当前位置:文档之家› 二元函数中值定理的简单应用

二元函数中值定理的简单应用

二元函数中值定理的简单应用
二元函数中值定理的简单应用

目录

一、引言 (1)

二、主要定理的证明、应用 (1)

2.1二元函数中值定理的第一种形式 (1)

2.11定理及推论的证明 (1)

2.12定理及推论的应用 (2)

2.2二元函数中值定理的第二种形式 (5)

2.21定理及推论的证明 (5)

2.22定理及推论的应用 (5)

2.3二元函数中值定理的不等式形式 (6)

2.31定理及推论的证明 (6)

2.32定理及推论的应用 (8)

三、结论 (9)

四、参考文献 (9)

五、致谢 (9)

数学科学学院本科学年论文二元函数中值定理的简单应用

二元函数中值定理的简单应用

内容摘要

给出了二元函数中值定理的三种不同形式:含一个参变量型、含两个参变量型和不等式型.在每一种形式下我们都给出主要定理的证明,充分了解定理的生成以及内容.此外,在就给出的定理的各种形式以及他们的推论加以推广、运用,得到许多在多元函数中得到广泛运用的重要定理.

关键词:二元函数中值定理

一、引言

我们知道,一元函数的中值定理是数学分析中的一个重要定理,他深刻的揭示了函数在某些区间上的增量与函数在该区间内某点处的导数及区间的长度之间的关系,是利用导数研究函数性质的基础,本文将中值定理推广到二元函数(多元函数的代表),并利用最基本的公式、定理证明一些重要的结论和定理.

二、主要定理的证明、应用

2.1二元函数中值定理的第一种形式

2.11定理及推论的证明

定理 1 若二元函数(,)f x y 在点000(,)p x y 的邻域G 存在两个偏导数,则

G y y x x ∈?+?+?),(00,全改变量

0000,(),(y x f y y x x f z -?+?+=?)

y y y x f x y y x x f y x ??++??+?+=),('),('200010θθ 其中.10,1021<<<<θθ 证明:

显然,若点G y y x x ∈?+?+),(00,则点)(0,0y y x ?+与G y x x ∈?+),(00,且连接两点

),(00y y x x ?+?+与),(00y y x ?+或),(00y y x x ?+?+与),(00y x x ?+的线段也属于

G ,如图1,为此,将全改变量z ?改写为如下形式:

),(),(0000y x f y y x x f z -?+?+=?

)],(),([)],(),([00000000y x f y y x f y y x f y y x x f -?++?+-?+?+= 上述等式右端第一个方括号内,y y y ?+=0是常数,只是x 由0x 变到x x ?+0;第二个方括号内0x x =是常数,只是y 由0y 变到y y ?+0.根据一元函数中值定理,有

),(),(0000y x f y y x x f z -?+?+=?

y y y x f x y y x x f y x ??++??+?+=),('),('200010θθ 其中.10,1021<<<<θθ 2.12 定理及推论的应用

定理2 若二元函数),(y x f 在点),(000y x p 的邻域G 存在两个偏导数,且两个偏 数在点),(000y x p 连续,则二元函数),(y x f 在点),(000y x p 可微. 证明:(利用二元函数中值定理)

G y y x x ∈?+?+?),(00,根据定理,将全改变量z ?写为:

),(),(0000y x f y y x x f z -?+?+=?

y y y x f x y y x x f y x ??++??+?+=),('),('200010θθ 其中.10,1021<<<<θθ 已知偏导数在),(000y x p 连续,有

.),('),('00010αθ+=?+?+y x f y y x x f x x 0lim 0

=→αρ

βθ+=?+),('),('00200y x f y y x f y y 0lim 0

=→βρ

从而有

.),('),('0000y x y y x f x y x f z x x ?+?+?+?=?βα

ρ

βραρβαy x y

x ?+?≤?+?

0→+≤βα )0(→ρ

或 )(ρβαo y x =?+? 于是, ),(),(0000y x f y y x x f z -?+?+=?

)(),('),('0000ρo y y x f x y x f x x +?+?= 即函数),(y x f 在点),(000y x p 可微.

注:偏导数连续是二元函数可微的充分条件,而不是必要条件.

定理3 若二元函数),(y x F z =在以点),(00y x 为中心的矩形区域D (边界平行坐标轴)满足下列条件:

1) ),('y x F x 与),('y x F y 在D 连续(从而),(y x F 在D 连续); 2) 0),(00=y x F ; 3) 0),('≠y x F y . 则:

1) 0>?δ与0>β,),(00δδ+-=?∈?x x x 存在唯一一个)(x f y =(隐函数)

使0)](,[≡x f x F ,00)(y x f =,且ββ+<<-00)(y x f y . 2) )(x f y =在区间连续.

3) )(x f y =在区间?有连续导数,且)

,(),()('''y x F y x F x f y x -=.

证明:

1) 的证明未涉及到本文提到的二元函数中值定理,故略之,直接用其结论.

2) 隐函数)(x f y =在区间?连续,只需证明,?∈?x ,函数)(x f y =在x 连续, 已知),('y x F x 与),('y x F y 闭区间);(0000ββαα+≤≤-+≤≤-y y y x x x G 连续.且

0),('>y x F y .则),('y x F x 在G 有上界,),('y x F y 在G 有下界.即0>?M 与0>m ,

G y x ∈?),(,有

M y x F x ≤),('与m y x F y ≥),('

给自变量x 该变量x ?,使?∈?+x x ,相应的有函数)(x f y =的该变量y ?,即

)()(x f x x f y -?+=?或)(x x f y y ?+=?+ 且 ),(00ββ+-∈?+y y y y , 已知 0),(=y x F 与.0),(=?+?+x y x x F

).,(),(0y x F x y x x F -?+?+=

).,(),(),(),(y x F y y x f y y x F x y x x F -?++?+-?+?+=

根据二元函数中值定理,有,

.),('),('021y y y x F x y y x x F y x ??++??+?+=θθ (1) 其中10,1021<<<<θθ,将(1)式改写为 x y y x F y y x x F x f x x f y y x ??+?+?+-

=-?+=?)

