当前位置:文档之家› 三次函数的对称中心与切线条数

三次函数的对称中心与切线条数

三次函数的对称中心与切线条数
三次函数的对称中心与切线条数

三次函数的对称中心与切线条数问题

证明:三次函数32()(0)f x ax bx cx d a =+++≠一定有对称中心。 提示:可根据奇函数图像的平移得到。

分析:我们知道奇函数的图像关于原点对称,所以要证结论成立,只需证任意一个三次函数都可以由关于原点对称的三次函数(奇函数)平移得来,也即任意的三次函数都可以写成3()()y a x m k x m n =-+-+的形式,因为上述函数图像可以看成奇函数3y ax kx =+按向量(,)m n 平移之后的结果,一定是中心对称图形 展开得:32233(3)()y ax amx am k x n km am =-+++--

与32y ax bx cx d =+++比较系数得:23

33am b am k c n km am d

-=??

+=??--=?

容易发现,上述方程组一定是有解的,解得:3b m a

=- 故三次函数一定是中心对称图形,且对称中心为(,())33b b f a a

-

- 问题:过三次函数图像上一点00(,)P x y 能作三次函数图像多少条切线?

分析:由于三次函数有对称中心,可假设其对称中心在原点,设3()f x ax bx =+,则2()3f x ax b '=+ 设11(,)Q x y 为函数图像上任意一点,则以Q 为切点的切线为21111(3)()y y ax bx x x -=+-

将点00(,)P x y 代入得:201101(3)()y y ax b x x -=+-,即3

320

011101()(3)()ax bx ax bx ax b x x +-+=+- 整理得:3231010

230x x x x -+=,问题转化为关于1x 的方程323

1010230x x x x -+=有几个实根的问题 为了看起来习惯,我们将上述方程中的1x 换成x ,即323

00

230x x x x -+= ① 显然当00x =时,方程①即为30x =,解得:0x =,故过(0,0)能作函数图像的一条切线

当00x ≠时,由方程①解得:0x x =或02x

-,故过00(,)x y 能作函数图像的两条切线

问题:过三次函数图像外任意一点能作三次函数图像多少条切线?

分析:根据三次函数中心对称的特征,我们知道一定可以将函数图像平移至关于原点对称,而本问题的结论显然只与点P 与三次函数图像的相对位置有关,故可简单地考虑三次函数对称中心在坐标原点的情形,设三次函数的解析式为3()f x ax bx =+,并且不妨设0a >,这两个假设并不会影响本结论的一般性。 设点00(,)P x y 为平面上任意一点,易求得函数在坐标原点(对称中心)处的切线方程为y bx = 设3111(,)x ax bx +为()y f x =上任意一点,则该点处的切线方程为:321111()(3)()y ax bx ax b x x -+=+- 将点P 代入得:32011101()(3)()y ax bx ax b x x -+=+-

问题转化为讨论方程3200()(3)()y ax bx ax b x x -+=+-有几个解的问题 将上述方程化简得:32000230ax ax x y bx -?+-= 令32000()23g x ax ax x y bx =-?+-,则:0()6()g x ax x x '=-

注意到000()()g x y f x =-,00(0)g y bx =-,下面讨论函数()g x 的零点个数

(i )若0()(0)0g x g ?<,则()g x 有三个零点,即过点00(,)P x y 能作函数图像三条切线

此种情况下点P 位于图中的区域I ,也即夹在三次函数对称中心处切线和三次函数图像之间的区域

)

(ii )若0()(0)0g x g ?=,则要分00x =和00x ≠讨论

当00x =时,显然2()60g x ax '=≥,故()g x 在R 上递增,()g x 仅有一个零点 此时P 恰为三次函数的对称中心,只能作函数图像的一条切线

当00x ≠时,由0()(0)0g x g ?=知()g x 有两个零点,即过点00(,)P x y 能作函数图像两条切线 同时,由000()()0g x y f x =-=或00(0)0g y bx =-=得:00()y f x =或00y bx =

此种情况下点P 位于三次函数对称中心处的切线上,或者三次函数图像上且不与三次函数的对称中心重合 (iii )若0()(0)0g x g ?>,()g x 仅有一个零点,即过点00(,)P x y 能作函数图像一条切线

此种情况下点P 位于图中的区域II ,也就是同时处在三次函数对称中心处切线和三次函数图像之上或同时 位于两者下方的区域

)

至此,过平面上任意一点处作三次函数切线条数的问题已经完全解决了,点P 所处位置与过该点能作三次 函数图像切线条数示意图如下:

