当前位置:文档之家› 焊后热处理的缺陷及预防

焊后热处理的缺陷及预防

焊后热处理的缺陷及预防
焊后热处理的缺陷及预防

焊后热处理的缺陷及预防

[摘要] 热处理工艺在热处理技术规程中已有了较为完善的说明,但有关实际操作中的资料较少,本文主要介绍了在电

力建设施工中由于热处理不正确出现的缺陷以及在实际操作中怎样避免这些缺陷。

[关键词] 热处理缺陷热处理实际操作热电偶固定

随着机组向越来越大容量的发展,合金钢大量应用,对焊接热处理的要求越来越高,越来越严格。焊件经不正确的焊后热处理,会产生各种缺陷,有些缺陷可以经过重新热处理予以纠正,但有些缺陷却无法补救而造成废品。常见的缺陷有以下几种:

1、过热

1)特征:焊件在退火状态下的断口上呈现特别粗大的晶粒,在淬火的断口上呈现粗大的马氏体针状结构

2)产生原因:在加热过程中,不严格控制加热工艺所致,如加热温度过高或在高温下的停留时间过长,一般在正火或

高温退火工艺中易出现。

3)危害性:粗化的结构,极易出现裂纹,即使不出现裂纹,也会使焊件的强度、塑性、韧性大大降低。

4)预防及纠正:为预防过热,加热温度必须严格控制,同时在高温的停留时间尽量缩短。对过热程度严重的焊件可重

复二次退火或正火来纠正。

2、过烧

1)特征:除断口呈现粗大晶粒外,在晶粒间的边界处有熔化或氧化现象,即在晶间集聚着低熔点的杂质或氧化物。

2)产生原因:加热温度过高(大于1300℃)或在高温下保温时间过长。

3)危害性:产生过烧后会使焊件的强度、塑性、韧性急剧降低。

4)预防:必须严格执行热处理规范,且不允许氧化性火焰直接与焊件接触。产生过烧后,焊件无法补救。

3、变形与裂纹

1)特征:焊件的变形与宏观裂纹一般用肉眼可见。

2)产生原因:一是由于焊件的内应力产生,内应力的产生是由于焊件的加热冷却时内外温度不均匀造成体积膨胀或收

缩不一致而引起的热应力。二是由于内部A向M转变时体积变化的不均匀性引起的结构应力,当应力超过焊件的屈服极限时

发生变形。当超过焊件的强度极限时发生裂纹。

3)危害性:造成返工,增加生产工序,提高了成本,有时还造成焊件的报废。

4)预防:采取措施降低内应力。

4、硬度升高

1)特征:回火后,检测值超出有关标准要求。

2)产生原因:回火温度不够高或保温时间不够长所致,而过高的温度也会造成硬度升高,这是由于温度控制不准确,

以至焊件加热至AC1以上,在钢中出现A,当急冷时又出现M,使钢的硬度升高。

3)危害:硬度升高而塑性和韧性降低。

4)预防:为纠正这一缺陷,可采用第二次正确的回火处理,提高回火温度或延长回火保温时间。对出现M时,必须重新

对钢进行回火,正确控制回火温度。

5、氧化和脱碳

1)特征:

①氧化——焊件表面生成一层厚的氧化皮。

②脱碳——钢表面层中的碳被脱除了。脱碳的结果使钢在冷却后表面层处生成一层不含碳的F体结构。

2)产生原因:

①氧化——是指钢的表面层氧化后形成氧化皮。在低温下钢的氧化作用比较缓慢,在钢的表面层形成一层薄层棕黄色铁锈;在高温情况下,钢的氧化很快,随温度的升高氧化铁皮层的厚度急剧增加。

②脱碳——是指钢的表面层中的碳与空气中的氧化合成一氧化碳气体,而逸出钢件表面,即钢表面层中的碳被脱除。这一现象只有在高温(高于700℃)的氧化性气氛面,即钢表面层中的碳被脱除。这一现象只有在高温(高于700℃)的氧化性气氛中表现出来,并随温度的升高,脱碳现象越加严重。

3)危害性:

①氧化一一过厚的氧化铁皮其危害性很大。一是会使钢材的损耗量增加;二是钢材或焊件因铁的消耗而造成尺寸不合格;三是氧化皮传热性很差,阻碍钢在淬火时迅速冷却,使钢不易淬硬或淬透;四是在低温时粘在工件上的氧化铁皮增加

切削工件时的困难并使切削工具损伤很大;五是为了清除氧化皮,要增加研磨和酸洗的设备与操作工序,增加成本。

②脱碳一一氧化和脱碳是钢在高温加热时较难避免的现象,并且这两种现象会常常伴随在一起产生。加热温度过高或在高温下保温时间过长,钢的氧化和脱碳就愈加严重,为减轻或防止钢的氧化和脱碳作用,在热处理操作时,应准确控制加热温度,使其不超过规定的温度范围,并在高温下按规定时间保温。当采用火焰热处理时,应选用中性火焰或还原性火焰,而不允许含有过量的氧化性火焰。

6、缺陷产生原因及预防

电力建设中的热处理主要是管道焊后局部热处理,其方式为高温回火。就现场条件发现的缺陷造成的因素综合来讲有两大类:

1、工艺的不准确性,热处理有四大因素,即升温速度、保温温度、保温时间、降温速度。这四个因素不准确都直接影响热处理的效果,所以对热处理工艺要求有据可查,并根据工艺评定制定工艺指导书,在施工过程中要严格执行工艺要求,不可擅自更改工艺中数据,以免造成人为缺陷。

2、操作中工器具的不正确使用,“工欲善其事,必先利其器”,在工作前必须对使用的工器具进行检查、校对和测试。对热电偶、温控仪、记录仪等测温工器具要有专业人员进行校对,以确保准确的测量工件的温度。对使用的材料性

能进行检查,如保温材料的保温效果、耐高温程度及其强度等。另外,铁丝的强度对热电偶的固定也有很大的影响。根据多年的施工经验,在实际施工中主要注意以下几点:

1)炉具的使用,在热处理前必须检查炉具是否有损坏,并检查炉具的合格证,对于损坏且不能维修的炉具须弃用,对为曾使用过的炉具,要提前测试其性能。对炉具的选择原则是在开始保温时功率在90%以上为宜。