,(')

,(')()(201θθ

有 )()(x f x x f y -?+=?

.),('),('21x m

M

x y y x F y y x x F y x ?≤??+?+?+-

=θθ

于是=?→?y x 0

lim 0

lim →?x .0)]()([=-?+x f x x f

即隐函数)(x f y =在x 连续,从而在?连续.

3) 隐函数)(x f y =在区间?有连续导数,?∈?x ,由(1)式,有

-=??x

y

),('),('21y y x F y y x x F y x

?+?+?+θθ 其中10,1021<<<<θθ.

已知)(x f y =在x 连续,从而当0→?x 时,有0→?y ,又可知),('y x F x 与),('y x F y 在

D 连续,有

=)('x f 0

lim

→?x x y

??00lim

→?→?-=y x ),('),('201y y x F y y x x F y x ?+?+?+θθ-=),('),('y x F y x F y

x )0),('(≠y x F y 即隐函数)(x f y =在区间?有连续导数,且

)

,()

,()('''y x F y x F x f y x -=

注:为使层次分明,定理2的结论分为三部分,实际上,这三部分可以合并,叙述以下更加简明的形式

“则存在点0x 的邻域?,在?存在唯一一个有连续导数的隐函数)(x f y =,使

0)](,[≡x f x F ,00)(y x f =,且)

,()

,()(''

'y x F y x F x f y x -=. 2.2二元函数中值定理的第二种形式

2.21定理及推论的证明

定理4 设二元函数f 在凸区域2

R D ?上连续,在D 所有的内点都可微,则对D 内任意两点,),(),,(D k b h a Q b a P ∈++存在某)10(<<θθ使得 ),(),(b a f k b h a f -++

.),('),('k k b h a f h k b h a f y x θθθθ+++++= (2)

证明:令 ).,()(tk b th a f t ++=?

它是定义在]1,0[上的一元函数,由定理中的条件知)(t ?在]1,0[上连续,在]1,0[可微,于是根据一元函数中值定理,存在)10(<<θθ使得

)(')0()1(θ???=- (3) 由复合函数的求导法则,

k k b h a f h k b h a f y x ),('),(')('θθθθθ?+++++= (4) 由于D 是凸区域,所以.),(D k b h a ∈++θθ故由(3)、(4)即得所要证的(2)式. 2.22 定理及推论的应用 定理5(中值定理的推论)

若二元函数二元函数),(y x f 在凸区域D 上存在偏导数,且

0),('),('==y x f y x f y x ,则),(y x f 在区域D 上是常函数.

证明:,),(),,(00D y x y x ∈?因为D 是区域?存在一条完全属于D 的折线将

),(),,(00y x y x 连接,不妨设这折线的转接点依次是:

).,(),,(),(),,(),,(11221100y x y x y x y x y x k k --??? (记y y x x k k ==,)

不失一般性,可以使这些点适当的接近,从而使折线段 ),(),(11++→i i i i y x y x 11,0-???=k i

也全部在区域D 内,因为),(y x f 在区域内存在偏导数,且0),('),('==y x f y x f y x 故利用中值定理

),(11y x f ),(00y x f -))]((),(['01010010x x y y y x x x f x --+-+=θθ

))]((),(['01010010y y y y y x x x f y --+-++θθ

0=

其中10<<θ.

从而有 ),(11y x f ),(00y x f =同理推得,

),(00y x f ),(11y x f =).,(),(),(1122y x f y x f y x f k k ==???==-- 将),(00y x 点确定),(y x 在D 中随意选取上式均成立,由此得证结论成立. 例1 通过对y x y x F cos sin ),(=施用中值定理,证明对某)1,0(∈θ有

6

sin

3sin 66cos 3cos 343πθ

πθππθπθπ-= 解:二元函数y x y x F cos sin ),(=在2

R 上连续且可微,由中值定理知,对D 内两点

)0,0(),(=b a 及).6

,3(),(π

π=++k b h a )1,0(∈?θ,

有 =-++),(),(b a F k b h a F .),('),('k k b h a F h k b h a F y x θθθθ+++++

? =-)0,0()6,3(F F ππ6sin 3sin 66cos

3cos 3πθ

πθππθπθπ- 即, .6

sin 3sin 66cos 3cos 343πθ

πθππθπθπ-=

2.3二元函数中值定理的不等式形式

2.31定理推论的证明

定理6 设二元函数),(y x f 在凸区域2

R D ∈内任取一点,沿任意方向的方向导l

f

??存在一 致有界,即存在n m ,使得,n l

f

m ≤??≤则对D 内任意两点),,(b a P ),(k b h a Q ++有 ,)

,()

()(n Q P P f Q f m ≤-≤

ρ 其中22),(k h Q P +=ρ (5)

1P 0

Q 1

Q 为证这个定理,先叙述一个引理.

引理 设二元函数),(y x f 在凸区域D 的内点),(0b a P 沿方向L 的方向导数存在,),(y x f 在点0P 沿方向L 连续.

证明:设),(y x P 为L 上的点(含于D 内),则由=-)()(0P f P f ),,()

,()

()(Q P Q P P f Q f ρρ-

令+

→0),(Q P ρ便得结论. 定理的证明:

对任意,','n m ,'m m <.'n n < 先证')

,()

()('n Q P P f Q f m ≤-≤

ρ (6)

然后在(6)式取极限 ,'m m → .'n n →(先固定Q P ,)便可得(1).

