当前位置:文档之家› 数学史(第2章古希腊数学)

数学史(第2章古希腊数学)

数学史(第2章古希腊数学)
数学史(第2章古希腊数学)

第2章古代希腊数学

主题:

希腊文化与理论数学的起源

人类理性思维的形成

在唯理的社会气氛中,希腊人将埃及和美索不达米亚的数学经验算术和几何法则加工成具有初步逻辑结构的论证数学体系。

概述:

希腊数学分为三个阶段:一是从公元前6C到约公元前3C,这一时期以雅典为中心,形成了论证几何数学的思想基础和有关方法上的基础;二是从约公元前3C到约公元前30年,这一时期主要以亚历山大为中心,形成的系统的论证几何体系,建立理论方法,为数学的发展提供了一种基本的观点和方法。三是从约公元前30年到公元6C,这是希腊数学发展后期,主要发展带有实用特点的数学。同时也有对前人进行评述和整理工作。

主要成就:

1 论证数学的鼻祖及主要贡献:

泰勒斯(前625-前547)泰勒斯领导的爱奥尼亚学派据说开了希腊命题论证之先河,并证明了四条定理和“泰勒斯定理”。

毕达哥拉斯(前580-前500)毕达哥拉斯创立了毕达哥拉斯学派,从事哲学和数学研究。普鲁克鲁斯在《评注》中论述了毕达哥拉斯学派的主要成就有:(1)证明了毕达哥拉斯定理,即勾股定理。其方法最著名的猜测是“面积剖分法”。(2)正多面体作图(包括正四、六、八、十二、二十面体)。以正十二面体的作图最为著名,它的每个面都是正五边形,并且和“黄金分割”相关(注:黄金分割这一名字并不是来源该学派,见书36页注)。(3)关于数的研究,毕达哥拉斯学派的基本信条是“万物皆数”(这里指整数),并讨论了许多数论的性质,如偶数与奇数,完全数等。该学派还有关于“形数”的研究,他们把数作为几何思维元素的精神,“形数”体现了数与形的结合。(4)发现了不可公度量。

评论:毕达哥拉斯学派把数看成是世界的基础,客观上形成对世界数量关系的认识,是人类认识上的一大进步。加强了数概念中的理论倾向,推动了几何学的抽象化倾向,这些研究使人类抽象思维能力达到了一个高的水平。不可公度量的发现,由此产生了“第一次数学危机”,这一问题的根本解决是人们对连续性有更精确的定义后才完全解决。

2 雅典时期的希腊学派活动

这一时期,雅典是希腊的政治经济文化中心,学派林立(这些学派有哪些?)。学派主要讨论哲学问题。但是一些讨论涉及到了无限性、连续性等深刻概念。讨论极大地强化了数学的理论色彩。这一时期的主要成就表现在下面的一些方面:一三大几何问题:

化圆为方倍立方体三等分任意角(你知道这些问题的具体含义吗?)

在化圆为方的研究中诡辩学派的代表人物安提丰产生了“穷竭法”的思想而被称为“穷竭法”的始祖。关于被倍立方体问题,柏拉图学派的梅内赫莫斯发现了圆锥曲线。但是,真正对问题的解决是到了19世纪,数学家才弄清三大问题是不可解的。

二无限的早期探索:

主要以芝诺悖论为代表,提出了四个悖论,(具体是什么?)揭示了无限性概念的矛盾(即:事物一方面需要无限可,另一方面又不可分无限小量)。这些问题的解决最终是借助极限、连续等抽象概念才解决。

三逻辑演绎结果的倡导

这一时期,数学中的演绎化倾向有了实质性的进展,主要归功于柏拉图、亚里斯多德和他们的学派。柏拉图认为数学是一切学问的基础(学院大门上写着“不懂几何者莫入”),这一学派对数学研究方法有颇多的贡献(分析法和归谬法)。亚里斯多德是柏拉图的学生,他发展和完善了柏拉图的方法,最大的贡献是将前人使用的数学推理规律规范化和系统化,独立创立了逻辑学,即形式逻辑。其中的矛盾律和排中律是数学间接证法(如反证法)的核心。为欧几里得的演绎几何体系奠定了方法论的基础。

3 亚历山大学派——希腊数学黄金时代(前338年-前30)(重点)

主要人物:欧几里得、阿基米德和阿波罗里奥斯

欧几里得

希腊论证几何学的集大成者。两个典故:“几何学无王者之道”;“不要希望从几何中捞点什么”。欧几里得写了很多著作,包括数学、天文、光学和音乐。最重要的是《原本》。

《原本》:用公理化方法对当时的数学知识作了系统化、理论化的总结,全书分为13卷,包括有5条公理、5条公设、119个定义和465条命题,构成了历史上第一个数学公理体系。(注:这里公理是指一切科学公有的真理(基本原理),公设是为某一学科所接受的第一性原理。)

《原本》包括了平面几何的基本内容,如全等形、平行线、多边形、圆、毕达哥

拉斯定理、初等作图及相似形等。“几何代数”内容,体现了数形结合的思想。“比例论”消除了部分当时对不可公度量认识上的危机(注:在对不可公度量的根本解决,到19世纪,出现在借助于极限过程对无理数作出严格定义之后)。还有数论内容,不可分度量的讨论,立体几何内容。详细陈述了“穷竭法”。

评论:《原本》是数学史上的一座丰碑,最大的功绩就在于数学中的演绎范式的确立,即公理化思想。

阿基米德(前287-前212)

阿基米德的成就涉及数学、力学和天文学,有流传于世的丰富文稿,其中数学著作集中探讨与面积和体积计算相关的问题,比如用穷竭法计算圆的周长和面积公式。求出了球的表面积和体积公式。阿基米德是数学工作的严格证明和创造技巧相结合的典范,用“平衡法”求球的体积公式,实质上是一种原始的积分法。发现与求证是阿基米德的独特思维方式。

阿波罗里奥斯(前262-前190)

主要贡献涉及几何学和天文学,最主要的是数学成就,创立了完美的圆锥曲线理论,直至17世纪笛卡儿和帕斯卡之前无人超越。

《圆锥曲线论》共8卷,有487各命题。阿波罗里奥斯第一次从一个对顶圆锥得到所有的圆锥曲线,并命名现在的椭圆(elipse)、双曲线(huperbola)和抛物线(parabola),还广泛讨论了圆锥曲线的性质,甚至包含了现代微分几何和射影几何的思想和萌芽。《圆锥曲线论》是希腊演绎几何的最高成就,阿波罗里奥斯用纯几何的形式,推出了今天解析几何的主要结论。

