当前位置:文档之家› 变压器内部故障类型及判断方法

变压器内部故障类型及判断方法

变压器内部故障类型及判断方法
变压器内部故障类型及判断方法

变压器内部故障类型及判断方法

发表时间:2018-06-25T15:58:05.013Z 来源:《电力设备》2018年第8期作者:李鹏姚松涛

[导读] 摘要:在社会快速发展的背景下,使得社会各界加强了对电力能源的需求,从而提升了电力变压器的工作量,再加上电力变压器的运行环境较为恶劣,导致其常常出现各种类型的故障,最终影响了整个电力系统正常的运行,无法为社会提供充足的电力能力。

国网莱芜供电公司山东省莱芜市 271100

摘要:在社会快速发展的背景下,使得社会各界加强了对电力能源的需求,从而提升了电力变压器的工作量,再加上电力变压器的运行环境较为恶劣,导致其常常出现各种类型的故障,最终影响了整个电力系统正常的运行,无法为社会提供充足的电力能力。所以,为了确保电力系统能够安全、稳定的运行,必须在整个运行的过程中,持续不断的对电力变压器进行维修与维护,通过维修与维护第一时间将故障挖掘出来,并采用合理的方式进行处理。本文对变压器内部故障类型及判断方法进行了相关的分析。

关键词:变压器内部;故障类型;判断方法

1变压器内部的故障类型及主要原因

电力变压器的主要故障类型及造成该故障的原因一般有:(1)电力变压器在生产、出厂时就没有控制好质量。(2)使用不合理导致的电力变压器加速老化。变压器的平均使用寿命在18年左右,远低于变压器的标准年份(35-40年)。(3)线路设置不当产生的干扰。线路干扰是导致变压器故障的主要原因,其中以天气造成的故障是最为常见的。(4)超负荷运行。变压器在长时间内以远远高于正常电压的功率持续运行导致的变压器寿命降低、变压器元器件老化速度加快。(5)没有定期对变压器开展运行维护管理工作。(6)变压器周围环境的影响。

2变压器内部故障诊断

变压器的类型包含了油浸式变压器等,在电力工业系统中被广泛应用,主要构造包括了油箱、冷却装置等,由于结构较为复杂,因此出现故障的概率较大,一旦发生故障,可以通过对声音、气味和检测实验数据进行维修方式的判别。

(1)油浸式变压器的故障,可以分为主体结构的故障(绕组、铁芯、油质、附件)、回路故障(电路、磁路、油路)等。其中铁芯、分接开关、绕组等故障属于一般常见故障。变压器的内部故障还可以按照出现的原因分为电气回路缺陷,绝缘损伤等潜伏性故障。变压器的最危险,故障率也最高的当属变压器的出口短路的故障,一旦发生会出现变压器的渗漏、保护误动等。不同类型的故障,产生的危害也不同,有的是过热,有的是渗漏,有的是放电。

(2)出口短路故障位于变压器的出口部位,受到短路故障的影响,变压器的热量导致绝缘的发热损害。受到短路冲击的时候,由于电流过小,保护技术动作带来了绕组的变形,变压器如果继续运行,就会发生故障和事故。

绕组故障位于变压器的核心部位,变压器的输入和输出,带来了电气回路的故障模式,如绝缘老化、绕组受潮,短路、短路的情况发生,绕组的松动和变形发生,相间的变形短路情况的发生等等。变压器的绕组发生了松动和变形,导致了绝缘在损伤的情况下,虽然还能够运行,但是实质上却已经出现出现了内部的损伤,导线被损伤,抗短路的冲击能力被降低。

铁芯的故障,主要是铁芯的质量的问题造成的。故障的模式包括铁芯的多点接地,接地不良、芯片的短路等等,故障发生的原因主要是由于铁质的夹件发生了松动,铁芯被碰接,出现了松动后,接地不良,绝缘老化,安装不正等,最终导致铁芯发热,损伤增大。铁芯故障以短路和多点接地为主,在多点接地中,铁芯的局部会发热,过热导致了铁芯接地引线的烧断,强磁场中形成的涡流使得铁芯的局部过热,呈现介质损坏和超标的情况,局部的过热烧坏了铁芯的绝缘,出现铁芯的故障。

分接头开关的故障是绝缘的距离不足导致的材料上堆积了油泥受潮引起的。触头的接触不良使得电阻增大,带来过电压下的相间短路,使得绝缘支架的紧固金属出现了悬浮放电的故障。由于油浸式变压器的内部结构较为复杂,因此当故障出现的时候,因密封不严导致的绝缘性能降低,使得电阻在切换的时候容易出现击穿或者烧断的情况,因为滚轮卡死造成过渡位置短路的情况更是时有发生。

绝缘故障一般发生在大型的强迫油循环冷却的大型变压器中,由于变压器经过油泵的加速传递到冷却油道,在油与固体的绝缘界面形成了静电电荷的分离,积累起正负电荷,电荷在积累到一定的场强的时候,会发生放电,导致固体的绝缘受到损伤。

3变压器内部故障的诊断技术改进策略

针对变压器的常见故障类型,结合先进科学技术的应用,通过改进变压器故障诊断技术,有助于准确判断变压器出现的故障类型及其原因,并及时排除变压器故障,对保障电力系统及变压器的安全、稳定运行具有重要意义。