用反证法(6)式,假设存在D 内点Q P ,使

')

,()

()(n Q P P f Q f >-ρ (7)

则).(),(')(1111P f Q P n Q f +>ρ把线段11Q P 上各点按到点1P 的距离大小排列,线段11Q P 上任意两点21,t t ,当1t 到1P 的距离小于2t 到1P 的距离时,就记为,21t t <从而 可令

}),()(),(')(|inf{1110Q t Q t g P f p t n t f Q Q <<=+>=ρ

由引理,),(y x f 沿方向11Q P 连续,故有,101Q Q P <≤且).(),(')(1111P f Q P n Q f +=ρ 如图2.

对,10Q Q Q <≤

),()()(00Q Q Q f Q f ρ-'.)

,()]

(),('[)(),('011011n Q Q P f P Q n P f P Q n =+-

+>ρρρ

f ?在0Q 沿11Q P 方向导数

n n l

f

>≥??'矛盾.

所以,

')

,()

()(n Q P P f Q f ≤-ρ类似可证(6)式左边,从而(5)式成立.

推论 设二元函数),(y x f 在凸区域D 的内任意一点沿任意方向的方向导数l

f

??存在且一 致有界,即存在,0>M 使.||

M l

f

≤??则对D 任意两内点Q P ,有, ),(|)()(|Q P M Q f P f ρ?≤- 2.32定理及推论的应用 定理7(连续性充分条件)

若二元函数),(y x f 在点0P 的某邻域)(0P U 内的点沿任意方向的方向导数一致有 界,则),(y x f 在)(0P U 内连续.

证明:对Q P ,∈)(0P U ,有推论,0>?M 使 ),(|)()(|Q P M Q f P f ρ?≤-

.0>?ε取,M

ε

δ=

当δρ<),(Q P 时, ε≤-|)()(|Q f P f

所以,),(y x f 在点0P 的邻域)(0P U 连续.

定理8 设二元函数),(y x f 在凸区域D 内任意一点沿任意方向的方向导数存在且一致有 界,则),(y x f 在D 内一致连续. 证明:设在D 内任意一点M l f ≤??||

(M 为正常数)则,0>?ε取,M

εδ=.,D Q P ∈?只要 .),(δρ

便有 εε

ρ=?

M Q P M Q f P f ),(|)()(|

故),(y x f 在D 内一致连续.

结论

通过本文,我们了解了二元函数中值定理的三种不同形式:含1θ、2θ两个参变量、含θ一个参变量以及不等式形式.二元函数作为一元函数向多元函数的过渡,在我们学习了一元函数中值定理之并领略其重要作用后,利用二元函数作为多元代表,进一步去研究中值定理在多元函数中的作用.在本文中,我们粗略的给出定理的应用,但是已经能够窥知中值定理,这一伟大的定理在研究多元函数起着举足轻重的作用.

参考文献

[1]同济大学数学研究室. 高等数学(第三版)[M]. 北京:高等教育出版社,1988.

[2]T.M菲赫金哥尔茨,北京大学高等数学教研室. 微积分教程[M]. 北京:人民教育出版社,1956.

[3]华东师范大学数学系. 数学分析(第二版)[M]. 北京:高的教育出版社,1991.

[4]华东师范大学数学系. 数学分析(第三版)[M]. 北京:高的教育出版社,2001.

[5]朱正佑. 数学分析[M]. 上海:上海大学出版社,2001.

[6]刘玉链. 数学分析[M]. 北京:高的教育出版社,2008.

[7]张宇萍. 多元函数中值定理[J]. 西安联合大学学报,1999,2(2):249-252.

[8]李日光,欧苡. 多元函数中值定理的不等式形式[J]. 广西师范学报(自然学报),2000,17(1):88-90.

几种构造辅助函数的方法及应用

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例说明了寻求 辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 2.1“逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=2 1 21dx x xf f ,证明在][1,0内至少有一点θ,

使()() θθθf f -='. 证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将()() θθθf f '变为()()0='?+θθθf f ,联想到()[]()()θθθθf f x xf x '?+='=,可考虑 辅助函数 ()()[].1,0,∈=x x xf x F 因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得()0='θF 即:()() θθθf f -='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积分因子),为简便起见,可将积分常数取为零;

中值定理构造辅助函数

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论 ()()'()()()'()f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f a g x f x g b g a -=-再两边同时积分得 ()()()()()() f b f a g x f x C g b g a -=+-,令0C =,有() ()()()0()()f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231 n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….

第十八章 隐函数定理及其应用

第十八章 隐函数定理及其应用 知识脉络 1.隐函数的存在定理(不证),会判断是否存在隐函数,会求隐函数的导数 2. 隐含数组的存在定理,不判断是否存在隐函数组,还要会求隐函数组的导数 3 隐函数的几何应用:平面曲线的切线与法平面、空间曲线的切线与法平面、空间曲 面的切平面与法线 4. 会求条件极值问题的解 一、填空题 1.函数y y x =()由方程12+=x y e y 所确定,则 d d y x = __________. 3. 设函数z z x y =(,)由方程xy z x y z 2=++所确定,则 ??z y = __ _____.z x ?? 4.由xyz x y z +++=222 2所确定函数z z x y =(,)在点(1,0,1)-处的全微分d z =_ __ _. 5. 设0),,(=+++z y x y x x F ,其中F 可微,则 x z ??= ,y z ??= . 6. 设函数z z x y =(,)由yz zx xy ++=3所确定,则 =z x ?? .(其中x y +≠0) 7.设(,)F x y 具有连续偏导数,已知(,)0x y F z z =,则dz = . 8.设函数(,)f x y 满足(,)(,)(,)x y xf x y yf x y f x y +=,(1,1)3x f -=,点(1 ,1,2)P -在曲面(,)z f x y =上,则在点(1,1,2)P -的切平面方程为 . 9.设f z g y (),()都可微,则曲线x f z z g y ==(),()在点(,,)x y z 000处的法平面为 . 10.设f y z (,)与g y ()都是可微函数,则曲线x f y z z g y ==(,),()在点(,,)x y z 000处的切线方程是 . 11.曲线t t z t y t x cos sin ,sin ,cos +===在0=t 处切线与平面0=-+z By x 平行,=B ___ 12.z z x y =(,)由方程 12 355242 2x xy y x y e z z +--+++=确定, 则函数z 的驻点是____ . 13.函数f x y z x (,,)=-22 在x y z 2 2 2 22--=条件下的极大值是_____ __. 14. 设2sin(23)23x y z x y z +-=+-,证明y z x z ??+??=__ ___ __. 二、选择题

