要求。 20xx年11月28日,上海长江大桥主塔顺利封顶。上海长江大桥是上海市长江隧桥工程的主体工程之一。根据目前的施工总体进度安排,上海长江大桥将于20xx年6月实现全桥结构贯通。 上海长江大桥作文篇3 上海长江大桥 星期五的傍晚,妈妈开车带我去看望爸爸,爸爸在上海崇明岛工作。路上,我好奇地问妈妈:"以前去爸爸那里要先乘火车、地铁,再乘轮船,现在为什么可以直接开车去呢?"妈妈笑眯眯地看着我说:"等一会儿你就知道了。"

2021年新大象版四年级科学下册1.5 和谐相处是一家 教学设计+反思

5 和谐相处是一家 【教学分析】 本节课是《生命世界》单元的总结课,教学内容主要有四个,一是讨论人类在生产、建筑等方面的活动对动物和植物造成的影响;二是通过阅读资料了解人类保护动物的具体事例;三是举行辩论会,表达交流人类斥巨资建造动物通道值不值得;四是拓展活动,给小鸟安个家。因活动内容较多,本课可安排2个课时,第1课时完成前3个活动,第2课时完成制作鸟巢的活动。也可以把制作鸟巢当作课下作业布置给学生,这样1课时也可完成。 学生对于人类生产、建筑等活动对动物和植物造成的影响并不陌生,但是学生的认知仅仅是停留在表面,且多碎片化,没有系统梳理过此类问题,对于保护动植物的认识也不深刻,但是通过本单元前面四节课的学习,学生对于动植物生存的条件,环境发生变化后会对动植物产生很大的影响有了比较系统、全面的认识,再经历了收集人类活动对动植物造成影响的资料、参加辩论会等实践活动,帮助学生认识到人类和动植物之间互相影响,互相依存的关系,懂得保护环境,以及人与自然和谐相处的重要性。 【教学目标】 (1)能说出人类生产、建筑等活动对动植物生存产生的影响。 (2)在教师引导下,能正确讲述自己的观点,倾听别人的意见,并与之交流。 (3)具有保护动植物的意识,能做一些保护动植物的小事。 【教学准备】 举行辩论会的前期准备,比如各种支撑自己观点的图片、文字、数据、视频等,以及学习辩论会的规则和技巧等相关知识和会场的布置等。 收集人类在保护动物、植物方面已经做出贡献的资料和信息;收集有关动物、植物纪念日的资料。 【教学过程】 (1)讨论 师:同学们,人类具有无穷的智慧和伟大的创造力,随着科技的进步,人类在生产、建筑等方面的活动范围越来越广,对动植物造成了很大的影响。那么人类的活动对其他动物和植物造成了哪些影响?请观看视频,并结合自身经验与小组成员进行讨论。 (播放视频,小组讨论) 师:看了视频你有什么感受?请同学们举例说说人类活动对动物和植物造成的影响。 生:随着旅游业的发展,在山区出现了大批供游人食宿、娱乐、休闲、购物的楼堂馆所,大量的动物被迫搬往森林、山间更深处生活,被人类抓住的就当作野味杀害了,而没有了植物保护的土地更容易水土流失,在恶劣天气下更容易造成山体滑坡。 生:人们为了食用、买卖鱼翅大量捕杀鲨鱼,导致鲨鱼数量锐减。 生:人口数量不断增长,居住用地大量侵占了动植物的栖息地。 生:…… 师:这些都是人类伤害动植物的例子,有没有积极的、保护动植物的例子? 生:人们建立了各种自然保护区,比如四川卧龙国家级自然保护区,主要保护大熊猫等珍稀动物。 生:很多地方都建立有森林公园、植物园、湿地公园等等。 生:我国先后颁布了《森林法》《野生动物保护法》《自然保护区条例》等一系列法律法规来保护动植物。 师:人和动物、植物都是生物。人类活动对动植物的影响主要有两大方面,一是有利于或改善其他生物的生存环境;二是不利于或破坏其他生物的生存环境。从目前来看,人类大

沪通大桥

沪通大桥 各有关单位、船舶: 因沪通长江大桥工程建设需要,沪通长江大桥主航道桥区水域航路将进行调整。现将有关情况通告如下:

一、大桥概况 沪通长江大桥位于长江澄通河段,南岸于张家港十三圩港闸下游约400m处垂直主航道方向跨越长江,大桥全长约11千米。主航道桥为双塔五跨斜拉桥,共设2个主桥墩、2个边墩及2个辅助墩。主桥墩由北向南分别为#28墩、#29墩。 二、桥区水域 桥区水域上界:主航道桥轴线上游3000米(即桥施#6红、黑浮联线); 桥区水域下界:主航道桥轴线下游3000米(即桥施#1红、左右通航浮联线)。 三、施工水域 (一)主桥墩:横距#28墩、#29墩中心垂线左右各200米,上、下游各500米。 (二)施工水域如有调整将另行通告。 四、桥区航路及航法 (一)桥区水域主桥墩之间设置约700米宽的航道,其中设有200米宽的上行通航分道,100米宽的分隔带以及400米宽的下行通航分道;在#28墩北侧设置约200米宽的上行推荐航路;红浮联线外不设下行推荐航路。 (二)上行大型船舶沿上行通航分道航行;下行大型船舶沿下行通航分道航行。 (三)上行小型船舶航经桥施#1左右通航浮后,沿北墩#1、北墩#2、桥施#6黑浮联线北侧航行。下行小型船舶航经#36红浮后沿桥施#6红浮至桥施#1红浮联线内侧航行,沿通航分道右侧边缘行驶,航经桥施#1红浮后沿#32红浮外侧航行。 (四)船舶航经桥区水域应遵守《长江江苏段船舶定线制规定(2013)》及《长江江苏段桥梁施工期水上交通安全监督管理规定》的相关要求。 五、桥区船位核对点 上行船位核对点:长江#32浮; 下行船位核对点:长江#36浮。 船舶航经船位核对点时应在VHF10频道向张家港海事局VTS中心报告。下行船舶航经长江#32浮时应在VHF11频道向南通海事局VTS中心报告。 六、长江江苏段9号锚地、7号停泊区予以撤销,任何船舶未经批准不得在此锚泊。 七、本通告所涉航路于2014年5月18日0000前调整到位。施工期桥区水域的标志布设及调整见航道部门发布的航道公告及通电。 特此通告 2014年5月12日 沪通铁路长江大桥- 详细参数 类型:斜拉桥 主跨:1092m 布置:168+462+1092+462+168 塔高:345m 最长拉索:597m 车道数:双向6车道 铁路线数:4线 总长:11km 通航净高:62m 设计行车时速:100km/h 机车通行速度:200km/h--250km/h