3.1红外诊断技术

科技水平的不断提高,对电力故障诊断及检修技术的创新具有重要的推动作用。基于电力变压器故障诊断的需求,作为一种先进的故障诊断技术,变压器红外诊断技术在电力领域得到广泛应用。从技术原理分析,变压器故障红外诊断技术主要是遵循红外线的相关原理。在采用变压器故障红外诊断技术对电力变压器出现的故障进行检测和判断时,需要借助专业的红外检测仪器对出现故障的变压器内部进行探测,依据探测出的红外波长,判断变压器各部位或元件的温度,综合分析变压器出现的故障现象、元件温度和内部探测结果,以便实现对变压器故障类型及原因的准确判断,为变压器维修方案的制定提供科学依据。。利用红外诊断技术判断变压器故障的方法包括多种,如图像特征分析法、温差判断法等,主要适应于探测变压器出现的外部热故障和内部热故障。当变压器出现热故障时,可利用红外诊断技术对变压器进行探测,借助红外热成像判断变压器外部出现的热故障及其原因,如漏磁引起涡流造成的故障、绝缘层损与外部接头接触不良等引发的故障等,通过分析探测结果,制定相应的解决或维修方案,有助于及时、准确排除变压器出现的故障。对变压器内部出现的热故障,可利用红外热成像初步判断变压器内部出现故障的位置,结合对变压器所出现故障现象的分析,以及常见变压器内部故障部位的判断,找出变压器内部出现故障的类型及原因,科学设计维修方案,促使变压器故障能够及时解决,从而保障电力系统的安全、稳定运行。

3.2变压器油中溶解气体分析

不同类型变压器油中溶解气体的数值有一个限定标准,如果变压器油中溶解气体的数值超过设定值,则表示变压器内部出现问题。因此,可将变压器油中溶解气体的实际数值作为判断依据,判断变压器内部出现的故障,并为故障排除提供保障,促使变压器能够正常安全的运行。在诊断变压器内部故障时,可依据变压器油中溶解气体的相关特征,结合故障现象分析,对变压器故障部位的能量密度、烃类气体大小等变化情况进行判定,据此判断变压器内部出现的故障及其原因。如果开放状态下变压器内部烃类气体总和的产生速率超过

0.25ml/h,或是封闭状态下烃类气体总和的产生速率超过0.5ml/h,则表示变压器内部出现故障,可采用三比值法对故障原因进行判断,制

变压器常见故障大汇总及案例分析

电力变压器常见故障的分析与处理 变压器是靠电磁感应原理工作的,改变电压、联络电网、传输和分配电能;电力变压器是变电站核心设备,结构复杂,运行环境恶劣,发生故障和事故对电网和供电可靠性影响大,需要针对具体情况立即采取措施;变压器故障的分析判别牵扯的学科领域多,既要有电工、高电压、绝缘材料、化学分析等基础知识,还要熟悉自动化、热学等;变压器的故障种类多,表现形式千差万别,需要熟悉结构原理、熟悉现场运行条件、熟悉每台设备特点等,具体问题,具体分析。 第一章:大型变压器显性故障的特征与现场处理 显性故障:是指故障的特征和表现形式比较直观明显的故障,在此,结合现场实际,对大型变压器显性故障的原因和特征进行了叙述和分析,介绍了现场常见的处理办法,也是一些比较简单的办法。 一、外观异常和故障类型: 变压器在运行过程中发生异常和故障时,往往伴随相应外观特征,通过这些简单的外部现象,可以发现一些缺陷并对异常和故障进行定性分析,提出进一步分析或处理的方案。而且可以对一些比较复杂的故障确定检修和试验方案.以下从几个方面进行分析和处理:

1、防爆筒或压力释放阀薄膜破损。 当变压器呼吸不畅,进入变压器油枕隔膜上方的空气,在温度升高时,急剧膨胀,压力增加,若引起薄膜破损还会伴有大量的变压器油喷出;主要有以下原因和措施: 1)呼吸器因硅胶多或油封注油多、管路异物而堵塞。硅胶应占呼吸器的2/3,油封中有1/3的油即可,可用充入氮气的办法对管路检查2)(油枕)安装检修时紧固薄膜的螺栓过紧或油枕法兰不平,(压力释放阀)外力损伤或人员误碰。更换损坏的薄膜或油枕. 3)变压器内部发生短路故障,产生大量气体。一般伴随瓦斯继电器动作;可先从瓦斯继电器中取气样,若点火能够燃烧,需取油样色谱分析和进行电气检查,确定故障性质,故障原因未查明,消除缺陷前变压器不能投运。 4)弹性元件膨胀器内部卡涩.更换或由制造厂处理. 5)隔膜结构的油枕在检修或安装时注油方法不当,未按规定将油枕上部的气体排净。停电将变压器油注满油枕,再将变压器油放至合适的油位高度。 6)胶囊结构的油枕因油位低等原因,胶囊堵塞油枕与变压器本体的管路联结口。在管路联结口处装一支架,防止胶囊直接堵塞联结口。 2、套管闪络放电。 套管闪络放电会使其本身发热、老化,引发变压器出口短路事故;低压套管尤其严重;其主要原因和措施有:

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

变压器内部故障

变压器常见内部故障类型及早期诊断方法 变压器的内部故障一般可分为两类:即过热故障和放电故障,过热故障按温度高低,可区分为低温过热,中温过热与高温过热三种情况;放电故障又可依据能量密度的不同,可分为高能量放电、低能量放电和局部放电三种类型。至于机械性故障及内部进水受潮等,将最终发展为电性故障而表现出来。 过热故障是由于有热应力所造成的绝缘加速劣化。如果热应力只引起热源外绝缘油的分解,所产生的特殊气体主要是甲烷和乙烯,二者之和一般占总烃的80%以上,而且随着故障点的温度升高,乙烯所占比例将增加,严重过热会产生微量乙炔。当过热涉及固体绝缘材料时,除产生上述物质外,还产生大量的一氧化碳和二氧化碳,若无CO、CO2,就可能属裸金属局部过热性故障。 放电故障是在高电应力作用下所造成的绝缘劣化。高能量放电故障,又称电弧放电故障,这种故障产气量大、气体产生剧烈,运用测定油中溶解气体的方法不易对其进行预诊断,往往是在出现故障后,我们才可根据油中气体、瓦斯成分的分析,对变压器故障的性质和严重程度进行诊断。高能量放电故障气体主要是乙炔和氢,其次是乙烯和甲烷;若涉及固体绝缘,CO的含量也较高;低能量放电故障一般是电火花放电,其故障气体主要是乙烯和氢。由于其故障能量较小,总烃一般不会高;局部放电故障产气特征是氢成分最多(占氢烃总量的85%以上),其次是甲烷,局部放电的后果是绝缘老化,如任其发展,会引起绝缘损坏,甚至造成事故。 变压器内部故障诊断方法 1、测定故障特征气体含量(分析数据)并与油中溶解气体含量的注意值进行比较。若气体浓度达到注意值(总烃、氢注意值均为150ppm,乙炔的注意值为5ppm),就应引起注意加强跟踪分析,查明原因。 2、虽然注意值在反映故障的概率上有一定的可参考性,但由于受到油中气体含量、变压器容量、运行方式、运行年限等相关因素的影响,仅仅根据注意值的分析结果还难以正确诊断变压器故障的严重性,绝不能作为划分设备有无故障的唯一标准。在此基础上,还应充分考虑产气速率等方面的影响,对所诊断的变压器和查对的特征气体应有所侧重、有所区别。只有这样,我们才可根据分析进一步确定变压器有无故障,并对故障的性质作出初步的估计。产气速率与故障能量大小、故障部位以及故障点温度等情况直接相关。通过测定故障气体产气速率,便可对变压器内部状况做进一步的诊断。 3、为弄清气体产生的真正原因,避免非故障原因所带来的误判断,在变压器故障诊断时,我们还应全面了解所诊断变压器的结构、制造、安装和运行、检修以及辅助设备等诸多方面的情况,结合色谱分析数据进行综合分析,以便正确诊断变压器有无故障。

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

变压器的常见故障与处理

变压器的常见故障与处理 5.8 变压器的常见故障及处理 5.8.1 绝缘降低:变压器在运行中,往往会出现绝缘降低的现象。绝缘降低最基本的特点,是绝缘电阻下降,以致造成运行泄露电流增加,发热严重,温升增高,从而进一步促进绝缘老化。若延续下去,后果非常严重,绝缘下降的原因之一就是绝缘受潮;原因之二是绝缘老化,一些年久失修的老变压器,最容易出现这类故障;原因之三是油质劣化,绝缘性变差。 5.8.2 温升过高:温升过高最明显的象征是,电流表指针超过了预定界限,变压器发热和油面上升,严重时保护装置动作,切断电器。温升过高原因有: 1.电流过大,负荷过重,超过变压器容量允许限度 Y/Y0-12连接的变压器,但三相负荷不平衡时会发生过热。变压器可能断线,如在接线时对外一相断线,则对内绕组有环流通过,将发生局部过负荷,变压器夹紧螺栓松脱,磁阻增大,无功负荷增大,在同样有功负荷时产生过流。绕组反接,造成运行时反电势不足,而产生过电流。变压器带负荷投入也会发生过电流。 2.通风不良更多知识可关注微信公众号:AZPT991 变压器表面积尘,变压器风道阻塞,风叶片损坏,风扇电动机转速降低,环境温度升高等,是造成通风不良原因的主要原因。应针对上述各种情况分别加以处理。如果环境温度过高,应加强通风或降低变压器负荷。 3.变压器内部的损坏 如线圈损坏,短路,油质不良等。应当针对损坏情况进行修理。 (1)油面不正常:油面也由油枕上的油位指示计进行观察。正常情况下,指示计指在零位上下±25℃的范围以内。若超过此限度,即为不正常运行。 (2)油面变化的情况有两种:一种是油面升高,这主要是伴随温升的增加而产生。此时可针对温升情况加以处理。当油面高出规定的油面时,应当放油。另一种是油面降低。这就要检查是否有漏油处,如有漏油处要进行堵塞。 (3)备用的变压器,还应检查是否由于油凝固所制,这时需要让它带负荷运行,进行观察。若油面较定油面显著降低时,应当加油,且油质油温要符合标准。4.声响异常 (1)变压器运行正常时是发出连续匀称的嗡嗡声。各型变压器声音大小不一。变

