当前位置:文档之家› 三次函数及其切割线的关系

三次函数及其切割线的关系

三次函数及其切割线的关系
三次函数及其切割线的关系

三次函数及其切割线的关系

曾文远

中国/北京市/北京十一学校

指导教师:潘国双

摘要

本文共七章,主要研究了三次函数上一点的切线,割线和三次函数的关系;三次函数上一点切线,割线斜率的性质;三次函数图像的性质和分类;以及三次函数的一种新定义。

全文结构安排如下:

第一章介绍了文章的研究背景,基本记号,一些基本定义,引理和定理。

第二章研究了三次函数上一点处的切线和该三次函数相交的问题。包括切点,交点的坐标关系和切线与三次函数围成图形的面积。

第三章中类比圆锥曲线的极坐标形式,研究了三次函数上一点到一定直线距离的问题,并给出了三次函数新的定义形式。

第四章研究了三次函数图像的对称问题。

第五章研究了三次函数零点处切线斜率的性质,并利用范德蒙德行列式将部分结论推广到n次函数。

第六章研究了平面上一点和三次函数三个零点连线的斜率问题,并推广到n次函数。

第七章研究了三次函数的图像类型与其对应的三次方程的解之间的关系。

关键词:三次函数三次函数图像零点极值点拐点斜率切线割线对称中心面积n次函数范德蒙德行列式

目录

摘要1第一章4 1.1 4 第二章8

2.1 8

第三章12

3.1 12

3.2 13

第四章15

4.1 15

附录

参考文献

致谢

第一章…

2.1 …

3.1 …

4.1 …

附录

参考文献

[1]人教版高中数学必修1. 人民教育出版社,2007.

[2]人教版高中数学选修1-1. 人民教育出版社,2007.

[3]刘玉琏傅沛仁林玎苑德馨刘宁数学分析讲义(第五版)上册.

高等教育出版社,2008.

[4]卢刚线性代数第三版. 高等教育出版社,2009.

[5]Wikipedia

致谢

感谢指导老师对我的鼓励与帮助.感谢我的家长和同学们,是他们的支持和鼓励给了我勇气和信心来完成这篇论文.

4导数研究三次函数的性质

4导数研究三次函数的性质 复习目标:掌握三次函数的图象和性质,尤其是利用导数研究单调性、极值情况,以及三次函数 的零点。 复习重点难点:(1)三次函数的图象的四种情况;(2)三次函数的极值情况; 【典型例题】 题型一:三次函数单调性的讨论 例1.已知函数32()2f x ax x x =++在R 上恒为增函数,求实数a 的取值范围. 例2.已知函数f (x )=-x 3+3x 2+9x +a , (I )求f (x )的单调递减区间; (II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

题型二:三次函数极值,最值的讨论 例3. 已知a 是实数,函数2()()f x x x a =-; (1)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程; (2)求()f x 在区间[]2,0上的最大值. 例4.已知函数()f x 的导数2()33,f x x ax '=-(0).f b =,a b 为实数,12a <<. (1)若()f x 在区间[1, 1]-上的最小值、最大值分别为2-、1,求a 、b 的值; (2)设函数2()(()61)x F x f x x e '=++?,试判断函数()F x 的极值点个数.

【课后作业】 1.过曲线y =x 3+x-2上的点P 0的切线平行于直线y =4x-1,则切点P 0的坐标为 2.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a·b 在区间(-1,1)上是增函数,求t 的取值范围. 3.函数f (x )=x 3+x 2-x 在区间[-2,1]上的最大值和最小值分别是 4.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为 31812343 y x x =-+-,则使该生产厂家获得最大年利润的年产量为 5.设函数b x a ax x x f +-+-=223323 1)( (0

二次函数与面积专题训练

二次函数专题训练——抛物线与图形面积 1、抛物线y=x 2 -4x-5交x 轴于A 、B 两点,交y 轴于点C ,则△ABC 面积为 2、若抛物线y=-x 2–x+6与x 轴交于A 、B 两点,则AB= ,此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为 . 3、已知二次函数y=x 2 –21x-2 3与x 轴交于A 、B 两点,顶点为C ,则△ABC 的面积为 . 4、若抛物线y=x 2 + 4x 的顶点是P ,与X 轴的两个交点是C 、D 两点,则△PCD 的面积是_____________. 5、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = ,c = . 6、已知二次函数y=ax 2 +bx+c 的图象经过(-1,2 5 - ),B(0,-4),C(4,0)三点,则二次函数解析式是_______,顶点D 的坐标是_______,对称轴方程是_______, =_______ 7、已知二次函数y=-2 1x 2+x+4的图象与x 轴的交点从右向左为A 、B 两点,与y 轴交点为C ,顶点为D ,求四边形ABCD 的面积 _______ 9、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-12,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)、求二次函数的解析式; (2)、P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)、P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1 ,求P 点坐标。 10、如图,抛物线8102 +-=ax ax y 经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且 AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式; (3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.