重庆长江大桥地图

《重庆长江大桥地图》发布快来看看你走过几座 A-A+2014年8月21日06:41重庆晚报评论 重庆晚报讯“山城”、“江城”的地形地貌,造就了重庆“桥都”美誉。据粗略估计,目前重庆全市的各种桥梁已超过一万座。仅就长江大桥而言,在目前全国长江上已建设好的70多座大桥中,重庆就有32座,居长江流域各省市之最。这32座各具风采的长江大桥,你走过几座?昨日,重庆市地理信息中心、重庆地理地图书店发布《重庆长江大桥地图》,拿着这份地图去走桥,去看看“桥都”的美吧。 主城有11座长江大桥 据地图编制方介绍,完全位于重庆主城九区境内的长江大桥有11座,包括鱼洞长江大桥、马桑溪长江大桥、李家沱长江大桥、鹅公岩长江大桥、菜园坝长江大桥、长江大桥复线桥、重庆长江大桥、东水门长江大桥、朝天门长江大桥、大佛寺长江大桥、鱼嘴长江大桥。 其中,东水门长江大桥是最近建成的一座,于今年3月通车。 此外,广阳岛大桥和南坪坝大桥,是连接长江南岸与广阳岛、南坪坝两座长江江心岛的大桥,桥在长江之上,却没有完全跨越长江。因此,地图没有将它们纳入长江大桥之列。 公轨两用桥跑轻轨地铁 据介绍,重庆目前有5座公轨两用桥,分别是江津鼎山长江大桥、鱼洞长江大桥、菜园坝长江大桥、东水门长江大桥、朝天门长江大桥。这些桥都是既跑汽车,也能跑轻轨、地铁。 还有四座铁路专用桥,分别是渝黔铁路重庆白沙沱长江大桥、渝怀铁路长寿长江大桥、渝利铁路涪陵韩家沱长江大桥、宜万铁路万州长江大桥。 以及六座高速专用桥,分别是外环江津长江大桥(绕城高速)、马桑溪长江大桥(内环快速路)、大佛寺长江大桥(内环快速路)、鱼嘴两江大桥(绕城高速)、涪陵青草背长江大桥(南涪高速)、忠州长江大桥(沪渝高速)。

描写武汉长江大桥

描写武汉长江大桥 今年春节,我没有像往常一样挨家挨户到每个亲戚家拜年,因为我外出旅游,去赴与武汉长江大桥之约。 大概是在两年前,我翻看一本诗集,看到毛主席写的一首《水调歌头·游泳》: 才饮长沙水,又食武昌鱼。万里长江横渡,极目楚天舒。不管风吹浪打,胜似闲庭信步,今日得宽馀。子在川上曰:逝者如斯夫! 风樯动,龟蛇静,起宏图。一桥飞架南北,天堑变通途。更立西江石壁,截断巫山云雨,高峡出平湖。神女应无恙,当惊世界殊。 写得可真好!当时我就问妈妈,这是什么大桥,我要去看看。妈妈告诉我是武汉长江大桥,并约定以后来看武汉长江大桥。所以今年我来看你了——武汉长江大桥。 远望江上的景色,只见远处被雾气所笼罩的晴川阁与长江这头的黄鹤楼隔江相望。晴川阁位于汉阳的龟山上,黄鹤楼在武昌的蛇山上,仿佛本是一对情人,却也奈何不了这天堑长江,最终只能被分隔两岸,苦苦深情凝望。 几天来,武汉一直是阴天,白天的长江两岸竟然是雾蒙蒙的。在离江边还很远的地方,就看见高大的长江大桥像一条长龙横跨长江两侧。顺着大桥的台阶,拾级而上,走上桥面,俯瞰晚上的长江两岸,灯光点点。天渐渐黑了,长江大桥上的灯全部亮了,

两岸的灯火倒映在江上,组成一幅优美的图画。大桥的上层的汽车来来往往、络绎不绝;大桥的第二层上,偶尔一列高速飞驰的火车呼啸而过;桥下,间或有一艘轮船缓缓通过。大桥上的灯不时变换着颜色,伴随着汽车、火车、轮船的声音,组成了一首美妙的乐章。灯火柔柔地洒在江面上,在江水的波动中,酥酥地颤着,颤得让人心疼。 站在大桥上,四处眺望,不经意间就看到了毛主席游泳渡长江时的照片。我又让我不由地想起《水调歌头·游泳》。这首诗词就是毛主席在畅游长江后写下的。毛主席写这首诗词的时候,武汉长江大桥还没有建成。而这座中国首座公路铁路大桥让长江天堑变成了通途,它连接了武昌和汉阳,也让隔江而立的晴川阁和黄鹤楼的“会面”变得更容易。这座大桥屹立在长江上已经六十多年了,它见证了祖国经济的飞速发展,见证了长江两岸的美景。 武汉长江大桥真的很壮美。 今年春节我在长江,因为我和武汉长江大桥有个约定。武汉长江大桥,我来了。而且,我还会再来的。