1条

函数的对称性

函数的对称性 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角函数的对称性,因而考查的频率一直比较高。 一、对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 2、常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为a b x 2-=。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x 与y=-x 均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y 轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0)是它的对称中心,2π π+=k x 是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x ,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x ,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,)0,2(ππ+k 是它的对称中心。 (11)正切函数:不是轴对称,但是是中心对称,其中)0,2(π k 是它的对称中心, 容易犯错误的是可能有的同学会误以为对称中心只是(kπ,0)。 (12)对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能误以为最值处是它的对称轴。 (13)三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。

二次函数的对称变换

二次函数的对称变换 学习目标:1.掌握二次函数关于x轴、y轴、原点对称的解析式的确定。 2.会研究二次函数关于某条直线,某个点的对称变换。 一、课前练习 1.点(1,-4)关于x轴对称点坐标,关于y轴对称点,关于原点对称。 2.点(x,y)关于x轴对称点坐标,关于y轴对称点,关于原点对称。 二、新课探究 类型一:二次函数关于x轴、y轴、原点的对称变换 问题一:画出y=x2-2x-3的草图方法: 问题二:画出y=x2-2x-3关于x轴对称的图像 方法: 问题三:请确定新抛物线的解析式 方法一:一般式 方法二:顶点式 问题四:观察两个解析式的区别与联系 角度一:一般式 角度二:顶点式

问题五:请用同样的方法研究二次函数y=x2-2x-3关于y轴和原点的对称变换 总结:一般式y=ax2+bx+c (a≠0)关于x轴对称的解析式为: 关于y轴对称的解析式为: 关于原点对称的解析式为: 顶点式:y=a(x-h)2+k(a≠0) 关于x轴对称的解析式为: 关于y轴对称的解析式为: 关于原点对称的解析式为: 练习:1.y=2x2-3x关于y轴对称的解析式为, 2.y=-(x-3)2+3关于原点对称的解析式为, 3已知y=-2x2+x+1与y=ax2+bx+c关于x轴对称,则a= b= c= 类型二:二次函数关于某条直线或某个点的对称变换(给个开口向上的图像) 问题一:选取关于某条直线对称 问题二:选取关于某一点对称

总结:研究对称变换的方法 二次函数图象的对称 二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称 2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2 y a x h k =---; 2. 关于y 轴对称 2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2 y a x h k =++; 3. 关于原点对称 2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°) 2y a x b x c =++关于顶点对称后,得到的解析式是2 2 2b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+. 5. 关于点()m n , 对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()2 22y a x h m n k =-+-+- 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

三次函数的对称中心与切线条数

三次函数的对称中心与切线条数问题 证明:三次函数32()(0)f x ax bx cx d a =+++≠一定有对称中心。 提示:可根据奇函数图像的平移得到。 分析:我们知道奇函数的图像关于原点对称,所以要证结论成立,只需证任意一个三次函数都可以由关于原点对称的三次函数(奇函数)平移得来,也即任意的三次函数都可以写成3()()y a x m k x m n =-+-+的形式,因为上述函数图像可以看成奇函数3y ax kx =+按向量(,)m n 平移之后的结果,一定是中心对称图形 展开得:32233(3)()y ax amx am k x n km am =-+++-- 与32y ax bx cx d =+++比较系数得:23 33am b am k c n km am d -=?? +=??--=? 容易发现,上述方程组一定是有解的,解得:3b m a =- 故三次函数一定是中心对称图形,且对称中心为(,())33b b f a a - - 问题:过三次函数图像上一点00(,)P x y 能作三次函数图像多少条切线? 分析:由于三次函数有对称中心,可假设其对称中心在原点,设3()f x ax bx =+,则2()3f x ax b '=+ 设11(,)Q x y 为函数图像上任意一点,则以Q 为切点的切线为21111(3)()y y ax bx x x -=+- 将点00(,)P x y 代入得:201101(3)()y y ax b x x -=+-,即3 320 011101()(3)()ax bx ax bx ax b x x +-+=+- 整理得:3231010 230x x x x -+=,问题转化为关于1x 的方程323 1010230x x x x -+=有几个实根的问题 为了看起来习惯,我们将上述方程中的1x 换成x ,即323 00 230x x x x -+= ① 显然当00x =时,方程①即为30x =,解得:0x =,故过(0,0)能作函数图像的一条切线 当00x ≠时,由方程①解得:0x x =或02x -,故过00(,)x y 能作函数图像的两条切线 问题:过三次函数图像外任意一点能作三次函数图像多少条切线? 分析:根据三次函数中心对称的特征,我们知道一定可以将函数图像平移至关于原点对称,而本问题的结论显然只与点P 与三次函数图像的相对位置有关,故可简单地考虑三次函数对称中心在坐标原点的情形,设三次函数的解析式为3()f x ax bx =+,并且不妨设0a >,这两个假设并不会影响本结论的一般性。 设点00(,)P x y 为平面上任意一点,易求得函数在坐标原点(对称中心)处的切线方程为y bx = 设3111(,)x ax bx +为()y f x =上任意一点,则该点处的切线方程为:321111()(3)()y ax bx ax b x x -+=+- 将点P 代入得:32011101()(3)()y ax bx ax b x x -+=+- 问题转化为讨论方程3200()(3)()y ax bx ax b x x -+=+-有几个解的问题 将上述方程化简得:32000230ax ax x y bx -?+-= 令32000()23g x ax ax x y bx =-?+-,则:0()6()g x ax x x '=- 注意到000()()g x y f x =-,00(0)g y bx =-,下面讨论函数()g x 的零点个数