4 亚历山大后期(公元30年-公元6世纪)和希腊数学的衰落

从论证数学转向实用的数学

海伦:主要讨论几何图形的面积和体积计算,如海伦公式(阿基米德发现,命名是海伦公式)。

建立三角学:代表人物是托勒枚《大成》:弦表和托勒枚定理,他是第一个有明确的构造原理并流传于世系统的三角函数表。

突破了前期以几何学为中心的传统,算术和代数成为独立的学科。丢番图的《算术》,用纯分析的途径处理数论与代数问题,是希腊算术与代数成就的最高标志。

丢番图的《算术》是希腊算术与代数成就的最高标志。共10卷,含290个问题。主要对不定方程问题进行了广泛的讨论,最出名的一个不定方程是勾股定理的整数解问题。还创立了“简写代数”。局限是代数问题的解法缺乏一般性。

帕波斯《数学汇编》:主要荟萃总结前人的成果,同时也有创造性的成果。许多宝贵资料正是《数学汇编》的记载得以保存。

5 本章研讨题目

1、希腊文化与理论数学的起源

2、“穷竭法”的历史起源及其价值

3、“圆锥曲线”的历史起源

4、“公理化”思想方法的起源与发展

5、托勒枚“弦表”算法与三角公式

《数学史》读后感

《数学史》读后感 《数学史》读后感 今年的寒假出奇的漫长,在这漫长的寒假里,我读了一本我不怎么喜欢的书--《数学史》,为什么不喜欢呢?是因为我很多不懂,但是读着读着我就喜欢上了,《数学史》记录着人类数学历史发展的进程,读了它,我有一点肤浅的体会。 体会一:数学源自于与生活的需要与发展。 书中写到:人类在很久之前就已经具有识辨多寡的能力,从这种原始的数学到抽象的“数”概念的形成,是一个缓慢渐进的过程。人们为了方便于生活便有了算术,于是开始用手指头去“计算”,手指头计数不够就开始用石头,结绳,刻痕去计计数。例如:古埃及的象形数字;巴比伦的楔形数字;中国的甲骨文数字;希腊的阿提卡数字;中国筹算术码等等。虽然每种数字的诞生都有不同的背景与用途,以及运算法则,但都同样在人类历史发展和数学发展起着至关重要的作用,极大地推动了人类文明的前进。 体会二:河谷文明和早期数学在历史的长河一样璀璨夺目。 历史学家往往把兴起于埃及,美索不达米亚,中国和印度等地域的古文明称为“河谷文明”,早期的数学,就是在尼罗河,底格里斯河与幼发拉底河,黄河与长江,印度河与恒河等河谷地带首先发展起来的。埃及人留下来的两部草纸书--莱茵徳纸草书

和莫斯科纸草书,还有经历几千年不倒的神秘金字塔,给后人诠释了古埃及人在代数几何的伟大成就,也给后人留下了辉煌的文化历史,而美索不达米亚在代数计算方面更是达到令人不可思议的程度。三次方程,毕达哥拉斯都是它创造的不朽的历史,在数学史上的地位是至关重要的。 古人云:读史使人明智。读了《数学史》让我明白:数学源于生活,高于生活,最终服务于生活,运用于生活。-- 《《数学史》读后感》

历史上的三次数学危机

历史上的三次数学危机王方汉(武汉市第二十三中学430050) 在数学发展的过程中,人的认识是不断深化的.在各个历史阶段,人的认识又有一定的局限性和相对性.当一种/反常0现象用当时的数学理论解释不了,并且因此影响到数学的基础时,我们就说数学发生了危机.许多人并不赞成使用危机这个词,因为它们并没有阻碍数学的发展. 在历史上,数学曾发生过三次危机.这三次危机,从产生到消除,经历的时间各不相同,都极大地推动了数学的发展,成为数学史上的佳话. 第一次数学危机产生于公元前五世纪.那时,古希腊的毕达哥拉斯学派发现:正方形边与对角线是不可通约的,现在称之为/比达哥拉斯悖论0. /悖论0这一术语,许多中小学生恐怕是第一次见到.所谓悖论,就是指自相矛盾荒谬结论. 今天看来,两条线段不可通约,是数学中常见的合理的现象,它不过表明两条线段之比是一个无理数而已,可是,当时的古希腊人怎么会认识到这一点?!在他们眼中,各种事物的许多物理的、化学的、生物的性质都可能改变,惟其数量性质是不会变的!他们认为:万物都包含着数:数只有两种,这就是自然数和可通约的数.所以,不可通约的数是不可思议的! 第一次数学危机持续了两千多年.十九世纪,数学家哈密顿(Hamilton)、梅雷(Melay)、代德金(Dedekind)、海涅(Heine)、波雷尔(Borel)、康托尔(Cantor)和维尔斯特拉斯(Weietstrass)等正式研究了无理数,给出了无理数的严格定义,提出了一个含有有理数和无理数的新的数类)))实数,并建立了完整的实数理论.这样,就完全消除了第一次数学危机. 第二次数学危机是因为发现微积分方法而产生的.十七世纪,牛顿和德国数学家莱布尼兹(Leibniz,1646-1716)首创了微积分.这时的微积分只有方法,没有严密的理论作为基础,许多地方存在着漏洞,还不能自圆其说.例如,牛顿当时是这样求函数y=x n的导数的: (x+v x)n=x n+n#x n-1#v x+n(n-1) 2 #x n-2#(v x)2+,+(v x)n,然后把函数的增量v y除以自变量的增量v x,得 v y v x= (x+v x)n-x n v x =n#x n-1+ n(n-1) 2 #x n-2#v x +,+nx#(v x)n-2+(v x)n-1, 最后,扔掉其中所有含v x的项,就得到函数y= x n的导数为nx n-1. 哲学家以眼光税利、思维敏捷而著称.贝克莱(Berkelg)就是这样的哲学家.他一针见血地指出:先以v x为除数,说明v x不等于零,后来又扔掉所有含v x的项,可见v x等于零,这岂不自相矛盾吗?这就是著名的/贝克莱悖论0. 现在我们知道,自变量x的增量v x是一个无穷小量.但在当时,贝克莱悖论的出现,咄咄逼人,逼得数学家们不得不认真地对待/无穷小量0,设法克服由此引起的思维上的混乱. 十九世纪,许多数学家投入到了这一工作之中,柯西(Cauchy,1789-1857)和维尔斯特拉斯的贡献最为突出.1821年,柯西建立了极限的理论,提出了/无穷小量是以零为极限但永远不为零的变量0,维尔斯特拉斯又作了进一步的改进,终于消除了贝克莱悖论,把微积分建立在坚实的极限理论之上,从而结束了第二次数学危机. 第二次数学危机的解除,与第一次数学危机的解除,两者实际上是密不分的.为解决微积分问题,必须建立严密的无理数定义以及完整的实数理论.有了实数理论,加上柯西和维尔斯特拉斯的极限理论,这样,第一、二次数学危机就相继消除了. 一波未平,又起一波.前两次数学危机解决后不到三十年,又卷起了第三次数学危机的轩然大波. 十九世纪末和二十世纪初,德国数学家康托尔(Cantor,1845-1918)创立了集合论,初衷是为整个数学大厦奠定牢实的基础.正当人们为集合论的诞生而欣然自慰时,一串串数学悖论却冒了出来,又搅得数学家心里忐忑不安.其中,英国数学家罗素(Russell,1872-1970)于1902年提出的