二元函数的积分中值定理的探究

目录 摘要................................................................................ I 关键词.............................................................................. I Abstract ........................................................................... II Key words .......................................................................... II 前言.. (1) 1预备知识 (1) 1.1相关定理 (1) 2 多元函数积分中值定理的各种形式 (2) 2.1 曲线积分中值定理的推广 (2) 2.1.1第一型曲线积分中值定理 (2) 2.1.2第二型曲线积分中值定理 (4) 2.2二重积分中值定理的探究及推广 (5) 2.3曲面积分中值定理的探究及推广 (7) 2.3.1第一型曲面积分中值定理 (7) 2.3.2第二型曲面积分中值定理 (7) 结论 (9) 参考文献 (10) 致谢 (11)

摘要:积分中值定理是数学分析的重要定理,我们主要讨论了二元函数的曲线、重积分、曲面的各种形式中值定理,而且还给出了这些定理的证明过程,最后总结出各类积分中值定理的形式. 关键词:积分中值定理;第二中值定理;曲线积分中值定理;二重积分中值定理;曲面积分中值定理

中值定理构造辅助函数

中值定理构造辅助函数 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论()()'()()()'() f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()() f b f a g x f x g b g a -=-再两边同时积分得()()()()()()f b f a g x f x C g b g a -=+-,令0C =,有()()()()0()() f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231 n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+…

数学分析 隐函数定理及其应用

第十八章隐函数定理及其应用 教学目的:1.理解隐函数定理的有关概念及隐函数存在的条件,进而会求隐函数的导数; 2.了解隐函数组的有关概念,理解二元隐函数组存在的条件,了解反函数组存在的条件; 3.掌握隐函数的微分法在几何方面等的应用,会把实际问题抽象为条件极值并予以解决。 教学重点难点:本章的重点是隐函数定理; 教学时数:14学时 § 1 隐函数 一.隐函数概念:隐函数是表达函数的又一种方法. 隐函数及其几何意义: 以为例作介绍. 1. 2.隐函数的两个问题:ⅰ>隐函数的存在性; ⅱ> 隐函数的解析性 质. 二.隐函数存在条件的直观意义: 三.隐函数定理: Th 1 ( 隐函数存在唯一性定理 ) 若满足下列条件: 在以为内点的某一区域D上连续 ; ⅰ> 函数 ⅱ> ; ( 通常称这一条件为初始条件 )

ⅲ> 在D内存在连续的偏导数 ; ⅳ> . 的某邻域()D内 , 方程唯一地确定一个定义 则在点 在某区间内的隐函数 时()且 ⑴, . 在区间内连续 . ⑵函数 ( 证略 ) 四.隐函数可微性定理: 满足隐函数存在唯一性定理的条件 , 又设在D内 Th 2 设函数 存在且连续 . 则隐函数 且 . ( 证略 ) 例1 验证方程 在点满足隐函数存在 唯一性定理的条件 , 并求隐函数的导数 . P149例1 . 其中为由方程所确 例2 定的隐函数 . 求. P150例2 ( 仿 )

在点的某邻域内 例3 ( 反函数存在性及其导数 ) 设函数 有连续的导函数 函数 , 并求反函数的导数. P151例4 五. 元隐函数: P149 Th3 例4 . 验证在点存在 的隐函数 , 并求偏导数 . P150 例3 平面曲线的切线与法线 : 设平面曲线方程为. 有 一. . 切线方程为, 法线方程为 . 求Descartes叶形线在点处的切线和 例1 二.空间曲线的切线与法平面 : 1.曲线由参数式给出 : . 切线的方向数与方向余弦.

拉格朗日中值定理证明中辅助函数构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

数学分析学年论文隐函数有关定理及其应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 前言 (1) 1 隐函数 (1) 1.1隐函数的定义 (1) 1.2. 隐函数存在定理 (2) 1.3. 隐函数的可导条件 (2) 2.隐函数组 (4) 2.1 隐函数组概念 (4) 2.2 隐函数组存在条件 (4) 3 隐函数的几何应用 (6) 3.1 平面曲线的切线与法线 (6) 3.2 空间曲线的切线与法平面 (6) 3.3空间曲面的切平面与法线 (8) 参考文献 (9)

摘 要:本文主要介绍了隐函数与隐函数组的相关定理,并讨论了此类定理在求平面的法线及切平面方面的应用. 关键词:隐函数;唯一性;隐函数组;可微性 Theorem and application of Implicit function Abstract :we will discussion of Implicit function existence,and differentiability and the Geometry application in the solution of the normal to plane and tangent plant. Keywords :Implicit function; uniqueness; implicit function group; differentiable 前言 这篇论文我们将重点介绍有关隐函数定理的的条件及隐函数存在的条件,掌握隐函数的微分法在几何方面等的应用,会把实际问题抽象为条件极值并予以解决,这样既是解决实际问题的需要,也为后来的函数系统的完善打下基础. 1 隐函数 1.1隐函数的定义 设,X R Y R ??,函数:.F X Y R ?→对于方程 (,)0F x y = ()1 若存在集合I X J Y ??与对于任何x I ∈,恒有唯一确定的y J ∈,它与x 一起满足方程(1),则称由方程(1)确定一个在I 上,值域含于J 的隐函数.若把它记为 (),,,f x y x I y J =∈∈ 则成立恒等式 (,())0F x f x ≡,x I ∈. 例如方程 10xy y +-= 能确定一个定义在(,1)(1,)-∞-?-+∞上的隐函数.