二次函数对称性的专题复习

二次函数图象对称性的应用 一、几个重要结论: 1、抛物线的对称轴是直线__________。 2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。 3、若抛物线与轴的两个交点是A(,0),B(,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。 4、若已知抛物线与轴相交的其中一个交点是A(,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A、B两点处在对称轴的左右情况而定,在应用时要把图画出)。 5、若抛物线与轴的两个交点是B(,0),C(,0),其顶点是点A,则?ABC是____三角形,且?ABC的外接圆与内切圆的圆心都在抛物线的_______上。 二、在解题中的应用: 例1已知二次函数的图象经过A(-1,0)、B(3,0),且函数有最小值-8,试求二次函数的解析式。 例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足 . (1)求抛物线的解析式; (2)设点P(,),Q(,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。 例3已知抛物线经过点A(-2,7)、B(6,7)、C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。 例4已知抛物线的顶点A在直线上。 (1)求抛物线顶点的坐标; (2)抛物线与轴交于B、C两点,求B、C两点的坐标; (3)求?ABC的外接圆的面积。

y O x -1 -2 1 2 - 3 3 -1 1 2 -2 二次函数专题训练——对称性与增减性 一、选择 1、若二次函数 ,当x 取 , ( ≠ )时,函数值相等,则 当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c 2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )( 2 1 ,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2 (1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段AB 的长度为( ) A.1 B.2 C.3 D.4 4、抛物线c bx x y ++-=2 的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-x C. 4-x D.3-x 5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0; 那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m 6、抛物线y=ax 2 +2ax+a 2 +2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .(0.5,0) B .(1,0) C .(2,0) D .(3,0) 7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( ) A .1个 B .2个 C .3个 D .4个 8、若二次函数2 y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x + 时,函数值为( ) A.a c + B.a c - C.c - D.c 9、二次函数 c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。 10、已知关于x 的方程32 =++c bx ax 的一个根为1x =2,且二次函数c bx ax y ++=2 的对称轴直线是x =2,则抛物线的顶点坐标是( ) A .(2,-3 ) B .(2,1) C .(2,3) D .(3,2) 11、已知函数215 322 y x x =- --,设自变量的值分别为x 1,x 2,x 3,且-3< x 1< x 2

09:三次函数图像的切线

高考总复习09:三次函数图像的切线 1.(1)求平行于直线910x y -+=,且与曲线3231y x x =+-相切的直线方程. (2)求垂直于直线320x y -+=,且与曲线32 31y x x =+-相切的直线方程. 2.(1)求函数3()2f x x =的图像在点(1,2)P 处的切线l 方程; (2)设函数3 ()2f x x =的图像为C ,求曲线C 与其在点(1,2)P 处的切线l 的所有交点坐标. 3.(1)求函数3()2f x x =的图像经过点(1,2)P 的切线方程. (2)求函数3 ()2f x x =的图像经过点(1,10)P 的切线方程. 4.已知直线y x =是函数32()31f x x x ax =-+-图像的一条切线,求实数a 的值. 5.已知0a >,且过点(,)P a b 可作函数3()f x x x =-图像的三条切线,证明:()a b f a -<<. 6.设函数3211()32 f x x ax bx c =-++(0)a >的图像C 在点(0,(0))P f 处的切线为1y =. (1)确定,b c 的值; (2)设曲线C 在1122(,()),(,())A x f x B x f x 处的切线都过(0,2)Q ,证明:若12x x ≠,则12'()'()f x f x ≠; (3)若过点(0,2)Q 可作曲线C 的三条不同切线,求a 的取值范围. 7.已知函数3211()32f x x ax bx = ++在区间[11)-,,(13],内各有一个极值点. (1)求24a b -的最大值; (2)当248a b -=时,设曲线C :()y f x =在点(1 (1))A f ,处的切线l 穿过曲线C (穿过是指:动点在点A 附近沿曲线C 运动,当经过点A 时,从l 的一侧进入另一侧),求()f x 的表达式. 8.由坐标原点(0,0)O 向曲线x x x y +-=233引切线,切于不同于点O 的点111(, )P x y ,再由1P 引切线切于不同于1P 的点222(,)P x y ,如此继续下去……,得到点(,)n n n P x y ,求1n x +与n x 的关系,及n x 的表达式.