上海长江大桥技术特点

上海长江大桥技术特点 邵长宇卢永成 (上海市政工程设计研究总院上海 200092) 内容提要:建设中的上海长江大桥位于长江入海口,水下地形复杂,地质条件差,受台风影响频繁。为适应复杂的自然与建设条件,采用了多种结构形式,越江桥梁包括主跨730m斜拉桥、主跨105m连续组合箱梁、70m跨度整孔预制吊装PC箱梁、60m跨度节段预制拼装PC箱梁、50m跨度移动模架现浇PC箱梁、主跨140m挂蓝现浇PC箱梁等结构形式。同时,大桥需要预留轨道交通过桥功能,特别是主航道主跨730m斜拉桥是世界最大跨度的公路与轨道交通合建斜拉桥。因此,设计不仅要面对复杂的自然与施工条件,还要处理好公路与轨道交通合建带来的技术问题。本文简要介绍上海长江大桥的技术特点。 关键词:上海长江大桥斜拉桥连续组合箱梁整孔预制吊装节段预制拼装公轨合建 1.概况 崇明越江通道工程由南向北以隧道形式下穿长江南港,过长兴岛后以桥梁形式跨越长江北港,到达崇明岛,全长25.5km。跨越长江北港的上海长江大桥(成桥建筑效果如图1),全长16.55km,越江桥梁约10km。大桥按照双向六车道高速公路标准,设计行车速度100km/h,宽度33m,考虑崇明三岛建设与发展的需要,为有效利用资源、为未来交通留有更大的空间,设计需要考虑预留轨道交通过桥的功能。因此,在双向六车道高速公路标准的基础上,将两侧3m宽连续紧急停车带加宽至4.15m,桥面宽度成为35.3m。使之在保持六个车道的情况下另设两条轨道交通线路。汽车荷载标准为公路Ⅰ级;列车荷载按每辆车满载48t、长度16.5m、10辆编组考虑;轨道系荷载双线66kN/m,维修、逃生通道10kN/m。 本工程地处长江入海口,受台风影响频繁,抗风性能要求高;江面开阔,呈南北两个水道,水下砂体较多、地形复杂;桥区为典型软土地区,地质环境条件相对较为脆弱;主通航孔需考虑5万吨级船舶通航要求,桥墩基础的抗船撞要求高;施工条件复杂、施工时受水文、气象的影响较多;工程处于淡水与盐水交替环境,需研究针对性的防腐措施。因此,本桥设计不仅要面对复杂的自然与施工条件,还要处理好公路与轨道交通合建带来的技术问题,同时作为长江口标志性工程需要重视桥梁建筑景观。 2.总体布置 2.1桥式布置 大桥工程越江桥梁部分主要由主通航孔、辅通航孔、非通航孔桥梁等组成,越江桥梁总体布置见图2。其中,非通航孔桥梁包括两岸引桥与近岸浅滩区桥梁、江中深水区桥梁以及浅水浅滩区桥梁。越江部分桥梁总体布置及基本情况如表1。 表1 桥梁位置桥型与跨度 (m) 桥长 (m) 下部结构形式 与施工方法 上部结构形式 与施工方法 北岸陆上 30m跨PC连续梁 480混凝土管桩、现浇桥墩预应力箱梁,支架现浇近岸 50m跨PC连续梁 750钻孔灌注桩、现浇桥墩预应力箱梁,移动模架现浇辅航道主跨140mPC连续梁 440钻孔灌注桩、现浇桥墩预应力箱梁,挂蓝逐段现浇江中浅滩 60m跨PC连续梁1920钻孔灌注桩、现浇桥墩预应力箱梁,节段预制拼装江中深水 70m跨PC连续梁 630钢管打入桩、预制桥墩预应力箱梁,整孔预制吊装

武汉旅游导游词

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 武汉旅游导游词 各位游客: 你们好,欢迎你们来到这里旅游。 武汉是位于长江、汉水交汇之处的一颗璀璨明珠,是湖北省省会和政治、经济、文化的中心,也是我国6大中心城市之一。其地理位置为东经113°41′~115°05′,北纬29°58′~31°22′,地形属于残丘性河湖冲积平原,形状酷似一只翩翩起舞的彩蝶。全市东西最大横距为134公里,南北最大纵距为155公里,面积8467平方公里,1996年底人口716万,其中城区面积3963.5平方公里,人口486万。市以下设9个城区、2个郊区、2个县。城区有江岸区、江汉区、硚口区、汉阳区、武昌区、洪山区。青山区、蔡甸区、江夏区,郊区胡东西湖区、汉南区,市属县为黄陂县和新洲县。武汉属亚热带大陆性湿润季风气候,四季分明,夏热冬寒。每年7月气温最高,日均温28.8℃;1月气温最低,日均温3.7℃。每年3~6月和9~11月,是旅游的最佳时期。       武汉也称为”江城”。唐代大诗人李白在《与史郎中饮听黄鹤楼上吹笛》诗中写道:”一为迁客去长沙,西望长安不见家。黄鹤楼中吹玉笛,江城五月落梅花。”从 1 / 6

此”江城”成为武汉的代称。 武汉襟江带河,交通便利,又誉为”九省通衢”之地。在幅员辽阔的祖国版图上,武汉位于东半部经济相对发达地区的中心,南北东西方向的广州、北京、上海、重庆、西安等特大城市,均距武汉约1200公里。这种居中的地理位置,加上黄金水道长江与南北铁路大动脉京广线在这里交叉成”十”字结构,再加上不断完善的公路网和航空港建设,使武汉成为了我国内陆最大的水陆空综合立体交通枢纽。在全国国土开发和建设布局的基本框架中,武汉处于沿江主轴线和京广二级轴线的结合部位,具有承东启西、沟通南北、维系四方的作用。       武汉通常被称为“武汉三镇”,“三镇”指的是武昌、汉口、汉阳这三块被长江和汉江隔开的地方。汉口是武汉最繁华最热闹的商业区,也是华中地区商品集散的中心;武昌是武汉高等学府集中的文化区,是武汉现代城市文化的体现;汉阳则是市政府重点发展的开发区,凸现着武汉的未来。武汉的绝大部分景点都集中在武昌和汉阳,向中外游客展现“江城”风情万种的迷人风采和魅力。       武汉市旅游部门整合全省的旅游资源,开发了“一绝、两特、三精”(一绝品即武当山,两特品即楚文化、清江民俗风情,三精品即长江三峡、神农架、三国文化)