历史上三大数学危机之三

第三次数学危机 一、起因 魏尔斯特拉斯用排除无穷小量的办法来解决贝克莱悖论,而在本世纪60年代,鲁滨逊又把无穷小量请了回来,引进了超实数的概念,从而建立了非标准分析,同样也能精确地描述微积分,进而也解决了贝克莱悖论。但必须注意到,贝克莱悖论只是在相对意义下得到了解决,因为实数理论的无矛盾性归结为集合论的无矛盾性,而集合论的无矛盾性至今仍未彻底解决。 二、经过 经过第一、二次数学危机,人们把数学基础理论的无矛盾性,归结为集合论的无矛盾性,集合论已成为整个现代数学的逻辑基础,数学这座富丽堂皇的大厦就算竣工了。看来集合论似乎是不会有矛盾的,数学的严格性的目标快要达到了,数学家们几乎都为这一成就自鸣得意。法国著名数学家庞加莱(1854—1912)于1900年在巴黎召开的国际数学家会议上夸耀道:“现在可以说,(数学)绝对的严密性是已经达到了”。然而,事隔不到两年,英国著名数理逻辑学家和哲学家罗素(1872—1970)即宣布了一条惊人的消息:集合论是自相矛盾的,并不存在什么绝对的严密性!史称“罗素悖论”。1918年,罗素把这个悖论通俗化,成为理发师悖论。罗素悖论的发现,无异于晴天劈雳,把人们从美梦中惊醒。

罗素悖论以及集合论中其它一些悖论,深入到集合论的理论基础之中,从而从根本上危及了整个数学体系的确定性和严密性。于是在数学和逻辑学界引起了一场轩然大波,形成了数学史上的第三次危机。 产生集合论悖论的原因在于集合的辨证性与数学方法的形式特性或者形而上学的思维方法的矛盾。如产生罗素悖论的原因,就在于概括原则造集的任意性与生成集合的客观规则的非任意性之间的矛盾。 三、影响 第三次数学危机的产物——数理逻辑的发展与一批现代数学的产生。 为了解决第三次数学危机,数学家们作了不同的努力。由于他们解决问题的出发点不同,所遵循的途径不同,所以在本世纪初就形成了不同的数学哲学流派,这就是以罗素为首的逻辑主义学派、以布劳威尔(1881—1966)为首的直觉主义学派和以希尔伯特为首的形式主义学派。这三大学派的形成与发展,把数学基础理论研究推向了一个新的阶段。三大学派的数学成果首先表现在数理逻辑学科的形成和它的现代分支——证明论等——的形成上。 为了排除集合论悖论,罗素提出了类型论,策梅罗提出了第一个集合论公理系统,后经弗伦克尔加以修改和补充,得到常用的策梅罗——弗伦克尔集合论公理体系,以后又经

数学历史故事之中国数学发展大事件

数学历史故事之中国数学发展大事件 数学发展过程中,有许多具有里程碑的大事件,今天极客数学帮《数学历史故事》就来说说数学发展史中中国有哪些了不起的成就,感兴趣的同学们一起来看看今天的数学历史故事吧。 公元前600年以前据中国战国时尸佼著《尸子》记载:“古者,倕(注:传说为黄帝或尧时人)为规、矩、准、绳,使天下仿焉”,这相当于在公元前2500年前,已有“圆、方、平、直”等形的概念。 400年继西汉张苍、耿寿昌删补校订之后,50-100年,东汉时纂编成的《九章算术》,是中国古老的数学专著,收集了246个问题的解法。 三世纪时,写成代数著作《算术》共十三卷,其中六卷保留至今,解出了许多定和不定方程式(古希腊丢番都)。三世纪至四世纪魏晋时期,《勾股圆方图注》中列出关于直角三角形三边之间关系的命题共21条(中国赵爽)。三世纪至四世纪魏晋时期,发明“割圆术”,得π=3.1416(中国刘徽)。 三世纪至四世纪魏晋时期,《海岛算经》中论述了有关测量和计算海岛的距离、高度的方法(中国刘徽)。 六世纪,隋代《皇极历法》内,已用“内插法”来计算日、月的正确位置(中国刘焯)。 七世纪,唐代的《缉古算经》中,解决了大规模土方工程中提出的三次方程求正根的问题(中国王孝通)。

七世纪,唐代有《“十部算经”注释》。“十部算经”指:《周髀》、《九章算术》、《海岛算经》、《张邱建算经》、《五经算术》等(中国李淳风等)。 727年,唐开元年间的《大衍历》中,建立了不等距的内插公式(中国僧一行)。 1086-1093年,宋朝的《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究(中国沈括)。 十一世纪中叶,宋朝的《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,列出二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法(中国贾宪)。 1247年,宋朝的《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年(中国秦九韶)。1248年,宋朝的《测圆海镜》十二卷,是第一部系统论述“天元术”的著作(中国李治)。1261年,宋朝发表《详解九章算法》,用“垛积术”求出几类高阶等差级数之和(中国杨辉)。1274年,宋朝发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法(中国杨辉)。1280年,元朝《授时历》用招差法编制日月的方位表(中国王恂、郭守敬等)。 十四世纪中叶前,中国开始应用珠算盘。 1303年,元朝发表《四元玉鉴》三卷,把“天元术”推广为“四元术”(中国朱世杰)。

《数学史》读后感

《数学史》读后感 《数学史》读后感今年的寒假出奇的漫长,在这漫长的寒假里,我读了一本我不怎么喜欢的书——《数学史》,为什么不喜欢呢 ?是因为我很多不懂,但是读着读着我就喜欢上了,《数学史》记录着人类数学历史发展的进程,读了它,我有一点肤浅的体会。 体会一: 数学源自于与生活的需要与发展。 书中写到: 人类在很久之前就已经具有识辨多寡的能力,从这种原始的数学到抽象的“数”概念的形成,是一个缓慢渐进的过程。人们为了方便于生活便有了算术,于是开始用手指头去“计算”,手指头计数不够就开始用石头,结绳,刻痕去计计数。例如: 古埃及的象形数字 ;巴比伦的楔形数字 ;中国的甲骨文数字 ;希腊的阿提卡数字 ;中国筹算术码等等。虽然每种数字的诞生都有不同的背景与用途,以及运算法则,但都同样在人类历史发展和数学发展起着至关重要的作用,极大地推动了人类文明的前进。