1三次函数切线专题

、过三次函数上一点的切线问题。 3 2 设点p 为三次函数f (x ) ax bx ex d (a 0)图象上任一点,则过点P 一定有直线与y f (x ) 的图象相切。若点 P 为三次函数图象的对称中心,则过点 P 有且只有一条切线;若点 P 不是三次函数图象 的对称中心,则过点 P 有两条不同的切线。 证明 设P (x i ,y i ) 过点P 的切线可以分为两类。 1、 P 为切点 k 1 f /(x 1) 3ax 12 2bx 1 e , 2 切线方程为:y y_! (3ax 1 2bx 1 e)(x x 1) f (x )图象的切线,切于另一点 Q ( X 2, y 2) 当X 1 K —时,两切线重合,所以过点 P 有且只有一条切 线。 3a 当X 1 —时, 3a k 1 k 2,所以过点 P 有两条不同的切线。 其切线方程为: y y 1 (3ax 12 2bx 1 e)(x X 1) 3 2 1 b 2 y y 1 (— ax 1 4 bx 1 2 e)(x X 1) 4a 由上可得下面结论: 过三次函数 f (X ) 3 , 2 ax bx ex d (a 0)上异于对称中心的任一点 卩1(人,%)作y f (x )图 象的切 线,切于另一点P 2(X 2,y 2),过P 2(X 2,y 2)作y f (x )图象的切线切于P 3(X 3,y 3),如此继续,得到点 列 三次函数切线问题 k 2 y2 % 3 ax 2 3 ax bx ; bx, ex 2 ex-! X 2 ax 2 ax 1 又 k 2 f/ (X 2 ) 2 3ax 2 2bx 2 e ax 2 2 ax 1 X 2 2 ax 1 bx 1 bx 2 即 (X 2 X 1 )(2x 2 X 」) 0 x 2 a 得 3 2 1 b 2 k 2 ax 1 — bx 1 e 4 2 4a 2 讨论:当 k 1 k 2 时,3ax 1 2bx 1 e e 3ax 2 2 2bx 2 e 1 b X 1 代入( 1 )式 2 2a 3 2 1 b 2 e ,得 X 1 b —ax 1 bx 1 4 2 4a 3a P 不是切点,过P 点作y 2 ax 1x 2 2 bx 1 bx 2 e (1)

三次函数性质总结

三次函数性质的探索 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在 最大值与最小值,在某一闭区间取得最大值与最小值.那么,是什么决定函数的单调性呢? 利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 其中运用的较多的一次函数不等式性质是: 在上恒成立的充要条件 接着,我们同样学习了二次函数, 利用已学知识归纳得出:当时(如图1) ,在对称轴的左侧单调递减、右侧单调递增, 对称轴 上取得最小值; 当时(图2) ,在对称轴的左侧单调递增、右侧单调递减, 对称轴 上取得最大值. 在某一区间取得最大值与最小值. 其中决定函数的开口方向,同时决定对称轴,决定函数与轴相交的位置. 总结:一次函数只有一个单调性,二次函数有两个单调性,那么三次函数是否就有三个单调性呢? 三次函数专题 一、定义 定义1 形如的函数,称为“三次函数”(从函数解析式的结构上命名)。 定义 2 三次函数的导数 ,把叫做三次函数导函数的判 别式。 由于三次函数的导函数是二次函数,而二次函数是高中数学中的重要内容,所以三次函数的问题,已经成为高考命题的一个新的热点和亮点。 系列探究1: 从最简单的三次函数开始 反思1 :三次函数的相关性质呢? 反思2 :三次函数的相关性质呢? x y O

反思3 :三次函数的相关性质呢? 例题 1.(2012天津理4) 函数在区间内的零点个数是( ) (A)0 (B)1 (C)2 (D)3 探究一般三次函数的性质: 先求导 1、单调性: (1 )若,此时函数() f x在R上是增函数; (2 )若 ,令两根为 12 ,x x 且, 则 在 上单调递增,在上单调递减。 导函数 图 象 极值点 个数 2 0 2 0 2、零点 (1) 若0 3 2≤ -ac b,则恰有一个实根; (2) 若,且,则恰有一个实根; (3) 若,且,则有两个不相等的实根; (4) 若,且,则有三个不相等的实根. 说明: (1)(2) 有一个实根的充要条件是曲线与轴只相交一次,即在上为单调函数或两极值 同号. x x1x 2 x0x x1x2 x x0 x