武汉长江大桥的故事

桥 武汉因地理位置特殊,被长江和汉水分成了武汉三镇。现在的长江和汉水上各架起了7座大桥,其中最老的一位便是长江大桥了。 武汉长江大桥,是我国首座跨越“天堑”长江的桥梁,被称为“万里长江第一桥”。 长江大桥北起汉阳蛇山,止于武昌龟山,是新中国成立以来修建的首座公路铁路两用桥,上层是公路桥,下层是双向铁路桥。它于1955年开工修建,1957年10月15日建成通车。 大桥的建设得到了苏联政府的大力支持,为大桥的设计工作提供了大量的指导。后来,因某种原因,中苏关系破裂后,苏联政府把专家们统统撤走了,图纸也带走了!最后的建设工作是在我国著名桥梁专家——茅以升先生的主持下完工的。毛主席在武汉畅游长江后,写下的《水调歌头.游泳》中“一桥飞架南北,天堑变通途”正是描写长江大桥对我国南北交通的重要作用。 武汉长江大桥的建成极大地改善了南北交通,提升了中国桥梁建设的水平。同时,对全国人民通过自力更生,艰苦奋斗开展建设新中国的高潮是一个很大鼓舞。 周末,老爸带我去桥上参观,登上桥头堡,里头是用大

理石贴的墙面,它有双层的屋檐,四角上翘,我想这就是所谓的“琼楼玉宇”吧。 走到大桥中央,环顾四周,武汉三镇融为一体,尽收眼底,青色的汉江和泥色的长江在不远处交汇,客轮、货轮、渔船在桥下穿梭,汽笛声此起彼伏,好一番繁忙的景象。 我和老爸从武昌桥头沿石梯下到了观景平台,放眼望去,巨大的钢梁,雄壮的桥墩,动车组从我身边呼啸而过。老爸拿出相机在快门声中留下了我和大桥的合影。指着照片,他激动地说:“30年前,我的老爸也在这儿给我拍下了同样的照片,那时桥上走的还是蒸汽机车。” 原来,这座桥不仅给了我们交通的便利,更多的是美好的回忆。

上海长江大桥崇明岛接线工程路面结构层施

路面结构层施工方案 一、编制依据 1、崇明岛侧接线工程《招标文件》 2、崇明岛侧接线道路工程施工图 3、上海长江隧桥B8标施工调查报告 4、《公路工程质量检验评定标准》(JTG F80/1-2004) 5、《公路路基施工技术规范》(JTJ033-95) 6、《公路路面基层施工技术规范》(JTJ034-2000) 7、《公路路基路面现场测试规程》(JTJ059-95) 二、工程概况 上海长江大桥崇明岛接线设计为双向6车道高速公路,标准路线宽度33.5m,陈海立交匝道标准路线宽度为8.5m。本标段路基总长5831m(主线3145m,匝道2686m)。主线路面结构层为15cm级配碎石垫层,45cm 水泥稳定级配碎石;匝道路面结构层为15cm级配碎石垫层,40cm水泥稳定级配碎石。 级配碎石垫层的碎石压碎值≤30%,重型击实标准压实度≥96%,水泥稳定碎石重型击实标准压实度≥98%。 三、施工管理组织机构 业主单位:上海长江隧桥建设发展有限公司 设计单位:上海市政工程设计研究院 监理单位:上海长江大桥总监理工程师办公室 施工单位:中铁四局集团有限公司 四、总体施工安排 本标段路面主要工程数量如下表所示: 路面工程主要工程数量表

为保证路面施工质量,安排一个作业队进行路面结构层施工。根据前期路基施工进度,2008年3月20日~2008年6月30日进行主线起点至白陈公路地道段主线路面结构层施工,2008年7月1日~2008年10月1日进行白陈公路地道至主线终点段路面结构层施工,2008年8月1日~2008年11月28日进行互通区匝道路面结构层施工。 五、施工准备 (一)人员准备 项目部主要管理人员一览表 (二)机械设备 主要机械设备配置表

上海振华重工沪通长江大桥制造验收规则详解

沪通长江大桥HTQ-1标钢桁梁GL02包钢梁制造验收规则 上海振华重工(集团)股份有限公司沪通铁路沪通长江大桥GL02包项目经理部

2014年11月

0.前言 本规则以《铁路钢桥制造规范》(TB 10212-2009)及沪通长江大桥制造合同文件及设计文件为依据,吸收了我国多年来铁路钢桥制造的成功经验和科研成果,参考了一些国内大桥的制造标准并结合本桥的结构特点而制定。 本规则正文共分为八章: ——1:总则; ——2:定义; ——3:材料; ——4:制造; ——5:验收; ——6:包装、存放及运输; ——7:工地连接; ——8:高强度螺栓管理及施工。 本规则附录A、附录B、附录C、附录D、附录E、附录F均为规范性附录。 本规则附录H为提示性附录。

目录 0.前言 (1) 1 总则 (1) 1.1 适用范围 (1) 1.2 引用的规范及标准 (1) 2 定义 (3) 3 材料 (4) 3.1 一般规定 (4) 3.2 钢材 (4) 3.3 焊接材料 (5) 3.4 圆柱头焊钉、高强度螺栓连接副 (5) 3.5 涂装材料 (5) 4 制造 (6) 4.1 一般规定 (6) 4.2 钢板预处理 (6) 4.3 切割 (6) 4.4 零件矫正和弯曲 (8) 4.5 边缘加工 (9) 4.6 制孔 (10) 4.7 杆件组装 (11) 4.8 焊接 (14) 4.9 杆件矫正 (22) 4.10 试装 (24) 4.11 防腐涂装 (26) 5 验收 (29) 5.1 一般规定 (29) 5.2 出厂文件 (31) 6 包装、存放及运输 (32) 6.1 包装 (32) 6.2 存放及发运 (32) 7 工地焊接 (33) 7.1 范围 (33) 7.2 工地拼装焊接前的准备工作 (33) 7.3 工地焊接 (33) 8 高强度螺栓管理及施工 (34) 8.1 高强度螺栓管理 (34) 8.2 高强度螺栓连接的施工 (34) 附录A(规范性附录)钢材供货技术条件 (38) 附录B(规范性附录)原材料复验规程 (41)