体会二: 河谷文明和早期数学在历史的长河一样璀璨夺目。 历史学家往往把兴起于埃及,美索不达米亚,中国和印度等地域的古文明称为“河谷文明”,早期的数学,就是在尼罗河,底格里斯河与幼发拉底河,黄河与长江,印度河与恒河等河谷地带首先发展起来的。埃及人留下来的两部草纸书——莱茵徳纸草书和莫斯科纸草书,还有经历几千年不倒的神秘金字塔,给后人诠释了古埃及人在代数几何的伟大成就,也给后人留下了辉煌的文化历史,而美索不达米亚在代数计算方面更是达到令人不可思议的程度。三次方程,毕达哥拉斯都是它创造的不朽的历史,在数学史上的地位是至关重要的。 古人云: 读史使人明智。读了《数学史》让我明白: 数学源于生活,高于生活,最终服务于生活,运用于生活。

数学史试卷及问题详解

一、单项选择题 1、古代美索不达米亚的数学成就主要体现在(A) A.代数学领域 B.几何学领域 C.三角学领域 D.解方程领域 2、建立新比例理论的古希腊数学家是(C) A.毕达哥拉斯 B.希帕苏斯 C.欧多克斯 D.阿基米德 3、我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是(D) A.贾宪 B.刘徽 C.朱世杰 D.秦九韶 4、下列著作中,为印度数学家马哈维拉所著的是(B) A.《圆锥曲线论》 B.《计算方法纲要》 C.《算经》 D.《算法本源》 5、在射影几何的诞生过程中,对于透视画法所产生的问题从数学上直接给予解答的第一个人是(C) A.达·芬奇 B.笛卡儿 C.德沙格 D.牛顿 6、提出行星运行三大定律的数学家是(D) A.牛顿 B.笛卡儿 C.伽利略 D.开普勒 7、欧拉从事科学研究工作的地方,主要是(B) A.瑞士科学院 B.俄国圣彼得堡科学院 C.法国科学院 D.英国皇家科学院 8、《几何基础》的作者是(C) A.高斯 B.罗巴契夫斯基 C.希尔伯特 D.欧几里得 9、提出“集合论悖论”的数学家罗素是(A) A.英国数学家 B.法国数学家 C.德国数学家 D.巴西数学家 10、运筹学原意为“作战研究”,其策源地是(A) A.英国 B.法国 C.德国 D.美国 11、数学的第一次危机,推动了数学的发展。导致产生了(A) A欧几里得几何 B非欧几里得几何 C微积分 D集合论 12、世界上第一个把π计算到3.11415926 <π<3.1415927的数学家是(祖冲之) 13、我国元代数学著作《四元玉鉴》的作者是(C) A秦九韶 B杨辉 C朱世杰 D贾宪 14、变量的函数是一个由该变量与一些常数以任何方式组成的解析表达式。这个 函数定义在18世纪后期占据了统治地位,给出这个函数定义的数学家是(C) A莱布尼茨 B约翰贝努利 C欧拉 D狄利克雷 15、几何原本的作者是(欧几里得) 16、世界上讲述方程最早的著作是(中国的九章算术)

《数学史概论》读书报告

《数学史概论》读书报告 数学源自于人类早期的生产活动,早期古希腊、古巴比伦、古埃及、古印度及中国古代都对数学有所研究。数学是研究数量、结构、变化以及空间模型等概念的一门学科。通过抽象化和逻辑推理的运用,由计数、计算、量度和对物体形状及运动的观察中产生。数学的基本要素是:逻辑和直观、分析和推理、共性和个性。以下对李文林著《数学史概论》作一个读后的总结。 一、《数学史概论》简介及其特点 《数学史概论(第2版)》以重大数学思想的发展为主线,阐述了从远古到现代数学的历史。书中对古代希腊和东方数学有精炼的介绍和恰当的分析;同时充分论述了文艺复兴以来近现代数学的演进与变革,尤其是20世纪数学的概观,内容新颖。《数学史概论(第2版)》中西合炉,将中国数学放在世界数学的背景中述说,更具客观性与启发性。《数学史概论(第2版)》脉络分明,重点突出,并注意引用生动的史实和丰富的图片。 本书共分十五章,其中第一章“数学的起源与早期发展”介绍了人类在蒙昧时期由于生产生活的需要,逐渐形成了数与形的概念,从最早的手指计数到石头计数,再到结绳计数直到距今大约五千多年前,出现了书写计数以及相应的计数系统。在灿烂的“河谷文明”中,重点介绍了埃及数学和美索不达米亚数学。第二章“古代希腊数学”,介绍了雅典时期和亚历山大时期的数学,其中重点对数学家泰勒斯、毕达哥拉斯、欧几里得、阿基米德及阿波罗尼奥斯及其成就作了详尽的介绍。第三章“中世纪的中国数学”,从古代著作《世本》中提到的黄帝使“隶首作算数”,殷商甲骨文中使用的完整的十进制计数,到两汉时期、魏晋南北朝时期以及宋元时期达到了发展的高潮。介绍的著作主要有《周髀算经》,《九章算术》,《算经十书》,介绍了刘徽的“割圆术”和他在面积、体积公式推证的成就,祖冲之父子推算“圆周率”,在推导几何图形体积公式时提出了“出入相补”及“祖氏原理”;第四章“印度与阿拉伯的数学”;第五章“近代数学的兴起”,讲述了中世纪的欧洲,从代数学、三角学、透视学、射影几何等方面的发展向近代数学的过渡,以至解析几何的诞生;第六章“微积分的创立”,分别介绍了牛顿和莱布尼茨从不同的角度提出的微积分原理;第七章“分析时代”;第八章至第十章,分别以代数、几何、分析这三大领域的变革为主要线索,介绍了19世纪数学的发展;第十一章至十三章是“20世纪数学概观”,分别介绍了纯粹数学的主要趋势、空前发展的应用数学、现代数学成果十例;第十四章“数学与社会”,第十五章“中国现代数学的开拓”。 本书有以下几个特点:1、与同类书相比,有着最大的空间跨度和时间跨度,从上古的巴比伦、希腊、中国、印度、阿拉伯世界,到中世纪的欧洲,以至20世纪的近代数学、当代数学,遍及世界各地对于数学的贡献地位与影响,都有中肯的评论。2、本书不仅对史实有详尽而忠实的介绍,而且兼有史评史论的作用,更有精辟的历史观。例如作者认为古希腊的数学是一种论证数学,而说中国的古代数学,在南北朝三国时期,也进入到论证数学,刘徽即为其杰出代表之一。至于中世纪欧洲数学的崛起,微积分的创立以及近代数学的诞生史,对于它们的历史背景与社会根源,作者都有敏锐的评论。作者对整个数学的发展有着明确的数学史观。3、本书不仅对数学家和他们的学术成就作了概括的介绍,而且对于一些重要成就,不惜花费篇幅,作了较详细的忠实于原始创造的说明。例如阿基米德对于球体积与抛物线弓形面积的计算,刘徽对于 的计算原理和方法,牛顿与莱布尼茨关于微积分的发现过程,以至较近代如康托关于非可数集合的发现等等,都作了较详细的介绍。这让读者不仅可以了解历史的发展,而且还能深入体会数学大师们原始创造的艰苦历程与来龙去脉。4、本书除了数学家们的传统故事外,还介绍了许多有趣的奇闻轶事。 二、对数学的认识有了进一步的提高