变压器内部故障类型及判断方法

变压器内部故障类型及判断方法 发表时间:2018-06-25T15:58:05.013Z 来源:《电力设备》2018年第8期作者:李鹏姚松涛 [导读] 摘要:在社会快速发展的背景下,使得社会各界加强了对电力能源的需求,从而提升了电力变压器的工作量,再加上电力变压器的运行环境较为恶劣,导致其常常出现各种类型的故障,最终影响了整个电力系统正常的运行,无法为社会提供充足的电力能力。 国网莱芜供电公司山东省莱芜市 271100 摘要:在社会快速发展的背景下,使得社会各界加强了对电力能源的需求,从而提升了电力变压器的工作量,再加上电力变压器的运行环境较为恶劣,导致其常常出现各种类型的故障,最终影响了整个电力系统正常的运行,无法为社会提供充足的电力能力。所以,为了确保电力系统能够安全、稳定的运行,必须在整个运行的过程中,持续不断的对电力变压器进行维修与维护,通过维修与维护第一时间将故障挖掘出来,并采用合理的方式进行处理。本文对变压器内部故障类型及判断方法进行了相关的分析。 关键词:变压器内部;故障类型;判断方法 1变压器内部的故障类型及主要原因 电力变压器的主要故障类型及造成该故障的原因一般有:(1)电力变压器在生产、出厂时就没有控制好质量。(2)使用不合理导致的电力变压器加速老化。变压器的平均使用寿命在18年左右,远低于变压器的标准年份(35-40年)。(3)线路设置不当产生的干扰。线路干扰是导致变压器故障的主要原因,其中以天气造成的故障是最为常见的。(4)超负荷运行。变压器在长时间内以远远高于正常电压的功率持续运行导致的变压器寿命降低、变压器元器件老化速度加快。(5)没有定期对变压器开展运行维护管理工作。(6)变压器周围环境的影响。 2变压器内部故障诊断 变压器的类型包含了油浸式变压器等,在电力工业系统中被广泛应用,主要构造包括了油箱、冷却装置等,由于结构较为复杂,因此出现故障的概率较大,一旦发生故障,可以通过对声音、气味和检测实验数据进行维修方式的判别。 (1)油浸式变压器的故障,可以分为主体结构的故障(绕组、铁芯、油质、附件)、回路故障(电路、磁路、油路)等。其中铁芯、分接开关、绕组等故障属于一般常见故障。变压器的内部故障还可以按照出现的原因分为电气回路缺陷,绝缘损伤等潜伏性故障。变压器的最危险,故障率也最高的当属变压器的出口短路的故障,一旦发生会出现变压器的渗漏、保护误动等。不同类型的故障,产生的危害也不同,有的是过热,有的是渗漏,有的是放电。 (2)出口短路故障位于变压器的出口部位,受到短路故障的影响,变压器的热量导致绝缘的发热损害。受到短路冲击的时候,由于电流过小,保护技术动作带来了绕组的变形,变压器如果继续运行,就会发生故障和事故。 绕组故障位于变压器的核心部位,变压器的输入和输出,带来了电气回路的故障模式,如绝缘老化、绕组受潮,短路、短路的情况发生,绕组的松动和变形发生,相间的变形短路情况的发生等等。变压器的绕组发生了松动和变形,导致了绝缘在损伤的情况下,虽然还能够运行,但是实质上却已经出现出现了内部的损伤,导线被损伤,抗短路的冲击能力被降低。 铁芯的故障,主要是铁芯的质量的问题造成的。故障的模式包括铁芯的多点接地,接地不良、芯片的短路等等,故障发生的原因主要是由于铁质的夹件发生了松动,铁芯被碰接,出现了松动后,接地不良,绝缘老化,安装不正等,最终导致铁芯发热,损伤增大。铁芯故障以短路和多点接地为主,在多点接地中,铁芯的局部会发热,过热导致了铁芯接地引线的烧断,强磁场中形成的涡流使得铁芯的局部过热,呈现介质损坏和超标的情况,局部的过热烧坏了铁芯的绝缘,出现铁芯的故障。 分接头开关的故障是绝缘的距离不足导致的材料上堆积了油泥受潮引起的。触头的接触不良使得电阻增大,带来过电压下的相间短路,使得绝缘支架的紧固金属出现了悬浮放电的故障。由于油浸式变压器的内部结构较为复杂,因此当故障出现的时候,因密封不严导致的绝缘性能降低,使得电阻在切换的时候容易出现击穿或者烧断的情况,因为滚轮卡死造成过渡位置短路的情况更是时有发生。 绝缘故障一般发生在大型的强迫油循环冷却的大型变压器中,由于变压器经过油泵的加速传递到冷却油道,在油与固体的绝缘界面形成了静电电荷的分离,积累起正负电荷,电荷在积累到一定的场强的时候,会发生放电,导致固体的绝缘受到损伤。 3变压器内部故障的诊断技术改进策略 针对变压器的常见故障类型,结合先进科学技术的应用,通过改进变压器故障诊断技术,有助于准确判断变压器出现的故障类型及其原因,并及时排除变压器故障,对保障电力系统及变压器的安全、稳定运行具有重要意义。 3.1红外诊断技术 科技水平的不断提高,对电力故障诊断及检修技术的创新具有重要的推动作用。基于电力变压器故障诊断的需求,作为一种先进的故障诊断技术,变压器红外诊断技术在电力领域得到广泛应用。从技术原理分析,变压器故障红外诊断技术主要是遵循红外线的相关原理。在采用变压器故障红外诊断技术对电力变压器出现的故障进行检测和判断时,需要借助专业的红外检测仪器对出现故障的变压器内部进行探测,依据探测出的红外波长,判断变压器各部位或元件的温度,综合分析变压器出现的故障现象、元件温度和内部探测结果,以便实现对变压器故障类型及原因的准确判断,为变压器维修方案的制定提供科学依据。。利用红外诊断技术判断变压器故障的方法包括多种,如图像特征分析法、温差判断法等,主要适应于探测变压器出现的外部热故障和内部热故障。当变压器出现热故障时,可利用红外诊断技术对变压器进行探测,借助红外热成像判断变压器外部出现的热故障及其原因,如漏磁引起涡流造成的故障、绝缘层损与外部接头接触不良等引发的故障等,通过分析探测结果,制定相应的解决或维修方案,有助于及时、准确排除变压器出现的故障。对变压器内部出现的热故障,可利用红外热成像初步判断变压器内部出现故障的位置,结合对变压器所出现故障现象的分析,以及常见变压器内部故障部位的判断,找出变压器内部出现故障的类型及原因,科学设计维修方案,促使变压器故障能够及时解决,从而保障电力系统的安全、稳定运行。 3.2变压器油中溶解气体分析 不同类型变压器油中溶解气体的数值有一个限定标准,如果变压器油中溶解气体的数值超过设定值,则表示变压器内部出现问题。因此,可将变压器油中溶解气体的实际数值作为判断依据,判断变压器内部出现的故障,并为故障排除提供保障,促使变压器能够正常安全的运行。在诊断变压器内部故障时,可依据变压器油中溶解气体的相关特征,结合故障现象分析,对变压器故障部位的能量密度、烃类气体大小等变化情况进行判定,据此判断变压器内部出现的故障及其原因。如果开放状态下变压器内部烃类气体总和的产生速率超过 0.25ml/h,或是封闭状态下烃类气体总和的产生速率超过0.5ml/h,则表示变压器内部出现故障,可采用三比值法对故障原因进行判断,制

变压器常见故障及处理电子教案

变压器常见故障及处 理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,不必立即停止运行,可在计划检修时予以排除。 2 温度异常

变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击下可能造成断线,断点处产生高温电弧使油气化促使内部压力增高。 (3)调压分接开关故障:配电变压器高压绕组的调压

变压器常见故障及处理

变压器常见故障及处理 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,

不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。 (2)断线产生电弧:线组导线焊接不良、引线连接松动等因素在大电流冲击