上海长江隧桥概况

上海长江隧桥概况 位置 上海长江隧桥(崇明越江通道)工程位于上海东北部长江口南港、北港水域,是我国长江口一项特大型交通基础设施项目,该工程的建成将改善上海市交通系统结构和布局,加速长三角地区经济一体化,更好地带动长江流域乃至全国经济发展,提升上海在全国经济中的综合竞争力。工程起于上海市浦东新区的五号沟,经长兴岛到达崇明县的陈家镇,全长25.5公里。 修建 工程采用“西隧东桥“方案,即以隧道形式穿越长江口西南港水域,长约8.95公里;以桥梁形式跨越长江口东北港水域,长约16.65公里。工程按高速公路标准,双向六车道,设计荷载公路I级,设计车速80-100公里/小时。1993年,上海长江隧桥的建设设想被正式提出;2003年2月,崇明越江隧道工程项目建议书获国务院批准立项;2004年8月中旬,崇明越江通道项目可行性研究报告获国务院发改委批准。2004年12月28日,上海长江隧桥东线工程正式奠基启动。总投资123亿元。上海长江隧桥于2009年10月31日晚上18:00正式通车。 上海长江隧道 隧道 上海长江隧道长8.95公里,西起上海浦东区五号沟郊区环线立交,穿越西南港水域,在长兴岛新开河处登陆,接长兴潘园公路立交。其中穿越水域部分达7.5公里。隧道盾构直径为15.2米,是世界上最大直径的盾构隧道。已经获得中国世界纪录协会世界最大直径的盾构隧道项目候选世界纪录。双向即六车道,设计车速为80公里/小时。 宽敞的三车道、柔和的6000盏80瓦LED照明灯,让驾驶员的行车更为舒适。80公里的时速让你还没有仔细欣赏浦东段的蓝色腰线,长兴岛段的绿色腰线已

经提醒你,此刻的你已经到达长江的彼岸。 上海长江大桥 上海长江大桥起于隧道长兴岛登陆点,沿地面横穿长兴岛,由长兴岛东部偏北跨越长江口东北港水域至崇明岛陈家镇,工程全长16.65公里(其中接线道路6.68公里,跨江桥梁9.97公里,设计车速100公里/小时)。桥面两侧预留了宽4.15米的空间,今后供轨道交通使用。为沟通岛内交通,长兴岛潘园公路及崇明陈家镇各设有一座互通式立交。

中国古代的桥

.中国古代的桥(潘洪萱) 根据史料和考察,在原始社会,我国就有了独木桥和数根圆木排拼而成的木梁桥。早在战国时期,单跨和多跨的木、石梁桥已普遍在黄河流域及其他地区建造。公元前三百多年建于陕西省蓝田县蓝峪水上的蓝桥,就是多跨木梁木柱桥的一个代表。《诗经·大雅·大明》第一次记叙周文王娶妻,在渭河上造了座专供帝王使用的浮桥。长江、黄河上曾设过近二十座浮桥。第一座黄河浮桥建于公元前541年临晋关附近,是秦景公的母弟后子,怕被景公杀害,乘车逃奔晋国途中所建。第一座长江浮桥是公元35年东汉光武帝建造的,桥址在宜昌至宜都之间的江上。 吊桥首创于我国,吊索由藤索、竹索发展到铁链。在唐朝中期,就有了铁链吊桥,比西方早八百年以上。拱桥始建于东汉中期,其形式之多,造型之美,为世界少有。 灞桥、洛阳桥、安平桥、虎渡桥、绍兴八字桥、阴平桥、程阳桥等是木、石梁桥的代表。西安灞桥建于汉代,是座木梁石柱墩桥,它用四段圆形石柱卯榫相接(中间还加石柱)形成一根石柱,由六根石柱组成一座轻型桥墩,墩台上加木梁并铺设灰土石板桥面。是石柱墩的首创者。 “闽中桥梁甲天下”是宋朝(特别是南宋)闽中地区大量建造石梁桥的真实写照。南宋一百五十年中,建成七十余座石梁桥,其中五公里以上的长桥就有四五座。被誉为“天下无桥长此桥”的安平桥,宋绍兴八年到二十一年(1138—1151)建造,长约2.5公里,故又名五里桥,用花岗石砌筑,为我国现存最长古桥。1240年建成的虎渡桥(又名江东桥),它最大的石梁长23.7米,宽1.7米,高1.9米,重二百余吨,即使在今天要开采、运输、架设这样的石梁,也是十分困难的。1979年5月,我国有关部门发现现存最古老的石梁桥——晋江县大桥和小桥,这两座桥均建于北宋太平兴国年间(976—984)。绍兴八字桥是座宋代城市石梁桥,布局十分巧妙,既保证了水陆交通,在建造中又不拆房屋,不改街道。程阳桥坐落在广西三江侗族自治县林溪河上,是一座四跨石墩伸臂的木梁桥,建于1916年,全长64.4米,分四个桥孔,每孔净跨12.2米,宽3.4米,高16米。五个桥墩之上各有民族形式的宝塔型、宫殿型桥亭,桥亭檐层层而上,如翼欲飞,宏伟壮观。整座桥梁建筑不用一颗铁钉或其他铁件,均采用榫槽结合或竹木梢钉,但结构联系却十分牢固。程阳桥精湛的建桥技术充分显示我国侗族人民杰出的智慧和创造力。 四川灌县的珠浦桥是竹索桥的代表,它位于著名的都江堰口,横跨岷江的内外两桥,长340米,8孔,最大一孔跨径为61米,它的24根粗5寸的竹索由细竹篾编织而成,桥的两端和中间石室中,安放绞竹索和木绞车等设备,桥始建于宋代以前,历代时毁时修。泸定县的大渡河铁索桥建成于1706年4月,净跨100米,净宽2.8米,桥面距枯水位14.5米。用了13根铁链9根底索承重,两边各放二根作为扶手缆。每根铁链平均由890个扁环扣联而成,重约一吨半。1935年红军长征中,飞夺泸定桥,创造了震惊世界的奇迹。它在国际桥梁展览活动中多次展出。据调查,跨径不小于泸定桥的铁链桥或铁眼杆桥,在四川、云南山区不止一座。由于它结构简单、用料节约,当地人民又有世代相传的建造经验,因此解放后这种桥型不仅没有淘汰,还有所发展。