数学分析18.1隐函数定理及其应用之隐函数

第十七章 隐函数定理及其定理 1隐函数 一、隐函数的概念 设E ?R 2,函数F:E →R 2.如果存在集合I,J ?E,对任何x ∈I, 有惟一确定的y ∈J, 使得(x,y)∈E, 且满足方程F(x,y)=0, 则称 F(x,y)=0确定了一个定义在I 上, 值域含于J 的隐函数. 若把它记为 y=f(x), x ∈I, y ∈J, 则有F(x,f(x))≡0, x ∈I. 注:由自变量的某个算式表示的函数称为显函数,如:y=x+1. 二、隐函数存在性条件的分析 隐函数y=f(x)可看作曲面z=F(x,y)与坐标平面z=0的交线, ∴要使隐函数存在,至少要存在点P 0(x 0,y 0), 使F(x 0,y 0)=0, y 0=f(x 0). 要使隐函数y=f(x)在点P 0连续,需F 在点P 0可微,且(F x (P 0),F y (P 0))≠(0,0), 即曲面z=F(x,y)在点P 0存在切平面. 要使隐函数y=f(x)(或x=g(y))在点P 0可微, 则在F 可微的假设下, 通过F(x,y)=0在P 0处对x 求导,由链式法则得:F x (P 0)+F y (P 0)0 x x dx dy ==0. 当F y (P 0)≠0时,可得0 x x dx dy ==- ) (P F ) (P F 0y 0x , 同理,当 F x (P 0)≠0时,可得 y y dy dx ==- ) (P F )(P F 0x 0y .

三、隐函数定理 定理18.1:(隐函数存在惟一性定理)若函数F(x,y)满足下列条件: (1)F在以P0(x0,y0)为内点的某一区域D?R2上连续; (2)F(x0,y0)=0(通常称为初始条件); (3)F在D内存在连续的偏导数F y(x,y); (4)F y(x0,y0)≠0. 则 1、存在点的P0某邻域U(P0)?D,在U(P0)上方程F(x,y)=0惟一地决定了一个定义在某区间(x0-α,x0+α)上的(隐)函数y=f(x), 使得 当x∈(x0-α,x0+α)时,(x,f(x))∈U(P0), 且F(x,f(x))≡0, y0=f(x0); 2、f(x)在(x0-α,x0+α)上连续. 证:1、由条件(4), 不妨设F y(x0,y0)>0(若F y(x0,y0)<0,则讨论-F(x,y)=0). 由条件(3)F y在D上连续,及连续函数的局部保号性知, 存在点P0的某一闭方邻域[x0-β,x0+β]×[y0-β,y0+β]?D, 使得 在其上每一点都有F y(x,y)>0. ∴对每个固定的x∈[x0-β,x0+β], F(x,y)作为y的一元函数,必定在[y0-β,y0+β]上严格增且连续. 由初始条件(2)可知F(x0,y0-β)<0, F(x0,y0+β)>0. 又由F的连续性条件(1), 知F(x,y0-β)与F(x,y0+β)在[x0-β,x0+β]上也是连续的,由保号性知, 存在0<α≤β, 当x∈(x0-α,x0+α)时, 恒有F(x,y0-β)<0, F(x,y0+β)>0. 如图,在矩形ABB’A’的AB边上F取负值, 在A’B’边上F取正值.

中值定理构造辅助函数

【第 1 页 共 8页】 微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论()()'()()()'() f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()() f b f a g x f x g b g a -=-g 再两边同时积分得()()()()()() f b f a g x f x C g b g a -=+-g ,令0C =,有()()()()0()()f b f a f x g x g b g a --=-g 故()()()()()()() f b f a F x f x g x g b g a -=--g 为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231 n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….

二元函数中值定理的简单应用

目录 一、引言 (1) 二、主要定理的证明、应用 (1) 2.1二元函数中值定理的第一种形式 (1) 2.11定理及推论的证明 (1) 2.12定理及推论的应用 (2) 2.2二元函数中值定理的第二种形式 (5) 2.21定理及推论的证明 (5) 2.22定理及推论的应用 (5) 2.3二元函数中值定理的不等式形式 (6) 2.31定理及推论的证明 (6) 2.32定理及推论的应用 (8) 三、结论 (9) 四、参考文献 (9) 五、致谢 (9)

数学科学学院本科学年论文二元函数中值定理的简单应用 二元函数中值定理的简单应用 内容摘要 给出了二元函数中值定理的三种不同形式:含一个参变量型、含两个参变量型和不等式型.在每一种形式下我们都给出主要定理的证明,充分了解定理的生成以及内容.此外,在就给出的定理的各种形式以及他们的推论加以推广、运用,得到许多在多元函数中得到广泛运用的重要定理. 关键词:二元函数中值定理