应用导数研究三次函数图像的对称性及切线条数

应用导数研究三次函数图像的对称性及切线条数 [教学目标] 知识与技能:(1)掌握三次函数对称中心的求法;(2)掌握三次函数切线方程的求法;(3) 了解过一点作三次函数图像切线条数的结论. 过程与方法:(1)应用导数研究三次函数的方法;(2)由特殊实例猜想一般结论,然后证 明的思想;(3)利用函数对称性,多种情形通过分析减少讨论种类. 情感与态度:(1)通过自主深入探究,增强学生学生学习数学的兴趣,独立思考的能力; (2)让学生感数学结论的完整美,数形结合的统一美. [教学重点]三次函数图像的对称中心、切线条数的探究,三次函数切线方程的求法. [教学难点]特殊到一般的归纳方法,切线条数的判断方法. [教学方法]探究式教学. [教学手段]多媒体辅助教学. [教学过程] 1 三次函数图像的对称性 1.1 创设情景,提出问题 三次函数3()f x x =是奇函数,它的图像的对称中心是(0,0)(几何画板展示),那么一般的三次函数是否有对称中心呢? 观察函数32()321g x x x x =-++的图像(几何画板展示),它也有对称中心(1,1),那么怎样求三次函数的对称中心? 1.2 回归通法,探究发现 研究三次函数我们最常用的就是通过研究其导函数来研究它本身,我们分别画出(),()f x g x 的导函数图像(几何画板展示),和原函数的对称性联系起来,通过归纳得到,三次函数有唯一的对称中心,对称中心的横坐标与其导函数顶点的横坐标相同. 1.3 追根索源,理解本质 为什么会有这样的结论?因为三次函数在两个相互对称的点处的切线是平行的(几何画板展示),所以对于任意三次函数32()(0)f x ax bx cx d a =+++≠,它的图像有唯一的对称中心(,())33b b f a a --.i 2 过一点作三次函数图像切线条数的探究 2.1 因势利导,引出问题 三次函数过对称中心(,())33b b f a a - -的切线是如何的?通过实例来探究.32()321g x x x x =-++在对称中心(1,1)处的切线方程为20x y +-=,这和我们以前形成的切线的印象不同,但它就是三次函数的切线,因为它符合切线的定义.我们注意这样的切线只有一条,那么当这一点在别的地方,切线有多少条? 2.2 恰当分类,实例探索 因为三次函数是中心对称图形,因此对称部分的情形应该是一样的,过对称中心的切线和三次函数的图像把平面分成四部分,所以上下是一种情形,左右是一种情形,三次函数图

三次函数的对称性

三次函数的对称性 二次函数是轴对称图形,如)0()(2≠++=a c bx ax x f 的)对称轴方程式是a b x 2-=。 三次函数cx ax x f +=3)(是奇函数,其图象关于)0,0(对称,三次函数d bx ax x f ++=3)(的图象关于点),0(d 对称,那么对于一般的三次函数)0()(23≠+++=a d cx bx ax x f 有没有对称中心呢?答案是肯定的,有对称中心,其对称中心是))3(,3(a b f a b -- 。下面给出证明。 证明1:二次函数通过配方可以消去一次项。类似得,三次函数通过配方可以消去二次项。 = ++=cx bx ax x f 23)(d cx a b a x a b a a b x a b x a b x a ++--+++=323223)3()3(3])3()3(333[ d a b a x c a b a a b x a +---+=323)3(])3(3[)3( )3]()3(3[)3()3]()3(3[)3(2323a b c a b a d a b a a b x c a b a a b x a -++-+--+ = 而)3()3()3()3]()3(3[)3(2323a b c a b b d a b a a b c a b a d a b a -++-=-++-)3(a b f -= )0()(23≠+++=a d cx bx ax x f 的图象关于))3(,3(a b f a b -- 对称。 证明2:设函数)0()(23≠+++=a d cx bx ax x f 的对称中心为(m ,n )。 按向量),(n m --=将函数的图象平移,则所得函数n m x f y -+=)(是奇函数,所以 02)()(=-+-++n m x f m x f 化简得: 上式对恒成立,故 ,得 ,