喜吟沪苏通长江公铁两用特大桥建成通车(图文)

七律·喜吟沪苏通长江公铁两用特大桥建成通车 ●张荣生

万里长江入海宽,曾教老辈足违南。廿年规画挥风雨,六载施工驾舰船。多少艰难凶化吉,一朝奇迹梦成圆。

四通八达北三角, 从此跻身上广圈! (2020-07-06,上午,于南通市德民花苑。)

注释: 1.解题,诗为2020年7月1日上午10点,建筑工期达6年之久的、特别巨大的跨越长江桥梁工程——沪苏通长江公铁两用特大桥,举行建成通车仪式。其时,生玲前往海安市看望帅哥-申嫂,正在专程旅行途中。于海安火车站站前广场搭乘市内公交车,年轻的驾驶员兀自带着掩抑不住的热情洋溢,向包括笔者在内的车内乘客,絮叨不绝地讲说刚才从车载江苏交通广播电台聆听现场直播得知的通车典礼盛况,一边强调该工程对于包括海安在内的苏中、苏北地区沟通与全球特大都市上海之间的经济交往、人文联系的伟大价值和深远意义。笔者对该工程早有关注,几年前,曾经跟随江苏省如皋中学1967届初中部初三(1)班老同学周志成、王扬生、周其华,前往大桥工程江北施工现场实地参观,自那为始,时常惦记着,日夜巴望其早日建成,竣工通车。抚今思昔,展望未来,深知此事非同小可:不但在中国桥梁史上,尤其在南通-苏中-苏北的交通发展史上,实在是具有“划时代”的重要价值,“里程碑”的重要意义。其在经济、人文、国防上的价值和意义,任凭怎样估量,都不为过分!欣闻喜讯,激动无已,口占有作,录稿成诗。

2.首联,谓南通地区是江苏、乃至全国的“经济发达地区”,在“天时、地利、人和”三方面之中,第一项与第三项与市外各地差异小,唯有第二项,兼得其“背反”两面,即:在水利上获益于长江,旱涝保收;而在交通上则受制于长江,迂回绕远。(按:古代以水路交通为主,南通尚称便捷,州名于是而得;随着经济社会事业迅猛发展进步,空航便捷而荷载小,水运价廉而速度慢,故而现当代交通运输以陆路为主,尤以高速公路、城际铁路为代步工具,则南通市在陆路上“向南不通”的矛盾日益突出。人老几辈,官连数茬,日夜盼其改善,比大旱之望甘霖,如久雨而思艳阳。)入海宽,指长江入海段的宽度,最宽处在南通的狼五山(狼山居中,东为剑山、军山,西为马鞍山、黄泥山)一带,与对岸的常熟虞山之间,相隔约8-9公里。教,此处根据诗律平仄规格,读音jiāo(交),义同“叫”;典型例句,如唐人白居易《长恨歌》:“为感君王辗转思,遂教方士殷勤觅。”(载蘅塘退士编《唐诗三百首》卷三,中华书局1959年9月新1版,第15页)又如近人毛泽东《七律·到韶山》:“为有牺牲多壮志,敢教日月换新天。”(载《毛泽东诗词选》,人民文学出版社1986年12月北京第1版,第96页)。违,避开。

武汉长江大桥图片

武汉长江大桥图片 篇一:各套人民币图片 (这一套目前还在流通中,大家也比较熟悉,就不介绍了 ) 第三套人民币发行时间1962年4月20日第三套人民币壹分券(汽车图) 第三套人民币贰分券(飞机图) 第三套人民币伍分券(轮船图) 篇二:城市和景点图片列表 城市列表: 1. 北京 2. 上海 3. 西安 4. 桂林 5. 苏州 6. 杭州 7. 南京 8. 扬州 9. 镇江 10. 无锡 11. 昆明

12. 大理 13. 丽江 14. 香格里拉 15. 武汉 16. 重庆 17. 宜昌 18. 厦门 19. 黄山 20. 乌鲁木齐 21. 吐鲁番 22. 喀什 23. 敦煌 24. 兰州 25. 哈尔滨 26. 郑州 27. 洛阳 28. 成都 29. 九寨沟 30. 青岛 31. 拉萨 32. 日喀则

33. 三亚 34. 广州 35. 深圳 36. 香港 37. 澳门 38. 平遥城市和景点图片列表39. 水乡40. 阳朔41. 承德42. 呼和浩特 景区景点列表 ? 北京 ? Forbidden City 故宫 ? Tiananmen Square 天安门广场 ? Temple of Heaven 天坛 ? Badaling Great Wall 八达岭长城 ? Mutianyu Great Wall 慕田峪长城 ? Juyongguan Pass 居庸关长城 ? Simatai Great Wall 司马台长城 ? Jinshanling Great Wall 金山岭长城 ? Ming Tombs 明陵 ? Summer Palace 颐和园 ? Yonghegong Lama Temple 雍和宫 ? Hutong in Beijing 北京胡同