一、引言 我们知道,一元函数的中值定理是数学分析中的一个重要定理,他深刻的揭示了函数在某些区间上的增量与函数在该区间内某点处的导数及区间的长度之间的关系,是利用导数研究函数性质的基础,本文将中值定理推广到二元函数(多元函数的代表),并利用最基本的公式、定理证明一些重要的结论和定理. 二、主要定理的证明、应用 2.1二元函数中值定理的第一种形式 2.11定理及推论的证明 定理 1 若二元函数(,)f x y 在点000(,)p x y 的邻域G 存在两个偏导数,则 G y y x x ∈?+?+?),(00,全改变量 0000,(),(y x f y y x x f z -?+?+=?) y y y x f x y y x x f y x ??++??+?+=),('),('200010θθ 其中.10,1021<<<<θθ 证明: 显然,若点G y y x x ∈?+?+),(00,则点)(0,0y y x ?+与G y x x ∈?+),(00,且连接两点 ),(00y y x x ?+?+与),(00y y x ?+或),(00y y x x ?+?+与),(00y x x ?+的线段也属于 G ,如图1,为此,将全改变量z ?改写为如下形式:

数学分析18隐函数定理及其应用总练习题

第十八章 隐函数定理及其定理 总练习题 1、方程:y 2-x 2(1-x 2)=0在哪些点的邻域内可惟一地确定连续可导的隐函数y=f(x). 解:由y 2=x 2(1-x 2)知1-x 2≥0, ∴|x|≤1; 且 y 2=x 2(1-x 2 )≤2 2221??? ? ? ?-+x x =41, ∴|y|≤21 . 记F=y 2-x 2(1-x 2), 则F, F x =2x 3-2x(1-x 2)=4x 3-2x, F y =2y; 由F y ≠0得y ≠0, 即x ≠0且x ≠±1. 令D={(x,y)||x|≤1,|y|≤ 2 1 且y ≠0 }, 则F 在D 内每一个邻域内有定义, 且F, F x , F y 在D 上处处连续. 又由F(x,y)=0, F y ≠0知 原方程在D 上唯一确定隐函数y=f(x). 2、设函数f(x)在区间(a,b)内连续,函数φ(y)在区间(c,d)内连续,而且φ’(y)>0, 问在怎样条件下,方程φ(y)=f(x)能确定函数y=φ-1(f(x)). 并研究例子(1)siny+shy=x; (2)e -y =-sin 2x. 解:记F(x,y)=φ(y)-f(x), 由F y =φ’(y)>0知, 若f[(a,b)]∩φ[(c,d)]≠?, 就存在点(x 0,y 0), 满足F(x 0,y 0)=0, 即 可在(x 0,y 0)附近确定隐函数y=φ-1(f(x)). (1)设f(x)=x, φ(y)=siny+shy, 由f,φ在R 上连续且φ’(y)=cosy+chy>0, 又 f(R)∩φ(R)=R ≠?, ∴原方程可确定函数y=y(x). (2)∵f(x)=-sin 2x ≤0, φ(y)=e -y >0, ∴f(R)∩φ(R)=?, ∴原方程不能确定函数y=y(x).

微分中值定理怎样构造辅助函数

微分中值定理怎样构造 辅助函数 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

怎样在微分中值定理中构造辅助函数成了解这类题的主要关键,下面介绍怎样构造的方法,还有附带几个经典例题,希望对广大高数考生有所帮助。 先看这一题,已知f(x)连续,且f(a)=f(b)=0,求证在(a ,b )中存在ε使f ’(ε)=f(ε) 证明过程: f ’(ε)=f(ε), 所以f ’(x)=f(x), 让f(x)=y, 所以 y dx dy =,即dx dy y =1,所以对两边简单积分,即??=dx dy y 11,所以解出来(真的是不定积分的话后面还要加个常数C ,但这只是我的经验方法,所以不加)就是x y =ln ,也就是x e y =,这里就到了最关键的一步,要使等式一边为1!,所以把x e 除下来,就是1=x e y ,所以左边就是构造函数,也就是x e y -?,而y 就是f(x),所以构造函数就是x e x f -)(,你用罗尔定理带进去看是不是。再给大家举几个例子。 二、已知f(x)连续,且f(a)=f(b)=0,求证: 在(a ,b )中存在ε使f ’(ε)+2εf(ε)=0 证:一样的, xy dx dy 2-=,把x,y 移到两边,就是xdx dy y 21-=,所以积分出来就是2ln x y -=,注意y 一定要单独出来,不能带ln ,所以就是=y 2x e -,移出1就是,12=x ye 所以构造函数就是2)(x e x f ,再用罗尔定理就出来了。 三、已知f(x)连续,且f(a)=f(-a),求证在(-a ,a )中存在ε使f ’(ε) ε+2f(ε)=0.

隐函数定理及其应用.

S F 01(数) Ch 18 隐函数定理及其应用计划课时: 6 时 P 231 — 236 2002. 09.20 .

231 Ch 18 隐函数定理及其应用 ( 6 时 ) § 1 隐函数 ( 2 时 ) 一. 隐函数概念:隐函数是表达函数的又一种方法. 1. 隐函数及其几何意义: 以0),(=y x F 为例作介绍. 2. 隐函数的两个问题: ⅰ> 隐函数的存在性; ⅱ> 隐函数的解析性质. 二. 隐函数存在条件的直观意义: 三. 隐函数定理: Th 1 ( 隐函数存在唯一性定理 ) 若满足下列条件: ⅰ> 函数),(y x F 在以),(000y x P 为内点的某一区域D 2 R ?上连续 ; ⅱ> ),(00y x F 0=; ( 通常称这一条件为初始条件 ) ⅲ> 在D 内存在连续的偏导数),(y x F y ; ⅳ> ),(00y x F y 0=/. 则在点0P 的某邻域 (0P )?D 内 , 方程0),(=y x F 唯一地确定一个定义在某区间 ) , (00αα+-x x 内的隐函数)(x f y =, 使得 ⑴ )(00y x f =,∈x ) , (00αα+-x x 时()∈)( , x f x (0P )且()0)( , ≡x f x F . ⑵ 函数)(x f 在区间) , (00αα+-x x 内连续 . ( 证 ) 四. 隐函数可微性定理: Th 2 设函数),(y x F 满足隐函数存在唯一性定理的条件 , 又设在D 内),(y x F x 存在且连续 . 则隐函数)(x f y =在区间) , (00αα+-x x 内可导 , 且