数学史上的三次数学危机的成因分析

江西科技师范学院学年论文 数学史上的三次数学危机的成因分析 吕少珍(数学与应用数学 20081444)指导老师:王亚辉 摘要从哲学上来看,矛盾是无处不在的,即便是以确定无疑著称的数学也不例外。数学常常被人们认为是自然科学中发展的最完善的一门学科,它是自然中最基础的学科,是所有科学之父,没有数学,就不可能有其他科学的产生。但在数学的发展史中,却经历了三次危机,本文回顾了数学史上三次危机的产生和发展,并给出了自己对这三次危机的看法,最后得出确定性丧失的结论。 关键词:数学危机;无理数;微积分;无穷小量 1第一次数学危机 1.1背景 第一次危机发生在公元前580—568年之间的古希腊,当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知。数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派是一个宗教、政治、学术合一且组织严密,带有浓厚宗教色彩的学派,这个学派进行了大量的教学研究,并取得了众多的数学发现。在当时他们一致认为“数”的中心地位随时可见,他们还提出了“万物皆数”这一论断。后期毕达哥拉斯学派成员费洛罗斯将这一观点清晰表达为:“人们所知道的一切事物都包含数;因此,没有数就既不可能表达,也不可能理解任何事物。”世界上的万物和现象都只能通过数才能加以解释,唯有通过数和形,才能把握宇宙的本性,他们还指出“万物都可以归结为整数之比”并且相信宇宙的本质就在于这种“数的和谐”。 1.2 起源 1.2.1 “万物都可以归结为整数之比” 比较两条线段a与b的长度,当b恰好是a的正整数r倍时,我们可以直接用a作为这两条线段的共同度量单位。当b不是a的正整数倍时,我们就要去找第三条线段d,使得a可以正好分成d的正整数倍,同时b也可以分成d的正整数倍,我们可以假设a的长度是d的m倍,b的长度是d的n倍,这时,我们说d就是a与b的度量单位,并说线段a与b是可公约或可公度的。这个过程相当于用比较短的线段当尺子去量长的,如果一次量尽,则度量结束;如果一次量不尽,就用余下的那段线段作为新的尺子去量那个比较短的线段,如果量尽,度量结束,且度量单位就是那段余下的线段;如果还是量不尽,就用再余下的那段线段作为新的尺子去量之前余下的那一段…如此下去,直到量尽,度量结束,且度量单位就是最后余下的那段线段。对于任意两条线段,毕达哥拉斯学派的成员相信上面的操作过程总会在进行了有限步之后结束,他们相信,只要有耐心总能找到那个度量单位的。所以,任何两个同类量都是可通约的,即万物都归结为整数之比 1.2.2 希帕索斯悖论 希帕索斯悖论的提出与勾股定理的发现密切相关。因此,我们从勾股定理谈

数学史上的三大危机

数学史上的三大危机 无理数危机、无穷小是零危机和悖论危机 无理数的发现-第一次数学危机 大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯的悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称"四艺",在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可总结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为1的直角三角形就是如此。这个悖论直接触犯了毕氏学派的根本信条,导致了当时理解上的"危机",从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。第一次数学危机对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却能够由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 无穷小是零吗?-第二次数学危机 18世纪,微分法和积分法在生产和实践上都有了广泛而成功的实验过,绝大部分数学家对这个理论的可靠性是毫不怀疑的。 1734年,英国哲学家、大主教贝克莱发表《分析学家或者向一个不信正教数学家的进言》,茅头指向微积分的基础--无穷小的问题,提出了所谓贝克莱悖论。他指出:"牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。"他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,"dx为逝去量的灵魂"。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续性就实行微分,不考虑导数及积分的存有性以及函数可否展成幂级数等等。 直到19世纪20年代,一些数学家才比较注重于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到韦尔斯特拉斯、戴德金和康托的工作结束,中间经历了