变压器故障分类

变压器故障种类 ●故障种类: ?内部故障 ◆相间短路 ◆匝间短路 ◆绕组或出线接地 ?外部故障 ◆绝缘套管闪络、破碎发生接地 ◆出线之间相间故障 ●故障种类(性质划分) ?热故障 ◆轻度过热(低于50℃) ◆低温过热(150-300℃) ◆中温过热(300-700℃) ◆高温过热(高于700℃) ?电故障 ◆局部放电 ●油中存在气泡,绝缘材料中存在空腔 ●制造质量不良,某些部位有毛刺漆瘤 ●金属部件接触不良 ◆火花放电 ●悬浮电位引起电火花放电 ●油中杂质引起火花放电 ◆高能电弧放电 ●故障种类(回路划分) ?电路故障 ?磁路故障 ?油路故障 ●故障种类(结构划分) ?绕组故障 ?铁芯故障 ?油质故障 ?附件故障 ●故障种类(易发位置) ?绝缘故障 ?铁芯故障 ?分接开关故障 ◆密封不严,雨水侵入绝缘降低 ◆分接开关滚轮卡死,切换时不到位造成相间短路 ◆分接开关缺油,显示假油位 ◆分接开关误动 ●出口短路故障: ?三相短路(短路电流最大) ?两相短路

?单相接地短路 ?两相接地短路 ●短路故障危害 ?短路电流引起绝缘过热 ?短路点动力引起绕组变形故障 ●放电对绝缘的影响 ?直接击穿绝缘 ?产生的化学物质腐蚀绝缘 ●气体继电器误动分析 ?呼吸器不畅通 ?冷却系统漏气 ?冷却器入口阀门关闭造成堵塞,引起气体继电器动作频繁 ?散热器上部进油阀门关闭,引起气体继电器动作频繁 ?潜油泵烧坏使本体油热分解产生大量气体 ?密封不严,变压器进气 ?变压器出线负压区 ?油枕油腔中有气体 ?净油器的气体进入变压器 ?忽视气体继电器防雨 ●变压器故障时产生气体 ?H2:电晕放电、油和固体绝缘热分解、水分 ?CO:固体绝缘受热及热分解 ?CO2:固体绝缘受热及热分解 ?CH4:油和固体绝缘热分解、放电 ?C2H6:固体绝缘热分解、放电 ?C2H4:高温热点下油和固体绝缘热分解、放电 ?C2H2:强弧光放电、油和固体绝缘热分解

变压器常见故障案例分析

变压器常见故障案例分析 1 异常响声 (1)音响较大而嘈杂时,可能是变压器铁芯的问题。例如,夹件或压紧铁芯的螺钉松动时,仪表的指示一般正常,绝缘油的颜色、温度与油位也无大变化,这时应停止变压器的运行,进行检查。 (2)音响中夹有水的沸腾声,发出"咕噜咕噜"的气泡逸出声,可能是绕组有较严重的故障,使其附近的零件严重发热使油气化。分接开关的接触不良而局部点有严重过热或变压器匝间短路,都会发出这种声音。此时,应立即停止变压器运行,进行检修。 (3)音响中夹有爆炸声,既大又不均匀时,可能是变压器的器身绝缘有击穿现象。这时,应将变压器停止运行,进行检修。 (4)音响中夹有放电的"吱吱"声时,可能是变压器器身或套管发生表面局部放电。如果是套管的问题,在气候恶劣或夜间时,还可见到电晕辉光或蓝色、紫色的小火花,此时,应清理套管表面的脏污,再涂上硅油或硅脂等涂料。此时,要停下变压器,检查铁芯接地与各带电部位对地的距离是否符合要求。 (5)音响中夹有连续的、有规律的撞击或摩擦声时,可能是变压器某些部件因铁芯振动而造成机械接触,或者是因为静电放电引起的异常响声,而各种测量表计指示和温度均无反应,这类响声虽然异常,但对运行无大危害,不必立即停止运行,可在计划检修时予以排除。 2 温度异常 变压器在负荷和散热条件、环境温度都不变的情况下,较原来同条件时的温度高,并有不断升高的趋势,也是变压器温度异常升高,与超极限温度升高同样是变压器故障象征。 引起温度异常升高的原因有: ①变压器匝间、层间、股间短路; ②变压器铁芯局部短路; ③因漏磁或涡流引起油箱、箱盖等发热; ④长期过负荷运行,事故过负荷; ⑤散热条件恶化等。 运行时发现变压器温度异常,应先查明原因后,再采取相应的措施予以排除,把温度降下来,如果是变压器内部故障引起的,应停止运行,进行检修。 3 喷油爆炸 喷油爆炸的原因是变压器内部的故障短路电流和高温电弧使变压器油迅速老化,而继电保护装置又未能及时切断电源,使故障较长时间持续存在,使箱体内部压力持续增长,高压的油气从防爆管或箱体其它强度薄弱之处喷出形成事故。 (1)绝缘损坏:匝间短路等局部过热使绝缘损坏;变压器进水使绝缘受潮损坏;雷击等过电压使绝缘损坏等导致内部短路的基本因素。

变压器的常见故障及处理方法

浅议变压器常见故障及处理 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数 (一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似:

变压器常见故障及处理

变压器常见故障及处理 变压器故障可分为内部故障和外部故障,内部故障是指变压器本体内部绝缘或绕组出现的故障,外部故障是指变压器辅助设备出现的故障。变压器常见的故障有:变压器过热、冷却装置故障、油位异常、轻瓦斯继电器动作、变压器跳闸和变压器的紧急停运。在变压器过热时应重点检查变压器是否过负荷,冷却装置是否正常和是否投入,变压器三相中某一项的温度是否过高等,采取相应的措施进行处理。若冷却装置故障,则根据故障停运的范围查找相应的故障点。若油位异常,则检查负荷和油温,冷却系统是否正常,所有阀门位置是否正确,注意变压器本身有无故障迹象等进行判断处理。若轻瓦斯继电器动作,首先检查变压器外观、声音、温度、油位、负荷情况,并抽取气样进行分析判断。若是变压器跳闸则应根据保护动作情况、现场设备情况判断故障跳闸原因,采取不同的措施进行处理。当遇到威胁变压器本身安全运行的情况时,则应立即停运变压器,以确保变压器本身的安全。 变压器故障可分为内部故障和外部故障,内部故障是指变压器本体内部绝缘或绕组出现的故障,外部故障是指变压器辅助设备出现的故障。 变压器的常见故障及处理方法。 一、变压器过热 过热对变压器是极其有害的,变压器绝缘损坏大多是由过热引起,温度的升高降低了绝缘材料的耐压和机械强度。IEC354《变压器运行负载导则》指出变压器最热点温度达到140℃时,油中就会产生气泡,气泡会降低绝缘或引发闪络,造成变压器损坏。

变压器的过热对变压器的使用寿命影响极大,根据变压器运行的6℃法则,在80—140℃的温度范围内,温度每增加6℃,变压器绝缘有效使用寿命降低的速度会增加一倍。国标GB1094中也有规定,油浸变压器绕组平均温升限值65K,顶部油温升是55K,铁芯和油箱是80K。 变压器过热主要表现为油温异常升高,其主要原因可能有:(1)变压器过负荷;(2)冷却装置故障(或冷却装置未完全投入);(3)变压器内部故障;(4)温度指示装置误指示。 当发现变压器油温异常升高时,应对以上可能的原因逐一进行检查,作出准确判断,检查和处理要点如下: (1)若运行仪表指示变压器已过负荷,单相变压器组三相各温度计指示基本一致(可能有几度偏差),变压器及冷却装置正常,则油温升高由过负荷引起,应加强对变压器监视(负荷、温度、运行状态),并立即向上级调度部门汇报,建议转移负荷以降低过负荷倍数和缩短过负荷时间。 (2)若是冷却装置未完全投入引起的,应立即投入,若是冷却装置故障,应迅速查明原因,立即处理,排除故障。若故障不能立即排除,则必须密切监视变压器的温度和负荷,随时向上级调度部门和有关生产管理部门汇报,降低变压器运行负荷,按相应冷却装置冷却性能与负荷的对应值运行。 (3)若远方测温装置发出温度告警信号,且指示温度值很高,而现场温度计指示并不高,变压器又没有其它故障现场,可能是远方测温回路故障误告警,这类故障可在适宜的时候予以排除。 (4)如果三相变压器组中某一相油温升高,明显高于该相在过去同一

变压器的异常现象及其原因

1.从变压器的异常声音判断故障 “吱吱”声。当分接开关调压之后,响声加重,以双臂电桥测试其直流电阻值,均超过出厂原始数据的2%,属接触不良,系触头有污垢而引起的。 处理方法:旋开分接开关的风雨罩,卸下锁紧螺丝,用搬手把分接开关的轴左右往复旋转10~15次,即可消除这种现象,修后立即装配还原。其次,终端杆引至跌落式熔断器的引下线采用裸铝或裸铜绞线,但张力不够,再加上瓷瓶扎线松驰所致。在黄昏和黎明时可见小火花发出“吱吱”声,这与变压器内部发出的“吱吱”声有明显区别。处理方法:利用节假日安排停电检修,将故障排除。 “噼啪”的清脆击铁声。这是高压瓷套管引线,通过空气对变压器外壳的放电声,是变压器油箱上部缺油所致。 处理方法:用清洁干燥的漏斗从注油器孔插入油枕里,加入经试验合格的同号变压器油(不能混油使用),补油量加至油面线温度+20℃为宜,然后上好注油器。否则,油受热膨胀会产生溢油现象。如条件允许,应采用真空注油法以排除线圈中的气泡。对未用干燥剂的变压器,应检查注油器内的排气孔是否畅通无阻,以确保安全运行。 沉闷的“噼啪”声。这是高压引线通过变压器油而对外壳放电,属对地距离不够(<30mm)或绝缘油中含有水份。 驱潮的方法:另从三相三线开关中接出三根380V的引线,分别接在配电变压器高压绕组A、B、C端子上,从而产生零载电流,该电流不仅流过高压线圈产生了铜损,同时也产生了磁通,磁通通过线圈芯柱、铁心上下轭铁、螺栓、油箱还产生了铁损,铜损和铁损产生的热能使变压器油、线圈、铁质部件的水份受到均匀加热而蒸发出来,均通过油枕注油器孔排出箱外。低压线圈中感应出25V的零载电压,作为油箱产生涡流发热的电源。从配电变压器的低压绕组a、b、c端子上,接出三根10~16mm2塑料铝芯线,分别在油箱外壳上、中、下缠绕三匝之后,均接于配电变压器低压绕组零线端子上,所产生的涡流发出的热能能使配电变压器油箱受到均匀加热,进一步提高配电变压器的干燥质量。注意,若焙烘的温度高于配电变压器的额定温度,去掉B相电源后即可降低干燥时的温度。 “吱啦吱啦”的如磁铁吸动小垫片的响声,而变压器的监视装置、电压表、电流表、温度计的指示值均属正常。这往往由于新组装或吊芯检修时的疏忽大意,没将螺钉或铁垫上紧或掉入小号铁质部件,在电磁力作用下所致。 处理方法:待变压器吊芯检修时加以排除。 特殊噪声。由于负载和周围环境温度的变化,使油枕的油面线发生变化,因此,水蒸气伴随空气一并被吸入油枕内,凝成水珠,促使内部氧化生锈,随着积聚程度加剧,会落到油枕的下部。铁锈通过油枕与油盖的连通管,堆积在部分轭铁上,从而在电磁力的作用下产生振动,发出特殊噪声。这还会导致变压器运行油机械杂质增多,使油质恶化。 处理方法:油枕与集泥器的清洁是同时进行的,应根据变压器的负荷情况,温升状况来决定。使用经验证明,两年清洁一次为好。 继续放电声。变压器的铁心接地,一般采用吊环与油盖焊死或用铁垫脚方法。当脱焊或接触面有油垢时,导致连接处接触不良,而铁心及其夹件金属均处在线圈的电场中,从而感应出一定电位,在高压测试或投入运行时,其感应电位差超过其问的放电电压时,即会产生断续放电声。 处理方法:吊芯检查。把接地脱焊面清除干净,重新电焊或把油泥消除至清洁为止,保持良好的接触状态。同时应以500V摇表测试,铁心与变压器外壳要接地良好。 2.油位显著下降及严重漏油 正常时的油位上升或下降是由温度变化造成的,变化不会太大。当油位下降显著,甚至从油位计中看不见油位,则可能是因为变压器出现了漏油、渗油现象。变压器运行中渗漏油