第十八章隐函数定理及其应用

第十八章 隐函数定理及其应用 一、证明题 1.证明:设方程F(x,y)=0所确定的隐函数y=f(x)具有二阶导数,则当 时,有 2.设tgx y u =,x sin y v =.证明:当2x 0π<<,y>0时,u,v 可以用来作为曲线坐标;解出x,y 作为u,v 的函数;画出xy 平面上u=1,v=2所对应的坐标曲线;计算 ()()y ,x v ,u ??和()() v ,u y ,x ??并验证它们互为倒数. 3.将以下式子中的(x,y,z)变换成球面从标()?θ,,r 的形式: 2 221z u y u x u u ??? ????+???? ????+??? ????=?, 2222222z u y u x u u ??+??+??=?. 4.证明对任意常数ρ,?,球面2222z y x ρ=++与锥面2 222z tg y x ??=+是正交的. 5.试证明:函数()y ,x F 在点()000y ,x P 的梯度恰好是F 的等值线在点P 0的法向量(设F 有连续一阶偏导数). 6.证明:在n 个正数的和为定值条件 x 1+x 2+x 3+…+x n =a 下,这n 个正数的乘积x 1x 2x 3…x n 的最大值为n n h a .并由此结果推出n 个正数的几何中值不大于算术中值. ≤????n n 21x x x n x x x n 21+???++ 二、计算题 1.方程 能否在原点的某邻域内确定隐函数 或 . 2.方程 在点(0,1,1)的某邻域内能否确定出一个变量为另外两个变量的函数. 3.求下列方程所确定的隐函数的偏导数: (1)x+y+z= ,求Z 对x,y 的一阶与二阶偏导数; (2)F(x,x+y,x+y+z)=0,求 , 和 .

中值定理构造辅助函数.docx

微分中值定理证明中辅助函数的构造 1原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数, 主要思想分为四点:(1)将要证的结论中的§换成兀;(2)通过恒等变形将结论化为易消 除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取 积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数F ⑴. 例1:证明柯西中值定理. 分析:在柯西中值定理的结论酬筒中令…,得 '先变形为衞喘伯")再两边同时积分得 尸(兀)=/(兀)_ /丫)一/"" g (x )为所求辅助函数. g@)-g ⑷ 例2:若兔,q , $,…,色是使得&)+” + ¥ +…+上、=0的实数.证明方程 2 3 n + \ 兔+q 无+匕2兀2 +…+匕“"=0在(0, 1)内至少有一实根. 证: 由于[*(&)+。]兀 + 偽〒 ++ a n x n )dx = a^x-^ — x 1 +—x 3 +??? + -^—兀"° +C 」 ? 2 3 n +1 并且这一积分结果与题设条件和要证明的结论有联系,所以设 F (x ) = a {}x + — x 2 + —x 3 +??? + -^-x"J (取C = 0 ),贝!J 2 3 n + 1 1) F (x )在[0, 1]上连续 2) F (x )在(0, 1)内可导 3) F (0)=0, 尸⑴二勺+色+纟+…+厶二。 2 3 n + \ 故尸(尢)满足罗尔定理的条件,由罗尔定理,存在e (0,1)使F@) = 0,即 (。()兀+号■兀2 + 守兀‘+…+上穿兀处):=卍=0亦即€z 0+a,^ + ^2 +???+qg" = 0? /(b)-/⑺) g(b)-g(a) g(x) = /(Q + C ,令 C = 0 /(毎 g(坍 /(>

数学分析第十八章隐函数定理及其应用复习

一、( 隐函数存在唯一性定理 ) 若满足下列条件: ⅰ> 函数在以为内点的某一区域D上连续 ; ⅱ> ; ( 通常称这一条件为初始条件 ) ⅲ> 在D内存在连续的偏导数; ⅳ> . 则在点的某邻域()D内 , 方程唯一地确定一个定义在 某区间内的隐函数, 使得 ⑴,时()且 . ⑵函数在区间内连续 . 二、隐函数可微性定理: Th 2 设函数满足隐函数存在唯一性定理的条件 , 又设在D内 存在且连续 . 则隐函数在区间内可导 , 且 . ( 证 )

例1 验证方程 在点 满足隐函数存在唯一性定 理的条件 , 并求隐函数的导数 . P149例1 例2 . 其中 为由方程 所确定的隐函 数 . 求 . P150例2 ( 仿 ) 例3 ( 反函数存在性及其导数 ) 设函数 在点 的某邻域内有连续的导函数 , 且 , . 用隐函数定理验证存在反函数 , 并求反函数的导数(后面的例题P162) . 0),() ,( (iv);, (iii));0(),,,( 0,),,,( (ii); ),,,(),,,(),,,( (i) : 00000000400000≠??===?P v u G F J G F V v u y x G v u y x F R V v u y x P v u y x G v u y x F 具有一阶连续偏导数内在初始条件内连续为内点的区域在以和若满足下列条件隐函数组定理)( 18.4 定理 性质三:雅可比