三次函数的对称性中心问题

三次函数的对称性中心问题

而)3()3()3()3]()3( 3[) 3(2323 a b c a b b d a b a a b c a b a d a b a -++-=-++-)3(a b f -= ) 0()(23≠+++=a d cx bx ax x f 的图象关于))3(,3(a b f a b --对称。 证明3:设函数) 0()(23 ≠+++=a d cx bx ax x f 的对称中心为 (m ,n )。 按向量),(a n m --=将函数的图象平移,则所得函数n m x f y -+=)(是奇函数,所以 2)()(=-+-++n m x f m x f +++++++d m x c m x b m x a )()()(23d m x c m x b m x a ++-++-++-)()()(23-2n =0 化简得: 上式对 恒成立,故 ???=-+++=+0 032 3n d cm bm am b am 得 , 。 所以,函数的对称中心是 ( )。 定理3:若三次函数 有极值,则它的对称中心 是两个极值点的中点

证明:不妨设0232 =++c bx ax 为)(x f 的导方程,判别式01242 >-=?ac b ,设)(x f 两极值点为))(,()),(,(2 211x f x B x f x A [][] a c x x a b x x d x x c x x x x b x x x x x x a d x x c x x b x x a d cx bx ax d cx bx ax x f x f 3,322)(2)(3)()(2)()()()()(212121212212122121212 22 13 23 122 2321213121=-=++++-++-++=++++++=+++++++=+∴ 又 d a b c a b b a b a d a b c a c b a b b a c a b a a b a x f x f 2)3(2)3(2)3(22)32(32323)32(332)()(232 3 21+-+-+-=+-+-??? ??-+--?? ? ??-=+∴ )3(2)(21a b f x x f -=+∴ 所以此时的对称中心是两个极值点的中点,同时也是函数)(x f 的拐点。 定理4:)(x f y =是可导函数,若)(x f y =的图像关于点),(n m A 对称,则)('x f y =的图像关于直线m x =对称 证明:)(x f y =的图像关于),(n m A 对称,则n x m f x f 2)2()(=-+ 由x x f x x f x f x ?-?+=→?) ()()(lim 0 ' )()()(lim )()(lim ) (2)(2lim )2()2(lim )2('0000'x f x x f x x f x x x f x f x x f n x x f n x x m f x x m f x m f x x x x =?--?-=??--=?+-?--=?--?+-=-→?→?→?→?

三次函数切线问题

三次函数切线问题 【探究拓展】 探究1:切线的辩证定义 设Q 为曲线C 上不同于P 的一点,这时,直线PQ 称为曲线的割线。随着点Q 沿着曲线C 向点P 运动,割线PQ 在点P 附近越来越逼近曲线C 。当点Q 无限逼近点P 时,直线PQ 最终就成为在点P 处最逼近曲线的直线l ,这条直线也称为曲线在P 点处的切线。 探究2:填表:曲线在P 点附近的局部图像反映出如下特点 在运动中: 探究3:切线问题的辩证策略 T n A 1 A

例1:若直线y x =是曲线3 23y x x ax =-+的切线,则a = . (零点法) ↑ y x =是曲线323y x x ax =-+相切 x a x x y )1(323-+-=与x 轴相 切 ↓ ↑ 联立()323 2 3103y x x x a x y x x ax =??-+-=? =-+?有重根→新联立?? ? -+-==x a x x y y )1(30 2 3 ↓ (重根法) 变式1:(2020年)曲线px x y +=3 与q y -=相切,求证32 032p q ???? += ? ????? 变式2:方程3 0x px q ++=有几个实根?

探究4:切线问题的辩证思考: 联系——数形结合、函数与方程、转化与化归 发展——量变与质变、运动观点 探究5:辩证思维的强化延伸 由原点向曲线x x x y +-=233引切线,切于不同于点O 的点()1 1 1 , P x y , 再由1 P 引切线切于不同于1 P 的点()2 2 2 , P x y ,如此继续下去……,得点到 (){}, n n n P x y . (1)求1 x ; (2)求1与n n x x +的关系; (3)点列{}n P 有何特点? 拓展1:若直线y x =是曲线3 231y x x ax =-+-的切线,则 a = 拓展2:直线y kx m =+对一切m ∈R 与曲线3 26910y x x x =-+-有且只有一个交 点,求k 的取值范围,并尝试一下,将结论推广到任意三次曲线的情形,此外能否从运动变化的观点阐述上述结论的几何意义.