数学史素材

4 《几何原本》对数学以及整个科学的发展有什么重要意义 其最重要的成就有哪些 《几何原本》是古希腊数学家欧几里得的一部不朽之作 是当时整个希腊数学成果、方法、思想和精神的结晶 其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。自它问世之日起 在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订 自1482年第一个印刷本出版后 至今已有一千多种不同的版本。 欧几里得在前人工作的基础之上 对希腊丰富的数学成果进行了收集、整理 用命题的形式重新表述 对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理 并将它们严格地按逻辑的顺序进行排列 然后在此基础上进行演绎和证明 形成了具有公理化结构的 具有严密逻辑体系的《几何原本》。 5《九章算术》的主要内容是什么 其具有世界意义的数学成就又有哪些 《九章算术》的内容十分丰富 全书采用问题集的形式 收有246个与生产、生活实践有联系的应用问题 、它们的主要内容分别是 第一章“方田” 主要讲述了平面几何图形面积的计算方法。第二章“粟米” 谷物粮食的按比例折换 提出比例算法 称为今有术 衰分章提出比例分配法则 称为衰分术 第三章“衰分” 比例分配问题 介绍了开平方、开立方的方法 其程序与现今程序基本一致。第四章“少广” 已知面积、体积 反求其一边长和径长等 第五章“商功” 土石工程、体积计算 除给出了各种立体体积公式外 还有工程分配方法 第六章“均输” 合理摊派赋税 用衰分术解决赋役的合理负担问题。第七章“盈不足” 即双设法问题 提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题 以及若干可以通过两次假设化为盈不足问题的一般问题的解法。第八章“方程” 一次方程组问题 采用分离系数的方法表示线性方程组 相当于现在的矩阵 解线性方程组时使用的直除法 与矩阵的初等变换一致。第九章“勾股” 利用勾股定理求解的各种问题。《九章算术》是我国现存最早的数学专著 是古代著名的《算经十书》中最重要的一种。它系统总结了我国先秦到东汉初年的数学成就 经多次增补 至迟在公元1世纪时 已有了现传本的内容。其中负数、分数计算 联立一次方程解法等都是具有世界意义的成就。书中记述了当时世界上最先进的分数四则运算和分配比例算法、解决各种面积和体积的算法 以及利用勾股定理进行测量的各种问题。其突出的成就是在代数方面记载了开平方和开立方的方法、求解一般一元二次方程的数值解法及联立一次方程解法 以上均比欧洲同类算法早1500多年。其中关于负数的概念和正负数的加减法运算法则的论述 亦属世界数学史上的首次记载。对不定方程等类问题的研究记述也较西方数学界早3个世纪。俄国学者将其中方程术所导致的正负数的产生誉为世界数学史上第一次越过了正数域的范围。而盈不足术成功处理二次关系与指数关系的算法传入欧洲后 被称为“双假设法” 受到特别重视。自唐代起 《九章算术》成为历代数学教本。日本、朝鲜也曾选其作为教本。后来 经过印度和中世纪伊斯兰国家 辗转传入欧洲 对文艺复兴前后世界数学的发展产生很大影响。 7 写出古希腊对数学作出重要贡献的四位数学家及其数学成就。哲学家柏拉图(Plato)在雅典创办著名的柏拉图学园 培养了一大批数学家 成为早期毕氏学派和后来长期活跃的亚历山大学派之间联系的纽带。欧多克斯(Eudoxus)是该学园最著名的人物之一,他创立了同时适用于可通约量及不可通约量的比例理论。柏拉图的学生亚里士多德(Aristotle)是形式主义的奠基者 ,其逻辑思想为日后将几何学整理在严密的逻辑体系之中开辟了道路。欧几里得总结古典希腊数学,用公理方法整理几何学,写成13卷《几何原本》(Elements)。这部划时代历史巨著的意义在于它树立了用公理法建立起演绎数学体系的最早典范。 8 试比较印度、阿拉伯数学与古希腊数学的异同。 印度的数学比较散乱,中国的数学偏向与实用,阿拉伯数学则在代数方面突出贡献,而古希腊在几何方面有所成绩,印度数学,它的起源与其他古老民族的数学一样,也是在农业生产需要的基础上产生的。但是,有特殊的因素促使它的发展。印度盛行婆罗门祭礼,加之

(整理)数学史上的三次危机.

数学史上的三次危机 张清利 第一次数学危机 在古代的数学家看来与有理数对应的点充满了数轴,现在尚未深入了解数轴性质的人也会这样认为。因此,当发现在数轴上存在不与任何有理数对应的一些点时,在人们的心理上引起了极大震惊,这个发现是早期希腊人的重大成就之一。它是在公元前5世纪或6世纪的某一时期由毕达哥拉斯学派的成员首先获得的。这是数学史上的一个里程碑。毕达哥拉斯学派发现单位正方形的边与对角线不可公度,即对角线的长不能表为q p /的形式,也就是说不存在作为公共度量单位的线段。后来,又发现数轴上还存在许多点也不对应于任何有理数。因此,必须发明一些新的数,使之与这样的点对应,因为这些数不能是有理数,所以把它们称为无理数。 例如, ,22,8,6,2等都是无理数。无理数的发现推翻了早期希腊人坚持的另一信念:给定任何两个线段,必定能找到第三线段,也许很短,使得给定的线段都是这个线段的整数倍。事实上,即使现代人也会这样认为,如果他还不知道情况并非如此的话。 第一次数学危机表明,当时希腊的数学已经发展到这样的阶段: 1. 数学已由经验科学变为演绎科学; 2. 把证明引入了数学; 3. 演绎的思考首先出现在几何中,而不是在代数中,使几何具有 更加重要的地位。这种状态一直保持到笛卡儿解析几何的诞生。 中国、埃及、巴比伦、印度等国的数学没有经历这样的危机,因而一直停留在实验科学。即算术阶段。希腊则走上了完全不同的道路,形成了欧几里得的《几何原本》与亚里士多得的逻辑体系, 而成为现代科学的始祖。 在当时的所有民族中为什么只有希腊人认为几何事实必须通过合乎逻辑的论证而不能通过实验来建立?这个原因被称为希腊的奥秘。 总之,第一次数学危机是人类文明史上的重大事件。 无理数与不可公度量的发现在毕达哥拉斯学派内部引起了极大的震动。首先,这是对毕达哥拉斯哲学思想的核心,即“万物皆依赖于整数”的致命一击;既然像2这样的无理数不能写成两个整数之比,那么,它究竟怎样依赖于整数呢?其次,这与通常的直觉相矛盾,因为人们在直觉上总认为任何两个线段都是可以公度的。而毕达哥拉斯学派的比例和相似形的全部理论都是建立在这一假设之上的。突然之间基础坍塌了,已经建立的几何学的大部分内容必须抛弃,因为它们的证明失效了。数学基础的严重危机爆发了。这个“逻辑上的丑陋”是如此可怕,以致毕达哥拉斯学派对此严守秘密。据说,米太旁登的帕苏斯把这个秘密泄漏了出去,结果他被抛进了大海。还有一种说法是,将他逐出学派,并为他立了一个墓,说他

读数学史有感

读数学史有感 读完简单的数学史,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦添砖加瓦,当我们在学习以及发展数学时,有必要了解它的历史。 通过这些资料,我对数学发展的概况有了一定的了解。数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,它不单纯是一种形式化的结果,运用辨证唯物主义的观点看待,在它的形成和发展过程中,不但表现出矛盾运动的特点。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。 数学的历史源远流长。数学发展具有阶段性,因此研究者根据一定的原则把数学史分成若干时期。目前学术界通常将数学发展划分为以下五个时期:数学萌芽期(公元前600年以前)、初等数学时期(公元前600年至17世纪中叶)、变量数学时期( 17世纪中叶至19世纪20年代)、近代数学时期( 19世纪20年代至第二次世界大战)、现代数学时期( 20世纪40年代以来)。 在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。 数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。许多著名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图等荒唐事,避免我们在这样的问题上白废时间和精力。 在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。 科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的 现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。