. ) ,() ,(1 ,),(),(1, ),() ,(1 ,),(),(1 ,)()),(),,0y u G F J y v v y G F J y u x u G F J x v v x G F J x u Q U y x g y ??- =????-=????- =????-=??且内有一阶连续偏导数在 并求其偏导数数附近能确定怎样的隐函在讨论方程组 ,)2,1,1,2( ,01),,,(,0),,,( 0222P xy v u v u y x G y x v u v u y x F ?? ?=+-+-==--+= 例1 ; )2,1,1,2(,1,1 ,, ,2,2,1,2 3 ; 0)()( 2 ;)2,1,1,2(, 1 0o 00o 0o 的邻域内连续在的邻域内连续在解:P G G x G y G v F u F F x F P G P F P G F v u y x v u y x =-=-=-===-=-=== : 6! 2!2! 4)2,1,1,2(4 240o 个雅克比式处在=?=C P .01 144 ),() ,(, 0,61 14 2 ),() ,( 00 0=--=??≠=-==??P P v u v u P v x G F G G F F v u G F 仅 . ,,,)2,1,1,2(0变量的隐函数变量可以作为其余两个任何两个的隐函数外难以确定为附近除在u y v x P ?? ? ??===.cos , sin sin , cos sin ),,(),,(θ?θ?θ?θr z r y r x r z y x 之间的变换公式 与球坐标讨论直角坐标 例4 几何应用 平面曲线的切线和法线; .0))(,())(,( ), () ,() ,( :000000000000=-+--- =-y y y x F x x y x F x x y x F y x F y y y x y x 即则切线方程

隐函数定理及其在几何上的应用

隐函数定理及其在几何上的应用 【摘要】 隐函数(组)是函数关系的另一种表现形式。讨论隐函数(组)的存在性、连续性与可微性,是深刻了解这类函数本身的需要。同时在求以隐函数(组)的形式为方程出现的曲线和曲面的切线或切平面时,都要用到隐函数(组)的微分法。 【关键词】隐函数存在惟一性定理、隐函数可微性定理 、隐函数组定理、隐函数定理在几何上的应用 1 定理及证明 隐函数存在惟一性定理 设方程 ()0,=y x F 中的函数()y x F ,满足以下四个条件: (i) 在以 为内点的某一区域D 上连续 ; (ii) ; (初始条件 ); (iii) 在D 内存在连续的偏导数 ; (iv) . 则在点0P 的某邻域()D P U ∈0内 , 方程()y x F ,=0唯一地确定一个定义 在某区间()αα+-∈00,x x x 内的隐函数()x f y =,使得 ⑴ 当()00y x f = ,()αα+-∈00,x x x 时, 有(())()0,P U x f x ∈且()()0,≡x f x F ; ⑵ 函数()x f 在区间()αα+-∈00,x x x 内连续。 证 首先证明隐函数的存在与惟一性. 证明过程归结起来有以下四个步骤

(a) “一点正, 一片正 ” 由条件 (iv), 不妨设()0,00>y x F y 因为()y x F y ,连续,所以根据保号性0>?β 使得()0,>y x F y ,()S y x ∈, 其中[][]D y y x x S ?+-?+-=ββββ0000,, (b) “正、负上下分 ” 因()0,>y x F y ,()S y x ∈,, 故[]ββ+-∈?00,x x x ,把()y x F ,看做y 的函数, 它在[]ββ+-00,y y 上严格递增,且连续(据条件 (i)) 特别对于函数()y x F ,0 ,由条件 可知 ()0,00<-βy x F ,()0,00>+βy x F (c) “同号两边伸” 因为()β-0,y x F ,()β+0,y x F 关于x 连续, 故由(b )的结论,根据保号性α?,()βα≤<0,使得 ()β-0,y x F <0,()β+0,y x F >0,()αα+-∈00,x x x (a) 一点正,一片正 ++++++++++++++++++++++++++++++++++++++++ x 0x 0 x β-0x β+?0y 0y β -0 y β+y S O (b) 正、负上下分 + ++? ? ?_ _ _ + _ 0 x y O 0x β -0x β+0x 0y β +0y β -0 y (c) 同号两边伸 ? ++++ - - - - x 0 x y 0 y O 0x α -0x α+0-y β 0y β+? ?

多元函数

多元函数中值定理的研究 摘要:微分中值定理是研究函数的有力工具.本文总结了多元函数的微分中值定理,包括二元函数的罗尔中值定理、二元函数的拉格朗日中值定理、二元函数的柯西中值定理、二元函数的泰勒中值定理.并用二元函数柯西中值定理的证明推导出了二元函数的罗尔中值定理、拉格朗日中值定理、洛必达法则,进一步介绍了有限多个多元函数的中值定理,多元函数的中值定理的不等式形式、多元函数的高阶微分中值定理,给出了相应的实例. 关键字: 二元函数;微分中值定理.

The Study on Mean Value Theorem for Multivariate Functions Abstract:The Differential Intermediate Value Theorem is a powerful tool for study of function. In this paper, Multivariate function differential Intermediate Value Theorem, including the dual function of the Roll Mean Value Theorem, the dual function of the Lagrange Mean Value Theorem, the dual function of the Cauchy’s Mean Value Theorem, the dual function of the Taylor’s Mean Value Theorem, is summarized, and the dual function of the Roll Mean Value Theorem, Lagrange Mean Value Theorem, the L’Hospital Law was derived by the Cauchy’s Mean Value Theorem’s proof. The Multivariate function differential Intermediate Value Theorem, including Multivariate function of the Mean Value Theorem inequality the form of high-end Multivariate function differential Intermediate Value Theorem, is introduced in this paper ,and the corresponding application is given. Key words: Multivariate function; Differential Mean Value Theorem

相关主题
文本预览
相关文档 最新文档