2)热电偶的连接,热电偶接出时必须使用补偿导线,且不小于1米,连接时铜线连接热电偶的正极,注意补偿导线不可靠在发热的工件上。

3)热电偶的使用,目前使用镍铬--烤铜的较多,使用时注意除测温点外,其余两相不可相连,也不可与其它物体相连

4)热电偶固定,热电偶的固定在热处理作业中是一个非常重要的因素。当热电偶与工件接触不紧时感应加热温度要比实际温度低,当电加热时,所测温度比实际温度高,所以热电偶一定要牢固,固定方法大致分以下几种(目前我公司使用的热处理加热器全部为远红外电加热器)钢丝绑扎式、螺丝压紧式、碰焊式,三种方法各有利弊,首先,第三种碰焊式测温效果最好,但热电偶容易脱落,特别是锅炉焊口施工,焊口管径小,测点少给施工带来许多不必要的麻烦,一般碰焊式的脱落率在40%~65%之间。第二,碰焊时会在母材上流下焊痕,高合金钢对母材的表面要求比较严格,特别是在温度低时容易形成微型裂纹。螺丝压紧式在低合金钢、碳钢的热处理施工中广泛应用,其优点是测温准确,牢固性好,对热电偶的规格没有要求。但其缺点是螺丝须焊接在母材上,所以对高合金钢及厚壁管件来说是不可行的。钢丝绑扎式的优点是:①简单方便对各种管径、各种材质皆可用? ②不会对母材造成伤害。缺点是:①对操作人员的要求高,绑扎松紧度不同,测温也不同②所测温度的准确率较差

从以上各方面对上述三种方法进行比较,经过一定实践得出:①螺丝压紧式在以后的施工中使用的空间太少,不能广泛使用。②碰焊式,目前使用焊偶仪不能解决锅炉的小口径高合金钢焊口较多的情况下不能使用的问题。钢丝绑扎式测温较差,在730℃时,相差25—50℃之间,为避免温度差,在热电偶的测点处加一不锈钢压片,将加热器与母材相隔。这样,测温点与与母材直接接触,而与加热器之间有压片相隔,所测温与母材基本相同。通过实践测量,所得结果如表所示:

热电偶的固定方式可根据焊件的具体情况选用,结合现场的条件,锅炉侧多为小口径管道,目前较为理想的固定方式是带压片捆绑式,测温准确,牢固性好,方便易行。在聊城、莱城及夏港工地的使用均取得很好的效果。

7、结论

在采取正确热处理工艺的条件下,热处理的实际操作对热处理的效果有着很大的影响,在现场实际操作中做到上述注意的几点,将会取得更好的效果。此外,要求热处理人员有很强的责任心,工作细致,严格按照规程。在实际操作中从严要求自己。从炉具的选用,热电偶的连接到热电偶的固定都要做到一丝不苟,经常检查现场,发现问题及时处理。在工作中积累经验,多学多看多钻研,努力提高专业水平。

钢制管道焊后热处理工艺规程完整

锅炉管焊接热处理工艺规程 1 总则 本工艺规程适用于低碳和低合金钢锅炉管道焊接接头消除残余应力的焊后热处理,不涉及发生相变和改变金相组织的其他热处理方法。 2 、引用标准及参考文献 NB/T47015—2011 《压力容器焊接规程》 SH3501—2011 《石油化工有毒可燃介质管道工程施工及验收规》 GB50236—2011 《现场设备、工业管道焊接工程施工及验收规程》 3、焊前预热 3.1材料性能分析 部分锅炉管道采用低合金耐热钢,材料具有良好的热稳定性能,是高温热管道的常用材料,由于材料中存在铬、钼合金成分,材料的淬硬倾向大,施工中采用焊前预热、焊后热处理的工艺措施,来获得性能合格的焊接接头。 3.2管道组成件焊前预热应按表1的规定进行,中断焊接后需要继续焊接时,应重新预热,焊接是保持层间温度不小于150℃。 3.3 当环境温度低于10℃时,在始焊处100mm围,应预热到50℃以上。 表1 管道组成件焊接前预热要求

4 设备和器材 4.1焊后热处理必须采用自动控制记录的“热处理控制柜”控制温度。4.2“热处理控制柜”需满足下列要求: 4.2.1能自动控制、记录热处理温度。 4.2.2控制柜、热电偶和补偿导线组合后的温度误差≤±10℃。 4.2.3柜所有仪表、仪器需经法定计量单位校验合格,使用时校验合格证须在有效期。 4.3热电偶 4.3.1焊接接头焊后热处理须采用热电偶测温控温。 4.3.2热电偶需满足如下要求: 4.3.2.1量程为热处理最高温度的1.5倍,精度等级为1.0;控温柜和补偿导线的组合温差波动围≤±10℃。 4.3.2.1按校验周期进行强制校验,使用时校验合格证须在有效期。 4.4加热器 4.4.1焊后热处理必须采用可实现自动指示控制记录的电加热绳或履带加热板加热。 4.4.2管壁厚大于25mm的焊接接头宜采用感应法加热。 4.5热处理设备由经培训合格的专人管理和调试,使用时应放置在防雨防潮的台架上。 4.6保温材料 热处理所用保温材料应为绝缘无碱超细玻璃棉或复合硅酸盐毡,且应有质量证明及合格证。

焊后热处理基本知识

焊接接头焊后热处理基本知识培训 一、焊后热处理的概念 1.1后热处理(消氢处理):焊接完成后对冷裂纹敏感性较大的低合金钢和拘束度较大的焊件加热至200℃~350℃保温缓冷的措施。 目的、作用:减小焊缝中氢的有害影响、降低焊接残余应力、避免焊缝接头中出现马氏体组织,从而防止氢致裂纹的产生。 后热温度:200℃~350℃ 保温时间:即焊缝在200℃~350℃温度区间的维持时间,与后热温度、焊缝厚度有关,一般不少于30min 加热方法:火焰加热、电加热 保温后的措施:用保温棉覆盖让其缓慢冷却至室温 NB/T47015-2011关于后热的规定: 1.2焊后热处理(PWHT):广义上:焊后热处理就是在工件焊完之后对焊接区域或焊接构件进行的热处理,内容包括消除应力退火、完全退火、固熔、正火、正火加回火、回火、低温消除应力等。狭义上:焊后热处理仅指消除应力退火,即为了改善焊接区的性能和消除焊接残余应力等有害影响。 1.3压力容器及压力管道焊接中所说的焊后热处理是指焊后消除应力的热处理。焊后消除应力热处理过程:将焊件缓慢均匀加热至一定温度后保温一定的时间,然后缓慢降温冷却至室温。