历史上的今天:6月重大历史事件

6月1日,国际儿童节 ·1831年,詹姆斯·罗斯发现北磁极 ·1859年,美国哲学家杜威诞辰 ·1904年,胶济铁路通车 ·1987年,北京儿童电影制片厂成立 ·2008年,中国大陆所有超市开始实行有偿提供塑料袋 6月2日 ·1815年,拿破仑颁布法国自由宪法 ·1927年,国学大师王国维投湖 ·1953年,英国女王伊丽莎白二世加冕(图) ·1966年,美国无人飞船“观察者1号”在月球登陆·2004年,上海F1赛道全面建成 6月3日 ·923年,五代十国时代开始 ·1839年,林则徐在虎门销烟 ·1935年,诺曼底号客轮创横越大西洋速度纪录(图)·1953年,中国佛教协会成立 ·2008年,奥巴马成为美国民主党总统候选人 6月4日 ·1928年,张作霖在皇姑屯被炸身亡 ·1942年,中途岛海战爆发(图) ·1946年,贝隆当选阿根廷总统 ·1961年,被英国侵占的片马归还中国 ·1998年,中国互联网用户突破一百万 6月5日,世界环境保护日 ·1723年,英国经济学家亚当·斯密诞辰 ·1910年,短篇小说大师欧·亨利去世 ·1926年,叶挺独立团攻克湖南攸县 ·1975年,关闭8年后的苏伊士运河重新开放(图)·1997年,澳大利亚科学家发明微型诊断仪

6月6日 ·1799年,俄国诗人普希金诞辰 ·1925年,克莱斯勒汽车公司成立 ·1944年,盟军在诺曼底登陆 ·1966年,无人宇宙飞船拍下月球表面照片(图)·1981年,袁隆平荣获我国首个特等发明奖 6月7日 ·1914年,第一艘货船通过巴拿马运河(图)·1922年,《妇女杂志》在中国首倡计划生育·1974年,《孙子兵法》和《孙膑兵法》竹简出土·1985年,美国研制镓芯片32位微处理机 ·2009年,网络游戏WOW的中国运营商9C代理到期 6月8日 ·1824年,加拿大批准第一个专利 ·1876年,法国女作家乔治·桑逝世 ·1958年,大跃进运动放出第一颗亩产卫星(图)·2004年,金星凌日 ·2008年,希腊发生6.5级地震 6月9日 ·1934年,唐老鸭首次亮相 ·1969年,贺龙逝世(图) ·1975年,我国与菲律宾建交 ·1983年,撒切尔夫人在英国大选中获胜,连任首相·2008年,北京地铁开始使用自动售检票系统 6月10日 ·1505年,明孝宗朱佑樘驾崩(图) ·1582年,葡萄牙宣布独立 ·1723年,英国经济学家亚当·斯密出生 ·1907年,卢米埃尔兄弟发明彩色照片制作工艺·1929年,英国妇女首次进入内阁

数学史(第2章古希腊数学)

第2章古代希腊数学 主题: 希腊文化与理论数学的起源 人类理性思维的形成 在唯理的社会气氛中,希腊人将埃及和美索不达米亚的数学经验算术和几何法则加工成具有初步逻辑结构的论证数学体系。 概述: 希腊数学分为三个阶段:一是从公元前6C到约公元前3C,这一时期以雅典为中心,形成了论证几何数学的思想基础和有关方法上的基础;二是从约公元前3C到约公元前30年,这一时期主要以亚历山大为中心,形成的系统的论证几何体系,建立理论方法,为数学的发展提供了一种基本的观点和方法。三是从约公元前30年到公元6C,这是希腊数学发展后期,主要发展带有实用特点的数学。同时也有对前人进行评述和整理工作。 主要成就: 1 论证数学的鼻祖及主要贡献: 泰勒斯(前625-前547)泰勒斯领导的爱奥尼亚学派据说开了希腊命题论证之先河,并证明了四条定理和“泰勒斯定理”。 毕达哥拉斯(前580-前500)毕达哥拉斯创立了毕达哥拉斯学派,从事哲学和数学研究。普鲁克鲁斯在《评注》中论述了毕达哥拉斯学派的主要成就有:(1)证明了毕达哥拉斯定理,即勾股定理。其方法最著名的猜测是“面积剖分法”。(2)正多面体作图(包括正四、六、八、十二、二十面体)。以正十二面体的作图最为著名,它的每个面都是正五边形,并且和“黄金分割”相关(注:黄金分割这一名字并不是来源该学派,见书36页注)。(3)关于数的研究,毕达哥拉斯学派的基本信条是“万物皆数”(这里指整数),并讨论了许多数论的性质,如偶数与奇数,完全数等。该学派还有关于“形数”的研究,他们把数作为几何思维元素的精神,“形数”体现了数与形的结合。(4)发现了不可公度量。 评论:毕达哥拉斯学派把数看成是世界的基础,客观上形成对世界数量关系的认识,是人类认识上的一大进步。加强了数概念中的理论倾向,推动了几何学的抽象化倾向,这些研究使人类抽象思维能力达到了一个高的水平。不可公度量的发现,由此产生了“第一次数学危机”,这一问题的根本解决是人们对连续性有更精确的定义后才完全解决。

读《数学简史》有感1000字_读后感_模板

读《数学简史》有感1000字_读后感_模板 读《数学简史》有感1000字 常旭照 11月名师工作室成员”遇见”当天,玲玲老师就为每一位成员送来了精致的见面礼——《数学简史》。我迫不及待的翻看目录,看见陌生又熟悉的毕达哥拉斯、《几何原本》、阿基米德、《周髀算经》,恍惚!仿佛我回到了大学数学史的课堂。是啊!说来惭愧,从教12年,这些知识几乎没有再涉及,也没有给学生过多介绍,取而代之的全是书本知识。我明白了玲玲老师的用意,回来之后我细细品读了数学诗人蔡天新教授的著作《数学简史》。 沉下心来仔细品味这本书后,对它有了比较深刻的认识。著名数学家陈省身曾说过:”了解历史的变化是了解这门科学的一个步骤。”任何一门学问都不是从来就有的,都是在人们的实践中逐渐产生的,都有其形成、发展、成熟和完善的阶段。数学的历史源远流长。蔡教授在书中从上古的巴比伦、希腊、中国、阿拉伯世界,以致当代数学,遍及世界各地的对于数学的贡献地位与影响,都有中肯的评价。 下课认真阅读《数学简史》 作为一名数学老师,我觉得这本书不仅可以提升自己,还要把数学史融入在教学中,这样做大有必要。理由有四: 1.数学史可以提高学生的学习兴趣 初中生普遍对数学的学习兴趣不大,这极大地影响了学习的效果。但这并不是因为数学本身枯燥、无趣,而是它被我们的教学所忽视了。如果在数学教育中适当结合数学史的有关知识,这样有利于提高学生对学习数学的兴趣。 2.数学史可以弘扬祖国优秀文化,提高民族自豪感,增强学生的爱国情操 中国数学也有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,由于各种复杂的原因,16世纪以后中国变为数学落后国。经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。 3.数学史可以培养学生的创新意识 通过对数学史的学习让学生明白数学的发展是许多数学家心血和汗水的结晶,从而培养学生认真学习数学的习惯、正确的思维方式和顽强的拼搏精神,激发求知欲,培养创新精神。 4.数学史可以提高学生的美学修养 数学是美的,无数数学家都为这种数学的美所折服。英国数学家、哲学家罗素说过:”数学不仅拥有真理,而且还拥有至高无上的美——一种冷峻严肃的美,就像一尊雕塑……,这种美没有绘画或音乐那样华丽的装饰,它可以纯洁到崇高的程度,能够达到严格的只有最伟大的艺术才能显示的完美境界”.数学史的学习可以引导学生领悟数学的美,很多著名的数学定理、原理都闪现着美学的光辉。 总之,作为一名教师,数学史的学习对本就枯燥的数学课来说,可以激发学生兴趣,启发学生的思维,增强学生的爱国情操,活跃课堂气氛,增进师生间的共同了解,也让学生了解数学,了解数学的美……所以我们把数学史的一些辉煌成就和一些感人事例,以一种精神力量融入到我们的教学中,会使我们的数学课变得非常丰富。 最后感谢美好的遇见,感谢我们在《数学简史》阅读中的心灵遇见,我们将继续学习、前进! 篇一:桃花源记读后感