沪通铁路长江大桥地质勘查钻探完成_

苏州日报/2011年/6月/10日/第A11版 大城内外 沪通铁路长江大桥地质勘查钻探完成 驻张家港首席记者王乐飞通讯员邱德春 本报讯(驻张家港首席记者王乐飞通讯员邱德春)6月7日上午,随着第182个水下钻孔勘探作业的顺利结束,历时9个月的沪通铁路大桥水下地质勘查钻探工程按期圆满完成,为大桥正式施工建设提供了保障。 沪通铁路长江大桥北接南通九圩港,南接张家港十三圩,是鲁东苏北与上海、苏南、浙东地区间最便捷的铁路运输通道,也是长三角地区快速轨道交通网的重要组成部分。大桥全长11.07公里,其中跨江部分长5.3公里。面对钻探工程施工水域通航环境及水流条件复杂、工程量大、施工船舶多、作业时间长的特点,张家港海事局提前介入,超前谋划,多措并举服务施工作业,受到了作业单位的赞赏。 沪通铁路长江大桥施工水域横跨长江浏海沙等多个水道,其中地质勘查作业占用了张家港仅有的两个锚地之一——通沙海轮锚地,上游又紧临张家港越洋等多个危化品码头,给长江水上安全监管带来了巨大挑战。该局监管处、指挥中心等相关部门提前与施工单位协调,就大桥建设前期的桥墩钻探工程施工方案进行了优化,健全应急措施,并多次组织探讨了大桥施工期间的水上安全监管措施,起草了沪通铁路大桥施工期间水上安全监督内部管理规定,明确了不同施工阶段现场监管和安全维护要求,确保现场监管工作的有效性和针对性。鉴于大桥建设施工的前期钻探工程将占用三分之一的通沙海轮锚地,影响大型海轮的安全锚泊,该局积极研究施工作业对锚泊船的影响,科学划分锚泊水域,并主动对外发布公告,提前通知相关的船舶单位、代理单位和码头单位,将施工作业对锚泊和过往船舶的影响降到了最低。 张家港港是全国内河首座2亿吨大港,年到港船舶直逼20万艘次,过境船舶超百万艘,面对“超时限、超负荷、超强度”工作,为确保大桥地质勘查工作的顺利进行,该局专门抽调了12名工作人员建立了十三圩基地,基地成立以来,所有工作人员未发生一起因主观原因无法出航的情况,应急出航参与搜救、排险、调查事故达一百多次。 第1页共1页

横跨长江的大桥汇总

横跨长江的大桥汇总(截止至2011年底) 新中国成立以前,长江上没有一座桥,交通十分不便。新中国成立以后,于1954年底,在长江上建起了万里长江第一桥--武汉长江大桥,截止2000年,长江上已建和在建的特大型桥24座,在长江主要干流上共建有桥梁近50座。长江上已有15座大桥建成通车,其中公铁两用桥梁3座:武汉大桥、九江大桥、南京大桥;铁路桥4座:宜宾大桥、三堆子大桥、白沙沱大桥、枝城大桥;公路桥8座:江津大桥、涪陵大桥、西陵大桥、武汉二桥、黄石二桥、铜陵大桥、江阴大桥、扬中大桥。 目前在建的大桥9座:有公铁两用斜拉桥芜湖大桥、公路桥有重庆大佛寺大桥、宜昌大桥、夷陵大桥、荆沙大桥、武汉白沙洲大桥、军山大桥、鄂黄大桥、南京二桥。 ☆武汉长江大桥 武汉长江大桥是在长江上修建的第一座大桥,位于汉阳龟山和武昌蛇山之间。该桥于1955年9月全面开工建设,1957年10月,在苏联专家的帮助下,武汉长江大桥建成通车。正桥是铁路公路两用的双层钢木形梁桥,上层为公路桥,下层为双线铁路桥,正桥长1155.5米,铁路桥长1315米,公路桥长1670米。 ☆武汉长江公路桥 武汉长江公路桥是国家“八五”期间重点建设项目。大桥长3227.4米,主桥长1877米。有3个大跨,主跨为400米,两边跨为180米。该桥于1994年底建成通车。 ☆武汉长江二桥 武汉长江二桥位于武汉长江大桥下游12公里处,为双塔双索面钢筋混凝土斜拉公路桥。大桥北起汉口黄浦路三层立交桥,跨越长江至武昌徐东路落地,全长4407.6米,正桥长1876米,宽26米,主跨为400米,设6车道,日通车能力5万辆。该桥于1991年开始兴建,1995年6月通车。 ☆武汉白沙洲大桥 武汉白沙洲大桥是长江武汉段的第三座大桥,位于武汉长江大桥上游8.6公里处,全长3586.38米,其中正桥长2458米,引桥长1128.38米。桥面净宽26.5米,6车道。设计时速80公里,日通车能力5万辆次。该桥于1997年3月28日正式开工建设。 ☆南京长江大桥 南京长江大桥位于江苏省南京市下关和浦口之间,是继武汉长江大桥和重庆白沙砣长江大桥之后的第三座跨越长江的大桥,是全部由中国自行设计和施工的特大铁路、公路两用的双层钢木形梁桥,上层为公路桥,下层为双线铁路桥。南京长江大桥作为世界最长的公、铁路两用桥被收入了吉尼斯世界纪录。该桥正桥10孔,铁路桥长6772米,公路桥长4589米,宽15米。1960年1月,南京长江大桥正式动工兴建。1968年9月,南京长江大桥铁路桥道首先建成通车;12月29日,南京长江大桥公路桥正式建成通车。 ☆南京长江第二大桥 南京长江第二大桥位于南京长江大桥下游11公里处,由南汊桥、八卦洲(长江中第三大岛)公路连接线、北汊桥“二桥一路”组成,全长12.517公里。南京长江二桥于1997年10月6日开工建设,于2001年3月18日交工验收。整个工程静态投资概算为33.5亿元。其中,南汊大桥为钢箱梁斜拉桥,主跨径628米,桥长2938米,是南京长江二桥的关键性和标志

【BIM案例】沪通长江大桥BIM技术应用

【BIM案例】沪通长江大桥BIM技术应用 一、钢桥智能化建造 沪通长江大桥主体结构(钢梁)用钢26万t,结构复杂、体系庞大,针对钢梁建造,深入推进BIM技术应用,有重要的现实价值。研究重点是钢桥的智能化制造和基于全生命周期管理理念的探索,打造稳定可靠的数据采集、存储、传递、交流、决策的工作机制和流程。 (1)焊缝质量管理系统。焊接质量管理系统是将现代化的管理手段与先进的网络通信技术结合,应用于焊接生产过程控制。可通过计算机对焊缝进行编号,设定焊接工艺参数,实时记录和上传焊接参数,形成构件"焊缝地图",提高焊接的自动化程度与管控水平,防止焊工误操作,实现主要、关键部位焊接过程监控、事后追溯。 (2)数字化预拼装系统。数字化预拼装是通过全站仪或摄影技术对实际杆件进行精密测量,获取预拼杆件的关键尺寸信息,将测量结果反馈到设计模型中,通过与设计模型的比较分析,确定通孔率、预拱度等值是否满足预拼装验收要求。 (3)螺栓连接施工系统。沪通长江大桥全桥共用高强度螺栓425万套,作业周期长,环境条件变化大,控制质量离散性大,工作难度很大。该系统是基于物联网技术,采用第三代扭矩扳手,实现对螺栓施工扭矩的有效控制,并完成对螺栓施工信息的全面采集。系统能够通过数显式扭矩扳手扫描获取施工计划和操作人员信息,施拧过程中自动上传施工扭矩,对异常施工扭矩进行报警,规避高栓的"超拧"和"欠拧"现象,以二维码形式存储;实现信息的追踪管理;同时能减少班前班后标定,提高施工工效。 二、主塔施工的BIM应用 针对主塔施工深化BIM技术的应用,涉及支架建模、预应力管道、钢筋、锚座碰撞分析、整体吊装模拟、施工虚拟建造等内容,将BIM技术应用到施工实践,推进主塔施工向工厂化、预制化、装配化、信息化方向发展,提前发现工序衔接问题,优化施工组织设计,提高现场工作效率。 三、全生命周期的项目管理 BIM技术的核心是全生命周期的项目管理。下一步工作的重点是强化信息化手段,将制造过程参数、施工工序控制参数、工法应用及运维措施各种结构化数据或非