目的、作用: (1)降低或消除由于焊接而产生的残余焊接应力。 (2)降低焊缝、热影响区硬度。 (3)降低焊缝中的扩散氢含量。 (4)提高焊接接头的塑性。 (5)提高焊接接头冲击韧性和断裂韧性。 (6)提高抗应力腐蚀能力。 (7)提高组织稳定性。 热处理的方式:整体热处理、局部热处理 1.4焊接应力的危害和降低焊接应力的措施 焊接应力是在焊接过程中由于温度场的变化(热涨冷缩)及焊件间的约束而产生的滞留在焊件中的残余应力。 1.4.1焊接应力只能降低,不可能完全消除,焊接残余应力形成的的危害:1)影响构件承受静载的能力;2)会造成构件的脆性断裂;3)影响结构的疲劳强度;4)影响构件的刚度和稳定性;5)应力区易产生应力腐蚀开裂;6)影响构件的精度和尺寸的稳定性。 1.4.2降低焊接应力的措施 1)设计措施: (1)构件设计时经量减少焊缝的尺寸和数量,可减少焊接变形,同时降低焊接应力 (2)构件设计时避免焊缝过于集中,从而避免焊接应力叠加 (3)优化结构设计,例将如容器的接管口设计成翻边式,少用承插式 2)工艺措施

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。2范围 本规范适用于本公司生产的各种精铸、砂铸产品的热处理,材质为各种低碳钢、中碳钢、低合金钢、中合金钢、高合金钢、铸铁及有色合金。 3术语 3.1退火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 降温出炉的操作工艺。 3.2正火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 从炉中取出,在空气中冷却下来的操作工艺。 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1每次装炉前应对设备进行检查,把炉底板上的氧化渣清除干净, 错位炉底板应将其复位后再装,四周应留有足够的间隙,轻拿轻放,装炉应结实,摆放合理。 5.2装炉时大铸件产品放在下面,对易产生热处理变形的铸件,必须 作好防变形或反变形处理,力学性能试样应装在高温区,对特别小的铸件采用铁桶或其它框类工装集中盛放。 5.3炉车上的铸钢件入炉时,应缓慢推进,仔细观察铸钢件是否与炉 壁碰撞,关闭炉门,通电后应经常观察炉内工作状况。 5.4作好铸件产品后续热处理的准备工作,严格控制出炉温度,对水 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

焊后热处理管理规定

焊后热处理管理规定 (QB/SAR0308-2005) 1.0总则 1.1目的:对公司制造的压力容器产品(或泵压部件)焊后热处理过程实施有效监督和控制,确保产品(或承压部件)焊后热处理质量符合设计、使用和相关标准规定要求。 1.2编制依据 1.2.1《压力容器安全技术监察规程》; 1.2.2《锅炉压力容器制造监督管理办法》; 1.2.3《钢制压力容器》(GB150-1998); 1.2.4《锅炉压力容器产品安全性能监督检验规则》; 1.2.5本公司相关的管理规定。 1.3适用范围 本规程适用于公司制造的压力容器产品(或承压部件)的焊后热处理过程的监督和控制。主要包括以下内容: 1.3.1本公司自行进行的产品(或承压部件)局部(焊缝、热影响区)焊后热处理。 1.3.2本公司暂无能力实施需委托分包单位进行的产品(承压部件)整体焊后热处理。 2.0局部焊后热处理 2.1局部热处理范围 2.1.1压力容器产品的B、C、D类焊接接头,球形封头与圆角相连的A类焊接接头及缺陷补焊部位。 2.1.2局部热处理时,焊缝每侧加热宽度不小于钢材厚度的2倍;接管与壳体相焊时加热宽度不得小于钢材厚度的6倍。 2.1.3靠近加热区的部位应采取保温措施,使温度梯度不致影响材料的组织和性能。 2.2局部热处理控制 2.2.1由热处理工艺员编制热处理过程工艺卡,经热处理责任师审批后实施。 2.2.2由热处理签发热处理任务单,对需进行焊后热处理内容向热处理人员进行安排,必要时还应附有示意简图,并对热处理开始时间作出要求。 2.2.3热处理人员按接受的热处理任务单和工艺卡的规定要求,实施过程参数控制,确保热处理过程和质量符合规定要求。

(工业管道焊后热处理施工工艺标准

1 目的 为了规范压力管道等焊件的焊前预热和焊后热处理工艺,保证焊接工程质量,特制定本工艺标准。 2 适用范围 本标准适用于公司承接的工业与公用压力管道焊接工程的焊前预热和焊后热处理。 3 引用标准 GB50236《现场设备、工业管道焊接工程施工及验收规范》 4 定义 预热:焊接开始前,对焊件的全部(或局部)进行加热的工艺措施。 焊后热处理:焊后,为改善焊接接头的组织和性能或消除残余应力而进行的热处理。 5 焊前预热和焊后热处理的一般要求 5.1焊前预热 5.1.1 焊接工艺人员应根据母材的化学成份、焊接性能、厚度、焊接接头的拘束程度、焊接方法、焊接环境和所执行的施工工艺标准要求等综合考虑是否进行焊前预热,必要时可通过试验确定。 5.1.2 焊前预热温度应符合设计或焊接施工工艺标准的规定,当无规定时,焊前预热温度宜采用表1的规定。 精品文档,欢迎下载

5.1.3 预热的加热方式一般采用氧-乙炔焰加热或电加热带加热法。预热的温度应用热电偶、测温笔等测出。当温度达到要求时才能进行焊接。5.1.4 焊前预热的加热范围,应以焊缝中心为基准,每侧不应小于焊件厚度的3倍。 5.1.5 要求焊前预热的焊件,其层间温度应在规定的预热温度范围内。5.1.6 当焊件温度低于0℃时,所有钢材的焊缝应在始焊处100mm范围内预热到15℃以上。 5.1.7 不同钢号相焊时,预热温度按预热温度要求较高的钢号选取。 5.1.8 当采用钨极氩弧焊打底时,焊前预热温度可按表1规定的下限温度降低50℃。 5.1.9 当用热加工法下料、开坡口、清根、开槽或施焊临时焊缝时,亦需考虑预热要求。 5.2 焊后热处理 精品文档,欢迎下载