三次函数切线专题

三次函数切线专题

过点P 一定有直线与)(x f y =图象相切。 (1)若,30a b x - =则过点P 恰有一条切线; (2) 若 ,30a b x -≠且)3()(0a b g x g -0>,则过点P 恰有一条切线; (3) 若,30a b x -≠且)3()(0a b g x g -=0,则过点P 有两条不同的切线; (4)若,30a b x - ≠且)3()(0a b g x g -0<,则过点P 有三条不同的切线。 其中).)(()()(0/0x x x f x f y x g -+-= 证明 设过点P 作直线与)(x f y =图象相切于点),,(11y x Q 则切线方程为 ),)(23(11211x x c bx ax y y -++=- 把点),(00y x P 代入得: 02)3(2001021031=--+--+cx d y x bx x ax b ax , 设.2)3(2)(000203cx d y x bx x ax b ax x g --+--+= ,2)3(26)(002/bx x ax b ax x g --+= ,)3(448)3(420020b ax abx ax b +=+-=? 令,0)(/=x g 则.3,0a b x x x -== 因为0)(=x g 恰有一个实根的充要条件是曲线)(x g y =与X 轴只相交一次,即)(x g y =在R 上为单调函数或两极值同号,所以 ,30a b x -=或,30a b x -≠且)3()(0a b g x g -0>时,过点P 恰有一条切线。 0)(=x g 有两个不同实根的充要条件是曲线)(x g y =与X 轴有 两个公共点且其中之一为切点,所以 ,30a b x -≠且)3()(0a b g x g -=0时,过点P 有两条不同的切线。 )(=x g 有三个不同实根的充要条件是曲线)(x g y =与X 轴有

函数的对称性知识点讲解及典型习题分析

函数的对称性知识点讲解及典型习题分析 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连 续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角 函数的对称性,因而考查的频率一直比较高。 对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称, 该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的 中心对称,该点称为该函数的对称中心。 常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 a b x2。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0 )是它的对称中心,2kx是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不 会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,) 0,2 (k是它的对称中心。 (11 )正切函数:不是轴对称,但是是中心对称,其中)0,2 ( k是它的对称中心,容易犯错误的是可能有的同学会误以为对 称中心只是(kπ,0)。 对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能 误以为最值处是它的对称轴。 三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。 绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。 二、函数的对称性猜测: 具体函数特殊的对称性猜测 ①一个函数一般是不会关于x轴对称,这是由函数定义决定的,因为一个x不会对应两个y的值。但一个曲线是可能关于x 轴对称的。例1、判断曲线xy42 ②函数关于y轴对称例2、判断函数y=cos(sinx)的对称性。 ③函数关于原点对称例3、判断函数xxysin3 ④函数关于y=x对称例4 、判断函数x y1 ⑤函数关于y=-x对称例5 、判断函数x y4 总结为:设(x,y)为原曲线图像上任一点,如果(x,-y)也在图像上,则该曲线关于x轴对称;如果(-x,y)也在图像上,则该曲线关于y轴对称;如果(-x,-y)也在图像上,则该曲线关于原点对称;如果(y,x)也在图像上,则该曲线关 于y=x对称;如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。2、抽象函数的对称性猜测①轴对称 例6、如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。(任意取值代入例如x=0有f(1)=f(4),正中间 2.5,从而该函数关于x=2.5对称) 例7、如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称) 例8、如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)②中心对称 例9、如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)

三次函数图象的切线问题专练

三次函数图象的切线问题专练

————————————————————————————————作者:————————————————————————————————日期:

三次函数图象的切线问题专练 广西 王强芳 [问题] 一、 曲线在点P 处的切线方程 1 曲线33y x x =+在点(2,14)P --处的切线方程是 。 二、曲线经过点P 处的切线方程 2 已知曲线C :3()2f x x x =-+,则经过点(1,2)P 的曲线C 的切线方程 是 。 三、点P 不在曲线上的切线方程 3 已知曲线C :3()2f x x x =-+,试问:分别过点(1)(0,54)-,(2)(2,0), (3)16(,2)11 的曲线C 的切线有几条?如果是一条,写出切线的方向向量;如果是两条, 求两条切线之间的夹角;如果是三条,写出切线方程。 四、其它变形 4 已知曲线C :32()32f x x x x a =-++的一条切线方程为2y x =,则实数a 的值 等于 。 5 斜率为3的直线与曲线C :3y x =相切于P 点,并与曲线有另一个交点Q ,求P 、 Q 两点的坐标。 6 若方程330x x m --=有一个二重根,求方程的解集。 7 P 为曲线C :3y x =上一动点,若曲线在该点处的切线与曲线有另一交点Q ,求PQ 的中点的轨迹方程。 [答案与提示] 1 解:由'2()33f x x =+,得'(2)15f -=, 所以所求的切线方程为1415(2)y x +=+,即1516y x =+。 2 错解:由'2()31f x x =-,得'(1)2k f ==, 所以所求的切线方程为22(1)y x -=-,即2y x =。 错因剖析:此处所求的切线只说经过P 点,而没说P 点一定是切点,于是切线的斜率 k 与'(1)f 不一定相等。比如(如图)当02x π≤≤时,正弦曲线sin y x =在点P 处的切线