变压器内部绝缘故障分析

变压器内部绝缘故障分析 【摘要】评价变压器运行的重要指标是电力变压器运行中发生的故障率,由于制造工艺、质量、使用时间等因素的影响,各电压等级上运行的为数众多的油浸式电力变压器会出现很多故障,比如在运行中出现内部绝缘缺陷,本文分析了绝缘中的故障和线圈中的故障,并提出相应的解决措施。 近年来,引起变压器在运行中的故障时有发生,对于变压器制造厂家提出更高的要求,除了要求变压器的长期运行外,并且使得其可以适应环境,并且可以可靠高效率的运行,还可以同时有节能的效果。而各电压等级上运行的为数众多的油浸式电力变压器发生故障的原因很多,大部分却是由绝缘缺陷、热或变压器出口处短路电动力等原因所引起,故障表现为:绝缘中的故障和线圈的故障,具体问题从以下几个方面来分析。 1 绝缘中的故障 在变压器绝缘结构中,通常是把不同的介电系数的绝缘相串联,如线圈间采用油——隔板绝缘结构,由于变压器油与绝缘纸板的介电系数不同,当对其施加电压时,则其中的场强按介电系数成反比分配,因此,线圈间除应以等电场强度原则分配和调整油隙之外,并应合理地确定隔板的厚度,从而使场强控制在许用值之内。否则,可因局部放电而导致绝缘损坏。 对某些变压器,特别是中小型变压器由于呼吸作用使水分和潮气进入变压器油中。这样就大大降低了油的耐电强度,从而可能引起线圈对油箱或铁芯构件的击穿。 变压器长时间过载可引起变压器油的老化,油温过高会加速油泥、水分及酸的生成。 导线的圆角小或绝缘结构中有“油楔”时,则该部位的电场强度高。由此可能产生局部放电。 绝缘纸板卷制的绝缘筒、绝缘成型件等绝缘件,在制造过程中,有时因其表面存有污秽,导致沿面放电,从而使绝缘材料失效。绝缘件吸附气体常可导致气体电离,介质产生过热,甚至引起绝缘击穿。 一次线圈与二次线圈间放置静电屏时,由于焊接和绝缘不当而引起事故,如静电屏边缘处的电场集中,因而使绝缘局部负担过重。所以,虽然从高压线圈到地屏只有一点击穿也常会导致该铁芯柱上的线圈损坏。 由于制造工艺上的粗心大意,在线圈表面及器身上可能遗留下金属屑末及污秽物等,这对沿面放电将产生很大影响。 当变压器相间绝缘距离没有足够的裕度,则可能产生相间短路。此种短路故障有可能由于相间加入绝缘隔板而改变了变压器内部的电场分布,从而引起油隙及隔板的场强过高。 如果采用木制的线圈引线支架及导线夹未经充分干燥及浸油,则水分的存在将产生桥络而导致分接引线的击穿。 随变压器运行时间的增长,油箱内的油面可能下降。若不能保证油面处于规定位置,则变压器可能因冷却油的循环受到限制而产生过热。对于管式油箱变压器,当油面降至冷却油管上管口之下时,就更容易发生这种情况。 变压器油中悬浮的导电粒子,由于它们在具有电位差的裸导体之间形成小桥