焊接、热处理工艺卡

焊接热处理工艺卡 精品

工艺曲线图: 注意事项: 1. 在加热范围内任意两点的温差应小于 50℃; 2. 保温厚度以40~60mm 为宜; 3. 升、降温时,300℃以下可不控温; 4. 焊后热处理必须在焊接完毕后24h 内进行。 编制 日期 审批 日期 焊接施工工艺卡 企业名称:安徽电力建设第二工程公司 设计卡编号:APCC-GD-WPS-001 产品名称:P91中大口径管焊接工艺卡 所依据的工艺评定报告编号:APCC-PQR-115 焊接位置:2G 、5G 、6G 自动化程度:手工焊 母 材 坡 口 简 类号 B 级号 Ⅲ 与 类号 B 级号 Ⅲ 钢号 SA335-P91 与 母材厚度范围:√对接接头 角接接头 70mm 焊缝金属厚度范围:δ≤h ≤δ+4mm 管子直径范围:√对接接头 角接接头 φ406 其 他: / 坡口检查 √外观检查VT √着色PT 磁粉MT 装配点焊 √手工焊Ds 氩弧焊Ws 二氧化碳气体焊Rb 焊材要求 √焊丝清洁 √焊条烘焙 焊剂温度 焊前预热: 火焰预热 √电阻预热 预热温度:150~200℃ 层间温度:200~300℃ 焊嘴尺寸: M10×L65×φ6 钨极型号/尺寸: Wce-20,φ2.5 焊接技术: 导电嘴与工件距离: / 清理方法: 机械法清理 无摆动或摆动焊: 略摆动 焊接方向: 由左至右、由下至上 工 艺 参 数 层 道 次 焊接方法 焊材 极 性 焊接参数 焊剂或 气体 保护气体流量L/Min 背面保护气体流 量L/Min 气体后拖 保护时间S 牌号 规 格 (mm ) 电流(A ) A 电压 (V ) 焊速 mm/Min 150~250 200~300 ≤300℃ 温度(℃) 时间 6(h ) 80~100℃/2 ≤90℃/h ≤90℃/h 750~770℃

焊接工艺试验报告

焊接工艺试验报告 工程(产品)名称 钢筋焊件 试验报告编号 DQHJ008 委托单位 XX 建设公司 工艺指导书编号 HJZD008 项目负责人 依据标准 《钢筋焊接及验收规程》 试样焊接单位 XX 建设公司 施焊日期 焊工 XX 资格代号 XX 级别 中级 母材钢号 HRB235 规格 Φ22 供货状态 甲供 生产厂家 西林 化学成分和力学性能 C(%) Mn(%) Si(%) S(%) P(%) δs (MPa) δb (MPa) δ5(%) Akv(J) 标准 0.20 1.00~1.60 ≤0.55 ≤0.040 ≤0.040 ≮335 470~630 ≮21 ≮34 合格证 0.20 1.37 0.43 0.015 0.020 385 565 24 50 复验 / / / / / / / / / 碳含量 0.42% 焊接材料 生产厂家 牌号 类型 直径(mm) 烘干制度(℃×h ) 备注 焊条 天津金桥 J422 E4303 3.2 150×2 \ 焊丝 \ \ \ \ \ \ 焊剂或气体 \ \ \ \ \ \ 焊接方法 电渣压力焊 焊接位置 平焊 接头形式 对接 焊接工艺参数 见焊接工艺试验指导书 接头处理 人工 焊接设备型号 BX-630 电源及极性 交流 预热温度(℃) \ 层间温度(℃) ≤80 后热温度(℃)及时间(min ) \ 焊后热处理 \ 试验结论:本试验按《钢筋焊接及验收规程》(JGJ 18-2003)规定,根据工程情况编制工艺评定指导书、焊 接试件、制取并检验试样、测定性能,确认试验记录正确,试验结果为: 合 格 。焊接条件及工艺参数 范围按本试验指导书执行。 试验 年 月 日 检测单位: (签章) XX 建设公司技术开发部 年 月 日 审核 年 月 日 技术负责人 年 月 日

钢制压力容器热处理通用工艺规程

1、范围 本标准规定了碳钢、低合金钢焊接构件的焊后热处理工艺。 本标准适用于锅炉、压力容器的碳钢、低合金钢产品,以改善接头性能,降低焊接残余应力为主要目的而实施的焊后热处理。其他产品的焊后热处理亦可参照执行。 2、引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修改,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB9452-1988 热处理炉有效区测定方法。 3、要求 3.1 人员及职责 3.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。 3.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。 3.1.3 热处理工应严格按焊后热处理工艺进行操作,并认真填写原始操作记录。 3.1.4 热处理责任工程师负责审查焊后热处理原始操作记录(含时间—温度自动记录曲线),核实是否符合焊后热处理工艺要求,确认后签字盖章。 3.2 设备 3.2.1 各种焊后热处理及装置应符合以下要求: a)能满足焊后热处理工艺要求; b)在焊后热处理过程中,对被加热件无有害的影响; c)能保证被加热件加热部分均匀热透; d)能够准确地测量和控制温度; e)被加热件经焊后热处理之后,其变形能满足设计及使用要求。 3.2.2 焊后热处理设备可以是以下几种之一: a)电加热炉;

b)罩式煤气炉; c)红外线高温陶瓷电加热器; d)能满足焊后热处理工艺要求的其他加热装置 3.3 焊后热处理方法 3.3.1 炉内热处理 a) 焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。在积累了炉温与被加热件的对应关系值的情况下,炉内热处理时,一般允许利用炉温推算被加热件的温度,但对特殊或重要的焊接产品,温度测量应以安置在被加热件上的热电偶为准。 b) 被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。 c) 为了防止拘束应力及变形的产生,应合理安置被加热件的支座,对大型薄壁件和结构、几何尺寸变化悬殊者应附加必要的支撑等工装以增加刚性和平衡稳定性。 3.3.2 分段热处理 焊后热处理允许在炉内分段进行。被加热件分段进行热处理时,其重复加热长度不小于1500mm。被加热件的炉外部分,应采取合适的保温措施,使温度梯度不致影响材料的组织和性能。 3.3.3 整体炉外热处理 进行整体炉外热处理时,在满足3.2.1的基础上,还应注意: a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施; b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形 3.3.4 局部热处理 B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺陷焊补部位,允许采用局部热处理方法。局部热处理时,焊缝每侧加热宽度不小于钢材厚度δs的2倍(δs为焊接接头处钢材厚度);接管与壳体相焊时加热宽度不