重庆菜园坝长江大桥

第一节重庆菜园坝长江大桥 一、简介 重庆菜园坝长江大桥地处重庆市主城区,北接渝中区菜园坝和中山三路,南接南岸区南坪地区,是目前国内最大的公共交通和城市轻轨两用大跨径拱桥。菜园坝长江大桥于2003年2月5日正式开工,在2007年10月29日建成通车。 重庆菜园坝长江大桥主桥采用预应力混凝土Y形刚构与提篮式钢箱系杆拱、钢桁梁的组合结构,为特大公轨两用无推力式钢箱中承系杆拱桥,也是典型的混合式桥梁,这种结构形式不仅在我国绝无仅有,而且在世界桥梁中也具有独特的地位。全桥跨径为88m+102m+420m+102m+88m,总长800m,其主跨跨度居世界系杆拱桥之首。主桥设六线行车道、双线城市轻轨、双侧人行道。六车道及双侧人行道设在上层正交异性板体系桥面,双线轻轨设在下层纵横梁体系,构成双层特大公轨两用桥。 图2 菜园坝长江大桥实景 二、设计计术标准与设计荷载 菜园坝长江大桥主桥主要设计技术标准如下: (1)设计基准年限:100年; (2)道路等级:I级; (3)行车速度:公路车辆v=60km/h;轨道交通v'=75km/h;通行能力50000辆/日;(4)桥面宽度:桥面净宽B=2.5+12.25+1.0+12.25+2.5=30.5m; 轨道交通下层通行,净宽B'=8.6m; (5)桥面纵坡、横坡:桥面纵坡O.59%,桥面横坡2%; (6)道路净空高度:>5m; (7)设计洪水频率:l/300: (8)设计通航净空:设计最高通航水位为189.33m;通航净空三峡工程蓄水前不小于385m 三峡工程蓄水后不小于375m; (9)荷载标准: 可变荷载:汽车荷载:城A级; 轨道交通荷载:跨座式单轨列车352t; 人群荷载:2.4kN/m2; 设计风速:桥位区地面以上20m高度处,频率1%的10分钟平均风速为 26.7m/s; 温度效应:桥址处平均温度18.3℃,结构设计合拢温度为18-35 ℃; 钢结构体系升温24.2℃,体系降温36.8℃; 混凝土结构体系升温10.60℃,体系降温12.6℃; 偶然荷载:地震荷载:地震基本烈度为Ⅵ度,结构物按Ⅶ度设防; 船舶撞击力:按国家I一(2)级航道进行设计,刚构基础横桥向(顺水流)采用1400KN,顺桥向采用1100KN春播撞击力进行验算。

武汉长江大桥的基础施工方法

韦成07 武汉长江大桥位于武汉市汉阳龟山和武昌蛇山之间,是新中国成立后在“天堑”长江上修建的第一座大桥,也是古往今来,长江上的第一座大桥,是我国第一座复线铁路、公路两用桥,建成之后,成为连接我国南北的大动脉,对促进南北经济的发展起到了重要的作用。武汉长江大桥建于1955年9月1日,于1957年10月15日建成通车,大桥的建设得到了当时苏联政府的帮助,苏联专家为大桥的设计与建造提供了大量的指导,但是中苏关系破裂之后,苏联政府就全部撤走了专家,最后的建桥工作是由茅以升先生主持完成。大桥建成之后,将武汉三镇连为一体,极大的促进了武汉的发展。从全国的宏观角度来看,大桥的建成意义更是在于将京广铁路连接起来,使得长江南北的铁路运输通畅起来。毛泽东的诗词“一桥飞架南北,天堑变通途”,正是描写武汉长江大桥的气势和重要作用。大桥自建成以来,一直都是武汉市的标志性建筑。武汉长江大桥全长米,正桥是铁路公路两用的双层钢木结构梁桥,上层为公路桥,下层为双线铁路桥,桥身共有八墩九孔,每孔跨度为128米,桥下可通万吨巨轮,八个桥墩除第七墩外,其它都采用“大型管柱钻孔法”,这是由我国桥梁工作者所首创的新型施工方法,凝聚着我国桥梁工作者的机智和精湛的工艺。 武汉长江大桥全桥总长1670米,其中正桥1156米,北岸引桥303米,南岸引桥211米。从基底至公路桥面高80米,下层为双线铁路桥,宽米,两列火车可同时对开。上层为公路桥。宽约20米,为4车道。桥身为三联连续桥梁,每联3孔,共8墩9孔。每孔跨度为128米,终年巨轮航行无阻。正桥的两端建有具有民族风格的桥头堡,各高35米,从底层大厅至顶亭,共7层,有电动升降梯供人上下。附属建筑和各种装饰,均极协调精美,整座大桥异常雄伟。若从底层坐电动升降梯可直接上大桥公路桥面参观,眺望四周,整个武汉三镇连成一体,也打通了被长江隔断的京汉、粤汉两铁路且连通了京广线,使人心旷神怡,浮想联翩,真是“一桥飞架南北,天堑变通途”。 194963岁、自1913年起多次参与

相关主题
文本预览
相关文档 最新文档