古希腊数学_5

古希腊数学 稿件提供人:南仓中学高中数学教师王艳刘艳辉 古希腊数学一般指公元前600年至公元后600年间,活动于希腊半岛、爱琴海区域、马其顿与色雷斯地区、意大利半岛、小亚细亚以及非洲北部的数学家们所创造的数学。古希腊人的历史可以远溯数千年之久。晚至公元前600年左右,在地中海和黑海沿岸大部分地区已经布满了古希腊人的足迹。这些海滨新移民们,处身于两大河谷的毗邻之地,极易汲取那里的文明。更为重要的是,他们天生便具有一种开拓进取的精神,厌恶因袭守旧是他们的作风。所以当大批游历埃及和美索不达米亚的希腊商人、学者带回了新奇的数学知识之后,在古代希腊城邦社会特有的唯理主义气氛中,这些经验的算术和几何方法很快便被加工升华为具有初步逻辑结构的论证数学体系。 1 希腊文明 古代希腊从地理疆城上讲,包括巴尔干半岛南部、小亚细亚半岛西部、意大利半岛南部、西西里岛及爱琴海诸岛等地区。这里长期以来由许多大小奴隶制城邦国组成,直到约公元前325年,亚历山大大帝(alexander the great)征服了希腊和近东、埃及,他在尼罗河口附近建立了亚历山大里亚城(alexandria )。亚历山大大帝死后(323b.c.),他创建的帝国分裂为三个独立的王国,但仍联合在古希腊文化的约束下,史称希腊化国家。统治了埃及的托勒密一世(ptolemy the first)大力提倡学术,多方网罗人才,在亚历山大里亚建立起一座空前宏伟的博物馆和图书馆,使这里取代雅典,一跃而成为古代世界的学术文化中心,繁荣几达千年之久!希腊人的思想毫无疑问地受到了埃及和巴比伦的影响,但是他们创立的数学与前人的数学相比较,却有着本质的区别,其发展可分为雅典时期和亚历山大时期两个阶段。从泰勒斯到毕达哥拉斯学派 (1)爱利亚学派 从古代埃及、巴比伦的衰亡,到希腊文化的昌盛,这过渡时期留下来的数学 史料很少。不过希腊数学的兴起和希腊商人通过旅行交往接触到古代东方的文 化有密切关系。伊奥尼亚位于小亚细亚西岸,它比希腊其他地区更容易吸收巴 比伦、埃及等古国积累下来的经验和文化。在伊奥尼亚,氏族贵族政治为商人 的统治所代替,商人具有强烈的活动性,有利于思想自由而大胆地发展。城邦 内部的斗争,帮助摆脱传统信念。在希腊没有特殊的祭司阶层,也没有必须遵 守的教条,因此有相当程度的思想自由。这大大有助于科学和哲学从宗教中分 离开来。 米利都是伊奥尼亚的最大城市,也是泰勒斯的故乡。泰勒斯生于公元前624 年,是公认的希腊哲学鼻祖。早年是一个商人,曾游访巴比伦、埃及等地,很 快就学会古代流传下来的知识,并加以发扬。以后创立伊奥尼亚哲学学派,摆脱宗教,从自然现象中去寻找真理,以水为万物的根源。 当时天文、数学和哲学是不可分的,泰勒斯同时也研究天文和数学。他曾预测到一次日食,促使米太(在今黑海、里海之南)、吕底亚(今土耳其西部)两国停止战争。多数学者认为该次日食发生在公元前585年5月28日。他在埃及时曾利用日影及比例关系算出金字塔的高度,使法老大为惊讶。泰勒斯在数学方面的贡献是开始了命题的证明,它标志着人们对客观事物的认识从感性上升到理性,这在数学史上是一个不寻常的飞跃。伊奥尼亚学派的著名学者还有阿纳克西曼德和阿纳克西米尼等。他们对后来的毕达哥拉斯有很大的影响。 泰勒斯是演绎几何学的鼻祖,开数学证明之先河,据说他最先证明了如下的定理:1.圆被任一直径二等分; 2.等腰三角形的两底角相等; 3.两条直线相交,对顶角相等; 4.半圆的内接三角形,一定是直角三角形; 5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。 泰勒斯在天文学方面也曾有不同凡响的工作,据说他曾测知公元前585年5月28日的一次日全食。当时正值战争之际,泰勒斯向世人宣告,若不停战,到时天神震怒!到了那天下午,两派将士仍激战不已,霎时间,太阳在天空中消失,星辰闪烁,大地一片漆黑。双方将士见此景象,砍太阳神真的发怒了,要降罪于人类,于是立即罢兵休战,从此铸剑为犁,和睦相处。 另据传说,泰勒斯醉心于钻研哲学与科学,且可谓清贫守道,而遭市井嘲笑。他不以为然地说,君子爱财取之有道。他在对气候预测的基础上,估计来年油料作物会大丰收,于是垄断了米利都和开奥斯两地的所有油坊,到季节以高价出租。有了钱,科学研究可以做得更好。 这两则传说,如果是真实的话,那么泰勒斯确实不愧于其墓碑上所镌刻的颂辞:“他是一位圣贤,又

相关主题
文本预览
相关文档 最新文档