1、范围本标准规定了碳钢、低合金钢焊接构件的焊后热处理工艺

1、范围本标准规定了碳钢、低合金钢焊接构件的焊后热处理工艺。 本标准适用于锅炉、压力容器的碳钢、低合金钢产品,以改善接头性能,降低焊接残余应力为主要目的而实施的焊后热处理。其他产品的焊后热处理亦可参照执行。 2、引用标准下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准都会被修改,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB9452-1988 热处理炉有效区测定方法。 3、要求 3.1 人员及职责 3.1.1 热处理操作人员应经培训、考核合格,取得上岗证,方可进行焊后热处理操作。 3.1.2 焊后热处理工艺由热处理工艺员编制,热处理责任工程师审核。 3.1.3 热处理工应严格按焊后热处理工艺进行操作,并认真填写原始操作记录。 3.1.4 热处理责任工程师负责审查焊后热处理原始操作记录(含时间-温度自动记录曲线),核实是否符合焊后热处理工艺要求,确认后签字盖章。 3.2 设备 3.2.1 各种焊后热处理及装置应符合以下要求: a)能满足焊后热处理工艺要求; b)在焊后热处理过程中,对被加热件无有害的影响; c)能保证被加热件加热部分均匀热透; d)能够准确地测量和控制温度; e)被加热件经焊后热处理之后,其变形能满足设计及使用要求。 3.2.2 焊后热处理设备可以是以下几种之一: a)电加热炉; b)罩式煤气炉; c)红外线高温陶瓷电加热器; d)能满足焊后热处理工艺要求的其他加热装? 3.3 焊后热处理方法 3.3.1 炉内热处理 a)焊后热处理应优先采用在炉内加热的方法,其热处理炉应满足GB9452的有关规定。在积累了炉温与被加热件的对应关系值的情况下,炉内热处理时,一般允许利用炉温推算被加热件的温度,但对特殊或重要的焊接产品,温度测量应以安置在被加热件上的热电偶为准。 b)被加热件应整齐地安置于炉内的有效加热区内,并保证炉内热量均匀、流通。在火焰炉内热处理时应避免火焰直接喷射到工件上。 c)为了防止拘束应力及变形的产生,应合理安置被加热件的支座,对大型薄壁件和结构、几何尺寸变化悬殊者应附加必要的支撑等工装以增加刚性和平衡稳定性。 3.3.2 分段热处理焊后热处理允许在炉内分段进行。被加热件分段进行热处理时,其重复加热长度不小于1500mm.被加热件的炉外部分,应采取合适的保温措施,使温度梯度不致影响材料的组织和性能。 3.3.3 整体炉外热处理进行整体炉外热处理时,在满足 3.2.1的基础上,还应注意: a)考虑气候变化,以及停电等因素对热处理带来的不利影响及应急措施; b)应采取必要的措施,保证被加热件温度的均匀稳定,避免被加热件、支撑结构、底座等因热胀冷缩而产生拘束应力及变形 3.3.4 局部热处理B、C、D类焊接接头,球形封头与圆筒相连的A类焊接接头以及缺

(热处理及焊后 热处理程序)

Heat Treatment and PWHT Procedures 热处理及焊后热处理程序

TABLE OF CONTENTS 目录 1.0SCOPE范围 (1) 2.0REFERENCES参考文件 (1) 3.0EQUIPMENT设备 (1) 4.0HEATING METHODS加热方法 (1) 5.0HEATING AND COOLING RATES加热和冷却速率 (1) 6.0HOLDING TEMPERATURES AND ALLOWABLE RANGES保温温度和容许范围 (2) 7.0INTERRUPTED POSTWELD HEAT TREATMENTS不规则的焊后热处理 (2) 8.0TEMPERATURE CONTROL AND RECORDING温度控制和记录 (3) 9.0RECORDING POSTWELD HEAT TREATMENT CYCLE焊后热处理记录周期 (4) 10.0HARDNESS TESTED REQUIRMENTS AFTER PWHT热处理后的硬度测试要求 (5) 11.0PRETECT DEFORMATION DURING HEAT TREATMENT热处理期间的防变形 (5) 12.0RECORDS记录 (5) Attachment and Appendix List 附件附录清单 ATTACHMENT1:PWHT REPORT附件1:焊后热处理报告 (5)

1.0S C O P E范围 1.1This procedure specifies detailed requirements for performing post weld heat treatment(PWHT) 该程序规定了进行焊后热处理的详细要求。 1.2This procedure was written to meet the requirements of ASME B31.3for heat treat temperatures,holding times,heating and cooling rates,and permissible heat treating methods when PWHT is required. 该程序是根据ASME B31.3中针对焊后热处理的处理温度、保温时间、加热和冷却速率以及允许的加热方法来拟写的。 2.0R E F E R E N C E S参考文件 Doc.No.Document Title ASME B31.3-2012Process Piping工艺管道 3.0E Q U I P M E N T设备 3.1Certification of equipment shall be provided upon request. 应当根据需要提供设备的证书。 3.2Calibration certificate of temperature indicator shall be submitted and approved before use. 使用温度指示器之前应当提交校准证书并获得批准。 3.3Recalibration reference paragraph9.2. 参考段落9.2中关于重校的内容。 4.0H E A T I N G M E T H O D S加热方法 4.1Gas heating method be utilized to perform PWHT 利用燃气加热法来进行焊后热处理。 4.2Any other PWHT method requires prior approval of customer before use. 使用任何其它焊后热处理方法之前都要客户的批准。 5.0H E A T I N G A N D C O O L I N G R A T E S加热和冷却速率 5.1.The rate of the heating at the temperature above300Deg.C(572°F)shall not exceed220Deg.C(428°F)/Hr.for pipe wall thickness up to and including25mm(0.984in)/T maximum.For maximum pipe wall thickness more than25mm(0.984in)/T,the heating rate shall be(5588/T Where T=pipe wall thickness in mm). 对于最大壁厚为25mm(0.984in)的管道,300℃(572°F)之后的加热速度不应超过220℃(428°F)/小时。对于最大壁厚超过25mm(0.984in)的管道,加热速度为5588/T(T=管道壁厚mm数)。 5.2The rate of Cooling from the Soak temperature to a temperature above300Deg.C(572°F)shall not exceed275Deg.C(527°F)/ Hr.For pipe wall thickness up to and including25mm(0.984in)/T in maximum.For maximum pipe wall thickness over than25mm (0.984in)/T,the Cooling shall be(6985/T Where T=pipe wall thickness in mm).