三次函数的对称中心问题

三次函数的对称中心问题 广州市第四中学高二3班 梁隽铭 指导教师 刘运科 对于三次函数()320y ax bx cx d a =+++≠,作出图象,经观察,发现其图象有四种形状: 可以发现,其图象具有中心对称性.如何考虑求出()320y ax bx cx d a =+++≠的图象 的对称中心坐标呢?下面是我的探究过程. 先考虑较简单的两个特殊情况: 一、求()30y ax cx a =+≠的图象对称中心坐标. 此特殊情况较简单.因()30y ax cx a =+≠是奇函数,故其对称中心坐标为()00O ,. 二、求()30y ax cx d ad =++≠的图象对称中心坐标. 此特殊情况也较简单.将3y ax cx =+的图象通过适当平移就可得到 ()30y ax cx d ad =++≠的图象.当0d >时,将3y ax cx =+的图象向上平移d 个单位长 度,就可得到()30y ax cx d ad =++≠的图象;当0d <时,将3y ax cx =+的图象向下平移d 个单位长度,就可得到()30y ax cx d ad =++≠的图象.因3y ax cx =+是奇函数,对称中心坐标为()00O ,,故()30y ax cx d ad =++≠的图象对称中心为()0P d ,. 上面两个特殊情况,主要是利用了奇函数的性质、平移的性质.有了上面两种情况 的铺垫,似乎求()320y ax bx cx d ab =+++≠的图象的对称中心坐标较容易了,其实不然.因()320y ax bx cx d ab =+++≠是非奇非偶函数,无法从奇偶性方面找到突破口.下面先来

二次函数图像的对称性

二次函数图像的对称性 1.若一元二次方程ax 2+bx+c-3=0的一根为2,且二次函数y=ax 2+bx+c 的对称轴为直线x=2,则 抛物线y=ax 2+bx+c 的顶点坐标为 。 2.已知二次函数y=ax 2+bx+c 的图象经过(-4,9) (5,9)两点,则该抛物线的对称轴为 。 3.已知二次函数y=a(x-1)2+c 与x 轴交于A 、B 两点,若A 点坐标为(3,0),则B 点坐标为 。 4.若二次函数y=ax 2+bx+c 的对称轴为直线x=2,且经过(3,0)点,则a+b+c 的值为 。 5.若抛物线y=ax 2+bx+c 经过点A(-2,7),B(6,7),C(3,-8),则方程ax 2+bx+c=-8的根为 。 6.若抛物线y=ax 2+bx+c 满足4a-2b+c=0,9a+3b+c=0,且抛物线经过点(5,3),则方程ax 2+bx+c=3 的根为 7.若一元二次方程ax 2+bx+c-3=0的根为x 1=-3,x 2=5,且若抛物线y=ax 2+bx+c 与x 轴的一个交点 为(-2,0),则该抛物线与x 轴的另一个交点为 。 8.若抛物线y=ax 2-2ax+k(a >0)上有三点分别为A(√2,y 1),B(2,y 2),C(-√5,y 3),则y 1,y 2,y 3的大 小关系为 。 9.若抛物线y=ax 2+bx+c 与x 轴交于A(-3,0),对称轴为直线x=-1,顶点到x 轴的距离为2,则该 抛物线的解析式为 。 10.如图所示,由抛物线可知,当x 时,y 随x 的增大而增大,当 时,y 有最大值,当 时,函数值y >0. 11. 如图所示,抛物线y=ax 2+bx+c (a ≠0) 的顶点P 横坐标为4,图像交x 轴于A(m,0)和点B ,且m >4,则线段AB 长为 (用含m 的代数式表示)。 12.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:①a 、b 同号;②当x=1和x=3 时,函数值相等;③4a+b=0;④当y=-2时,x 的值只能取0;⑤c <0;⑥b 2>4ac 其中正确的个 是( )。 (A )1个; (B )2个; (C )3个; (D )4个 13.已知二次函数y=ax 2+bx+c )0( a 的图象如图所示,给出以下结论:①a+c <b ②c-a=2; ③ab <0④ 14 a- 12 b+c >0;其中所有正确结论的序号是 。 14.若(-134 ,y 1)、(-54 ,y 2)、(14 ,y 3)为二次函数y=x 2+4x-5图像上的三点,则y 1,y 2,y 3从小到大排列为 。 15.二次函数y=ax 2+bx+c 的部分对应值如右表,根据表中所的信息可得如下结论:①抛物线的对称轴为 ②a 0, ,③x=2时,y= ,④a+b-c= ,⑤当x= 时,y 有最 值;⑥y=-9时,x= ,⑦方程ax 2+bx+c=-3的两根为 ,⑧不等式ax 2+bx+c >1的解集为 。 第12题 第10题 第11题 第13题

相关主题
文本预览
相关文档 最新文档