变压器内部绝缘故障的分析

变压器内部绝缘故障的分析 电力变压器运行中发生的故障率是评价变压器运行的重要指标! 在各电压等级上运行的为数众多的油浸式电力变压器或因技术、制造工艺水平、制造质量,或因运行时间较长等等诸多原因,引起变压器在运行中出现内部绝缘故障的情况时有发生。对变压器制造厂家来说,理应提供长期可靠运行的产品。近年来,对变压器可靠性要求已经有了很大变化,除要求可靠性和寿命长之外,还有适应环境要求,尽可能的符合环保的要求,以及节能、提高效率等。 变压器在运行中发生的重大故障,根据统计结果表明,几乎绝大部分都是由于绝缘缺陷、热或变压器出口处短路电动力等原因所引起的。变压器内部绝缘故障类型大体上可分为:绝缘中的故障和线圈中的故障两类。下面对这两类故障加以简要的分析: 一.绝缘中的故障 在变压器绝缘结构中,通常是把不同的介电系数的绝缘相串联,如线圈间采用油——隔板绝缘结构,由于变压器油与绝缘纸板的介电系数不同,当对其施加电压时,则其中的场强按介电系数成反比分配,因此,线圈间除应以等电场强度原则分配和调整油隙之外,并应合理地确定隔板的厚度,从而使场强控制在许用值之内。否则,可因局部放电而导致绝缘损坏。 对某些变压器,特别是中小型变压器由于呼吸作用使水分和潮气进入变压器油中。这样就大大降低了油的耐电强度,从而可能引起线圈对油箱或铁芯构件的击穿。 变压器长时间过载可引起变压器油的老化,油温过高会加速油泥、水分及酸的生成。 导线的圆角小或绝缘结构中有“油楔”时,则该部位的电场强度高。由此可能产生局部放电。 绝缘纸板卷制的绝缘筒、绝缘成型件等绝缘件,在制造过程中,有时因其表面存有污秽,导致沿面放电,从而使绝缘材料失效。绝缘件吸附气体常可导致气体电离,介质产生过热,甚至引起绝缘击穿。 一次线圈与二次线圈间放置静电屏时,由于焊接和绝缘不当而引起事故,如静电屏边缘处的电场集中,因而使绝缘局部负担过重。所以,虽然从高压线圈到地屏只有一点击穿也常会导致该铁芯柱上的线圈损坏。 由于制造工艺上的粗心大意,在线圈表面及器身上可能遗留下金属屑末及污秽物等,这对沿面放电将产生很大影响。 当变压器相间绝缘距离没有足够的裕度,则可能产生相间短路。此种短路故障有可能由于相间加入绝缘隔板而改变了变压器内部的电场分布,从而引起油隙及隔板的场强过高。 如果采用木制的线圈引线支架及导线夹未经充分干燥及浸油,则水分的存在将产生桥络而导致分接引线的击穿。 随变压器运行时间的增长,油箱内的油面可能下降。若不能保证油面处于规定位置,则变压器可能因冷却油的循环受到限制而产生过热。对于管式油箱变压器,当油面降至冷却油管上管口之下时,就更容易发生这种情况。 变压器油中悬浮的导电粒子,由于它们在具有电位差的裸导体之间形成小桥而引起暂时的击穿,如油中终端引线之间及终端引线对油箱或铁芯结构的闪络等。 应该指出,变压器绝缘中的局部放电多生于高压引线处,几乎不发生于匝间或饼间,但局部放电量的大小与变压器绝缘寿命间可以认为无明确对应关系,而且局部放电的分散性也较大,测量准确度不高,这样追求更高的准确度也无实际意义。 在变压器绝缘结构上、工艺上采取措施,降低局部放电量,对于改善绝缘寿命是有意义的。二.线圈中的故障 变压器线圈是变压器的重要组成部分,或形象地称为变压器的心脏,也是变压器运行中发生故障较多的部分。变压器的故障主要是绝缘强度、机械强度和热的原因造成的。根据统计结果表明,线圈匝间短路事故占变压器事故率的70%~80%。因此,分析线圈中的故障具有重要的意义。 变压器线圈在绕制、加压干燥、套装等工艺过程中,由于导线质量、换位、弯折引出线,焊头等处理不当,常会造成线圈短路故障。 当线圈绕制导线的圆角半径较小,则在变压器负荷运行时产生振动。或当变压器因短路以及变压器投入网络而遭受重复的电磁力冲击时,导线的陡棱可能逐渐切断绝缘而导致相邻线匝短路,此种现象多发生于变压器的高压线圈中。 当变压器线圈受到严重的外部短路,特别是发生三相短路情况时,在短路电流瞬时峰值作用下,即使不立即发生绝缘击穿,也可能因线圈的残余变形而造成严重的故障隐患。当线圈遭受短路

变压器跳闸的处理技巧

在变压器自动跳闸时,如有备用变压器,应将备用投入,以检查自动跳闸的原因。若无备用,则检查变压器跳闸是何种保护动作,以及变压器跳闸时有何外部现象,若检查证明变压器跳闸不是内部故障所致,而是由于过负荷、外部短路或保护装置二次回路故障所引起,则可不经内部检查即可投入。如有故障,则经消除后再行送电 变压器自动跳闸时,应立即进行全面检查并查明跳闸原因再作处理。具体的检查内容有: (1) 根据保护的动作掉牌或信号、事件记录器及其它监测装置来显示或打印记录,判断是否是变压器故障跳闸; (2) 检查变压器跳闸前的负荷、油位、油温、油色,变压器有无喷油、冒烟,瓷套有否闪络、破裂。压力释放阀是否动作或其它明显的故障迹象,作用于信号的气体继电器内有无气体等; (3) 分析故障录波的波形; (4) 了解系统情况,如保护区内区外有无短路故障及其它故障等。 若检查结果表明变压器自动跳闸不是变压器故障引起,则在外部故障排除后,变压器可重新投入运行。 若检查发现下列情况之一者,应认为变压器内部存在故障,必须进一步查明原因,排除故障,并经电气试验、色谱分析以及其它针对性的试验证明故障确已排除后,方可重新投入运行。 a) 瓦斯继电器中抽取的气体分析判断为可燃性气体; b) 矿用变压器有明显的内部故障特征,如外壳变形、油位异常、强烈喷油等; c) 变压器套管有明显的闪络痕迹或破损、断裂等; d) 差动、瓦斯、压力等继电保护装置有两套或两套以上动作。 变压器自动跳闸后的处理 大家可能碰到过这种问题,变压器自动跳闸了。下面就来介绍下跳闸后的处理方式 1) 矿用变压器跳闸时,首先确认变压器高、低压侧开关均已跳闸,否则手动断开。如有备用变压器,应迅速投入。有母联开关的,检查母线联络开关是否自动切换成功;否则,确认没有母线保护动作,可能手动合一次联络开关。 2) 就地检查变压器本体及引出线等一次回路进行检查,有无冒烟、着火、绝缘烧焦气味、有无短路放电痕迹及开关保护动作情况。 3) 如主变、高厂变自动跳闸时,发电机将解列,立即检查厂用电切换情况,如果厂用电切换装置未动作,确认高厂变低压侧开关均断开,确认6kV母线无保护动作,在检查6KV母线无明显故障的情况下,可手动切换一次,不成功则不得再切。 4) 根据保护装置动作情况、录波图和变压器跳闸时的象征确定变压器是内部故障还是外部故障,如经检查证明是人为因素、外部短路,变压器过负荷或二次回路故障、保护误跳闸等原因所引起,变压器停电测绝缘合格则允许试送;若查明是内部故障

相关主题
文本预览
相关文档 最新文档