钢结构焊接热处理工艺

京隆发电有限公司烟气脱硝改造工程 钢结构焊接热处理工艺 施工措施 批准: 审核: 编制: 南京龙源环保有限公司京隆项目部

目录 一、编制依据 (2) 二、材料介绍 (2) 三、焊接施工流程 (3) 四、焊接工艺参数的选择 (3) 五、现场焊接顺序: (4) 六、现场技术管理 (9) 七、作业的安全要求及措施 (9)

内蒙京隆电厂2×600MW机组烟气脱硝工程,SCR钢架的主立柱、梁、垂直支撑全部采用"H"型钢,母材材质为Q345(属低合金结构钢),钢架主立柱采用分段对接方式连成一体,其中"H"型钢的腹板采用高强螺栓连接,翼缘板之间的连接采用对接焊接方式。 一、编制依据 1.1《火电施工质量检验及评定标准》(焊接篇)1996年版。 1.2《火力发电厂焊接技术规程》DL/T869-2004。 1.3《电力建设安全工作规程》(第1部分:火力发电厂) DL5009.1—2002。1.4《火力发电厂焊接热处理技术规程》DL/T819-2002。 1.5《管道焊接超声波检验技术规程》DL/T820-2002。 1.6《焊接材料质量管理规程》JB/T3223-1996。 1.7京隆电厂脱硝钢架安装相关图纸 1.8《工程建设标准强制性条文》(电力工程部分)2006版。 二、材料介绍 1. Q345化学成分如下表(%): 2.Q345力学性能如下表(%): 其中壁厚介于16-35mm时,σs≥325Mpa;壁厚介于 35-50mm时,σs≥295Mpa

3. Q345钢的焊接特点 3.1 碳当量(Ceq) Ceq=0.49%,大于0.45%,可见Q345钢焊接性能不是很好,需要在焊接时制定严格的工艺措施。 3.2 Q345钢在焊接时易出现的问题 3.2.1 热影响区的淬硬倾向 Q345钢在焊接冷却过程中,热影响区容易形成淬火组织-马氏体,使近缝区的硬度提高,塑性下降。结果导致焊后发生裂纹。 3.2.2 冷裂纹敏感性 Q345钢的焊接裂纹主要是冷裂纹。 三、焊接施工流程 1、坡口清理准备→点固→焊前预热→焊接→施焊→自检/专检→焊后热处理→无损检验(合格)焊接材料的选用 2、由于Q345钢的冷裂纹倾向较大,应选用低氢型的焊接材料,同时考虑到焊接接头应与母材等强的原则,选用E5015 (J507)型电焊条。 3、对于要求焊接的部位严格按图纸要求施焊,注意坡口角度、间隙及焊角高度。 4、焊接过程应注意层间清理和层间检查,确保无裂纹、气孔、夹渣等缺陷,方可继续施焊。 5、焊接过程应注意接头和收弧质量,接头应熔合良好,收弧时弧坑应填满,以防弧坑裂纹。 6、焊接工作应一气呵成,更换焊条时应迅速,中途不应无故停顿,注意层间熔化,避免出现夹沟。焊接过程中途因故停止后重新焊接时,必须检查焊缝表面是否有裂纹、气孔、生锈、水迹等,发现问题及时处理。 四、焊接工艺参数的选择

压力管道焊接及焊后热处理施工工艺规范

1 适用范围 本规程适用于工业管道或公用管道中材质为碳素钢、合金钢、低温钢、耐热钢、不锈钢和异种钢等压力管道的手工电弧焊、氩弧焊、二氧化碳气体保护焊及其焊后的热处理施工。 2 主要编制依据 2.1 GB50236-98 《现场设备、工业管道焊接工程施工及验收规范》 2.2 DL5007-92 《电力建设施工及验收技术规范(焊接篇)》 2.3 SH3501-1997 《石油化工剧毒、可燃介质管道工程施工及验收规范》 2.4 GB50235-97 《工业金属管道工程施工及验收规范》 2.5 CJJ28-89 《城市供热管网工程施工及验收规范》 2.6 CJJ33-89 《城镇燃气输配工程施工及验收规范》 2.7 GB/T5117-1995 《碳钢焊条》 2.8 GB/T5118-1995 《低合金钢焊条》 2.9 GB/T983-1995 《不锈钢焊条》 2.10 YB/T4242-1984 《焊接用不锈钢丝》 2.11 GB1300-77 《焊接用钢丝》 2.12 其他现行有关标准、规范、技术文件。 3 施工准备 3.1 技术准备 3.1.1 压力管道焊接施工前,应依据设计文件及其引用的标准、规范,并依据我公司焊接工艺评定报告编制出焊接工艺技术文件(焊接工艺卡或作业指导书)。如果属本公司首次焊接的钢种,则首先要制定焊接工艺评定指导书,然后对该种材料进行工艺评定试验,合格后做出焊接工艺评定报告。 3.1.2 编制的焊接工艺技术文件(焊接工艺卡或作业指导书)必须针对工程实际,详细写明管道的设计材质、选用的焊接方法、焊接材料、接头型式、具体的焊接施工工艺、焊缝的质量要求、检验要求及焊后热处理工艺(有要求时)等。 3.1.3 压力管道施焊前,根据焊接作业指导书应对焊工及相关人员进行技术交底,并做好技术交底记录。 3.1.4 对于高温、高压、剧毒、易燃、易爆的压力管道,在焊接施工前应画出焊口位置示意图,以便在焊接施工中进行质量监控。 3.2 对材料的要求

焊接热处理规范

焊接热处理规范 1、预热 当管子外径大于219mm或壁厚大于等于20mm时,应采用电加热进行预热,预热升温 速度应符合热处理规程6.4.3的要求。预热宽度从对口中心开始,每侧不少于焊件厚度的3 倍,且不小于100mm. 2、后热 (1)有冷裂纹倾向的焊件,当焊接工作停止后,若不能立即进行焊后热处理,应进行 后热处理。温度350?,保温时间1-2小时。其加热宽度应不小于预热时的宽度。 (2)对马氏体型钢(如F12钢或P91钢等)的焊接,如要进行后热,应在马氏体转变 结束后进行。 3、焊后热处理 下列焊接接头应进行热处理: 1)壁厚大于30 mm的碳素钢管子与管件。 2)壁厚大于32 mm的碳素钢容器。 3)壁厚大于28 mm的普通低合金钢容器。 4)耐热钢管子与管件(热处理规程第6.2.2.1条规定的内容除外)。 5)经焊接工艺评定需做热处理的焊件。 4、升、降温速度应按下述原则控制:

对承压管道和受压元件,焊接热处理升、降温速度为6250/δ(单位为?/h,其中δ 为焊件厚度mm)且不大于300?/h.降温时,300?以下可不控制。 5、T91/P91钢焊接接头热处理工艺 对T91/P91钢焊接接头热处理工作,作为本工程热处理工作的重点。须严格执行工艺。 1)当焊缝整体焊接完毕,对T91钢和P91钢小径薄壁管的焊接接头可冷却至室温,而 对P91钢大径厚壁管的焊接接头冷却到100~120?恒温1小时后,应及时进行焊后热处理。 2)要求焊接接头焊后及时热处理。不能及时进行热处理时,应于焊后立即做加热温度 为350?,恒温时间为1小时的后热处理。 3)焊后热处理的升、降温速度以?150?/h为宜,对T91钢和P91钢小径薄壁管的焊接接头焊后热处理的升、降温速度为?300?/h.降温至300?以下时,可不控制,在保温层内冷却至室温。 4)T91/P91钢焊后热处理加热温度为760?1O?。对于T91/P91钢与珠光体、贝氏体钢的异种焊接接头,加热温度应按两侧钢材及所用焊丝、焊条等综合确定,不应超过合金 成分含量低材料的下临界点Ac1. 5)恒温时间:执行DL/T868-2004的规定。 6)焊接热处理过程曲线(P、W、H、T)参见下图。 6、意外情况的处理

焊前预热及焊后热处理作业指导书

目录 1编制依据 (1) 2项目工程概况及工程量 (1) 3项目进度计划 (3) 4作业准备工作及条件 (4) 4.1作业人力、机械、工具、仪器、仪表等的计划 (4) 4.2作业环境的要求 (4) 4.3材料、设备供应计划 (4) 5作业程序及作业方法 (5) 6作业质量标准 (9) 6.1作业质量标准 (9) 6.2作业操作质量要点及保证措施 (10) 7作业的职业安全和环境控制措施 (10) 7.1本项作业一般安全和环境保护措施 (10) 7.2本项作业重要环境因素、重大风险 (11) 7.3本项作业重要环境因素、重大风险控制措施 (11) 7.4本项作业应急响应措施 (11)

1编制依据 1.1《阳煤集团和顺化工有限公司“18·30”尿素项目锅炉及三废炉安装施工组织设计》 1.2《电力建设施工质量验收及评价规程》(第七部分:焊接)2010版1.3《火力发电厂焊接热处理技术规程》DL/T819-2010 1.4《火力发电厂焊接技术规程》DL/T869-2004 1.5《特种设备焊接操作人员考核细则》TSG Z6002-2010 1.6《电站钢结构焊接通用技术条件》DL/T678-1999 1.7《电力建设安全健康与环境管理工作规定》2008-8-19 1.8图纸、说明书及有关技术资料 1.9《电力工程达标投产管理办法》(中国电力建设企业协会2006年版)1.10《工程建设标准强制性条文》(焊接部分2009年版) 2项目工程概况及工程量 2.1工程概况 阳煤集团和顺化工有限公司“18·30”尿素项目锅炉及三废炉安装工程的主体焊接热处理工程。 2.2项目工程主要工程量 见表一

压力容器焊后热处理工艺规程

压力容器焊后热处理工艺规程

前言 本标准代替《压力容器焊后热处理工艺规程》。 本标准与相比主要变化如下: ——将常用钢原材料牌号变更为按GB713-2008标准的相应牌号 自本标准实施之日起,原标准压力容器焊后热处理工艺规程》停止使用。标准起草人: 标准化审查: 审核: 批准:

压力容器焊后热处理工艺规程 1 范围 本标准规定了压力容器焊后热处理工艺、设备、测量、检验等技术要求。 本标准适用于我公司制造的、有焊后热处理要求的压力容器及其零部件热处理。 2 热处理工艺 2.1 整体热处理工艺 2.1.1 装炉容器或零部件必须放置在有效加热区内。装炉量、装炉方式及堆放形式 均应确保加热、冷却均匀一致,且不致造成畸变及其它缺陷。 2.1.2 容器或零部件的装、出炉温度不大于400℃。 2.1.3 容器或零部件在炉内升温至400℃后,再继续升温,升温速度限制在55℃/h —220℃/h之间,一般升温速度按V 升=5500/δ S ℃/h(δ S 为焊后热处理厚度,mm) 控制;升温过程中要求加热均匀,被加热容器或零部件任意5米距离内温差不大于120℃。 2.1.4 炉温达到退火温度后进行保温,保温时间按(δS/25)小时计算;但不得少于0.5小时;保温期间被加热容器或零部件的全部受热段,最大温差不超过65℃。2.1.5 保温阶段完成后炉冷至400℃以下出炉在空气中冷却;炉冷速度控制在55℃ /h—280℃/h之间,一般炉冷速度按V 降=7000/δ S ℃/h控制,炉冷过程温差要求与 加热升温过程相同。 2.1.6 焊后热处理允许在炉内分段进行,分段热处理时,其重复热处理长度应不小于1500mm,炉外部分应采取保温措施,使温度梯度不致影响材料的组织和性能。其它与整体热处理要求相同。 2.1.7 我公司常用钢材的压力容器焊后退火温度按表1执行,其它钢种按专用热处理工艺卡执行。

焊接热处理施工工艺

钢结构焊后热处理工艺 1总则 1.1为了保证电厂厂房钢结局部焊接热处理质量,指导焊接热处理作业,特制定本工艺。 1.2本工艺适用于钢结构对接焊缝焊前预热、后热和焊后热处理工作。 1.3焊接热处理的安全技术、劳动保护应执行国家现行的方针、政策、法律和法规有关规定。 1.4 焊接热处理除执行本工艺的规定外,还应符合国家有关标准规范的规定以及设计图纸的技术要求。 2编写依据 2.1DL/T869 — 2004《火力发电厂焊接技术规程》 2.2DL/T819—2002 《火力发电厂焊接热处理技术规程》 2.3DL/T734 — 2000《火力发电厂锅炉汽包焊接修复技术导则》 2.4DL/T868 — 2004《焊接工艺评定规程》 2.5GB/T17394—1998《金属里氏硬度试验方法》 2.6GB/T16400—2003《绝热用硅酸铝棉及其制品》 3基本要求 3.1人员要求 3.1.1焊接热处理人员资格: a)焊接热处理操作人员应经专业操作技术培训考核合格并取得资格证书; b)接热处理技术人员经专业培训并取得资格证书; C)没有取得资格证书的人员只能从事辅助性的焊接热处理工作,不能单独

作业或对焊接热处理结果进行评价。 3.1.2 热处理技术人员的职责: a ) 熟悉相关规程,熟练掌握和严格执行 DL/T819 — 2002《火力发电厂焊接热 处理技术规程》; b ) 负责编制焊接热处理方案、作业指导书等技术文件; C )指导并监督热处理工的工作,收集、汇部、整理焊接热处理资料。 3.1.3 热处理工的职责: a ) 执行DL/T819 — 2002《火力发电厂焊接热处理技术规程》,严格按照焊接 热处理施工方案、作业指导书进行施工。 b ) 记录热处理操作过程并在热处理后进行自检。 3.2 施工设备和材料要求 3.2.1 热处理设备 a ) 热处理施工前,热处理设备应经调试合格,设备应满足工艺的要求,参数 调节灵活、方便,通用性好,运行稳定、可靠并满足安全要求; b ) 热处理应采用自动温度控制箱,并配有自动打印记录仪,设备的温度精度 应在士 5C 以内,计算机温度控制系统的显示温度应以自动记录仪的温度显示为 准进行调整,两者记录误差不大于 0.5%; C )焊接焊接热处理所用的计量器具必须经过校验, 并在有效期内使用。维修 后的计量器具必须重新校验; d )热处理应采用绳状或履带式远红外线加热器,在采用 K 连接线应采用补偿导线。 柔性陶瓷电阻加热器的技术要求应符合 《火力发电厂焊接热处理技术规程》附录 A 的规定。 3.2.2 施工材料 a ) 采用氧一乙炔加热时,应采用瓶装气体。 b ) 热处理用保温材料应采用无硬碱超细玻璃或硅酸铝纤维毡, 能应满足工艺及环保的要求,产品质量应符合 GB/T16400—2003 《绝热用硅酸 铝棉及其制品》的要求。 C )当用于不锈钢热处理保温时,其热处理材料中的氯离子含量不超过 2510, 且 型热电偶时,其 DL/T819 — 2002 保温材料的性

不锈钢的焊后热处理规定

不锈钢的焊后热处理规定 (2012-07-19 15:59:15) 不锈钢的焊后热处理,我国没有明确规范,而美国ASME及USA标准,英国BS 标 准,联邦德国.AD、DIN及VdTuV规范等某些发达国家的标准都有相应的规定。 综合上述标准规定,对高强度Cr不锈钢,为了去氢需要预热,其温度范围为150一4 00℃。马氏体不锈钢焊后热处理温度范围为730—800℃。铁奈体不锈钢焊后热处理温度范围为730一800℃,随即快速冷却以防脆化,4)奥氏体不锈钢没有一个标准规 定必须焊后热处理,仅建议当板材很厚肘,可选择900~1100℃温度范围进行热处理,随即进行水冷或空冷(根据板厚),5)奥氏体一铁素体双相钢和镲基合金没有任何规定和建议。 不锈钢的焊后热处理可分别采用以下三种温度范围的热处理。 1.低温焊后热处理(≤500℃) Cr-Ni奥氏体不锈钢,在200 ~400℃热处理可减少峰值应力(约减少40%),但总应 力降低很少。奥氏体不锈钢偶尔也采用400一500℃热处理。低温处理不适于高强度Cr不锈钢。 2.中温焊后热处理(550一820℃) 中温热处理的目的主要是消除应力。这种热处理可用于复合钢,对基层及不锈钢复层都可消除应力。 对铁素体和马氏体不锈钢,一般都在600 ~730℃范围内进行焊后热处理,以改善缺口韧性。 奥氏体一铁索体双相钢不宜采用中温处理,因为会引起ɑ相和碳化物析出。奥氏体不锈钢用于复合钢中时,可在540~700℃处理以消除应力。奥氏体不锈钢一般不宜在550—800℃热处理,因为这个温度范围会促进晶阅腐蚀的产生(C<0.03%的超低碳不锈钢除外). 3.高温焊后热处理( >900℃)

压力管道焊接及热处理汇总

焊接工艺 1

1.适用范围 本工艺标准适用于本公司所承建工程中低碳钢等管材类采用氩弧焊、手工电弧焊的焊接施工。 2.施工准备 2.1材料要求 2.1.1施工现场应配有符要求的固定焊条库或流动焊条库。 2.1.2焊材必须具有质量证明书或材质合格证,焊材的保管、烘干、发放、回收严格按《压力管道安装质量保证手册》中有关规定执行,焊条的烘干工艺按生产厂家说明书提供的参数进行,否则应按以下参数进行烘干: 2.1.3焊丝使用前,应除去表面的油脂、锈等杂物。 2.1.4保温材料性能应符合预热及其热处理要求。 2.2机具要求 2.2.1焊机为直流焊机,性能安全可靠,双表指示灵敏,且在校准周期内。 2.2.2预热及热处理的设备完好,性能可靠,检测仪表在校准周期内,且符合《压力管道质保手册》中的计量要求。 2.2.3焊工所用的焊条保温筒,刨锤、钢丝刷等工具齐全。 2.3作业条件 2.3.1人员资格 焊工必须持有《锅炉压力容器焊工合格证》,且施焊项目应在其合格项目范围之内。 2.3.2环境条件

施焊前应确认环境符合下列要求 A ) 风速:手弧焊小于8m/s ;氩弧焊小于2m/s ; B ) 相对湿度:相对湿度小于90%; C ) 环境温度:当环境温度小于0℃时,对不预热的管道焊接前应 在始焊处预热15℃以上;对焊接工艺要求预热的管道焊接前按要求进行预热,当环境温度低于-20℃时,必须采取保暖缓冷措施。 3.焊接 3.1焊接施工程序,见图1。 * 当有要求时 3.2坡口要求 1)壁厚小于等于20mm ,坡口见图2。 图2 2)壁厚大于20mm ,坡口形式见图3。

图3 1)组对时质量要求 内壁整齐,其错边量不超过下列规定: 不宜超过壁厚的10%,且不大于2mm。 3.3焊接方法 1)管径DN≤50mm碳钢管焊口采用氩弧焊进行焊接; 2)管径DN>50mm碳钢管焊口宜用氩弧打底,手工电弧焊盖面;若用手工电弧焊打底则应保证打底焊道的质量。 3)承插或角焊缝采用手工电弧焊进行焊接; 3.4点焊 点焊方式为过桥方式,其工艺和焊材于正式焊接工艺相同,点焊数为2-5点焊长度为60-70㎜厚度不大于3㎜。焊前需预热的,点焊前需预热,预热一切同正式焊接相同。 3.5预热 对有焊前预热要求的管道在焊口组对并检验合格后,应进行预热,预热方法采用电加热,预热范围为坡口两侧各不少于100mm。测温方式可采 a

相关主题
文本预览
相关文档 最新文档