三次函数与导数--例题与练习答案

三次函数与导数例题与练习答案 例1.(14全国大纲卷文21,满分12分)函数32()33(0)f x ax x x a =++≠. (1)讨论函数()f x 的单调性; (2)若函数()f x 在区间(1,2)是增函数,求a 的取值范围. 解:(Ⅰ)2()363f x ax x '=++,2 ()3630f x ax x '=++=的判别式△=36(1-a ). (ⅰ)当a ≥1时,△≤0,则()0f x '≥恒成立,且()0f x '=当且仅当1,1a x ==-,故此时()f x 在R 上是增函数. (ⅱ)当1a <且0a ≠,时0>?,()0f x '= 有两个根:12x x = = , 若01a <<,则12x x <, 当2(,)x x ∈-∞或1(,)x x ∈+∞时,()0f x '>,故()f x 在 21(,),(,)x x -∞+∞上是增函数;当21(,)x x x ∈时,()0f x '<,故()f x 在21(,)x x 上是减函数; 若0,故()f x 在),(21x x 上是增函数; (Ⅱ)当0>a 且0>x 时, 0363)(2 >++='x ax x f ,所以 当0a >时,()f x 在区间(1,2)是增函数. 当0a <时, ()f x 在区间(1,2)是增函数,当且仅当(1)0f '≥且(2)0f '≥,解得5 04 a - ≤<. 综上,a 的取值范围是5 [,0)(0,)4 -+∞U . 例2.(14安徽文数 20)(本小题满分13分) 设函数23()1(1)f x a x x x =++--,其中0a >。(1)讨论()f x 在其定义域上的单调性; (1) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值. (Ⅰ) ()f x 的定义域为(,)-∞+∞,2 ()123f x a x x '=+-- 令()0f x '=,得121211,33 x x x x --+= =< 所以12()3()()f x x x x x '=--- 当1x x <或2x x >时,()0f x '<;当12x x x <<时,()0f x '>, 故()f x 在12(,)(,)x x -∞+∞和内单调递减,在12(,)x x 内单调递增 (Ⅱ)因为0a >,所以120,0x x <> (ⅰ)当4a ≥时,21x ≥,由(Ⅰ)知,()f x 在[0,1]上单调递增, 所以()f x 在 0x =和1x =处分别取得最小值和最大值 (ⅱ)当04a <<时,21x <,由(Ⅰ)知,()f x 在[0,2x ]上单调递增,在[2x ,1] 上单调递减,因此()f x 在213 x x -+==处取得最大值 又(0)1,(1)f f a ==,所以 当01a <<时,()f x 在1x =处取得最小值; 当1a =时,()f x 在0x =和1x =处同时取得最小值; 当04a <<时,()f x 在0x =处取得最小值。 例4.(14年天津文科19,满分14分)已知函数232 ()(0),3 f x x ax a x R =->∈ (1) 求()f x 的单调区间和极值;(2)若对于任意的1(2,)x ∈+∞,都存在 2(1,)x ∈+∞,使得12()()1f x f x ?=,求a 的取值范围 解:(Ⅰ)由已知,有2 ()22(0)f x x ax a '=->

二次函数与面积专题

重庆市巴川中学初2019级九上数学专题训练三 ——二次函数与面积问题 班级______姓名_______等级________ 题型一:在抛物线上求一点,与已知三角形的面积相等(或成倍数). 例1、定义:如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,点P在抛物线上(点P与A,B两点不重合),如果△ABP的三边满足AP2+BP2=AB2,则称点P为抛物线y=ax2+bx+c(a≠0)的勾股点. (1)直接写出抛物线y=-x2+1的勾股点的坐标; (2)如图2,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A,B两点,点P(1,3)是抛物线C的勾股点,求抛物线C的函数表达式; (3)在(2)的条件下,点Q在抛物线C上,求满足条件S△ABQ=S△ABP的点Q(异于点P)的坐标. 图1 图2

练习1. 如图,已知抛物线322++-=x x y 与x 轴交于点A 和点B ,与y 轴交于点C ,连接BC 交抛物线的对称轴于点E,D 是抛物线的顶点. (1)直接写出点A 、B 、C 、D 的坐标,并求出S △ABD ; (2)求出直线BC 的解析式; (3)若点P 在第一象限内的抛物线上,且S △ABP =4S △COE ,求P 点坐标.

题型二:已知二定点,在抛物线上求一动点,使三角形面积最大 例2.如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(-1,0),C点坐标是(-4,-3). (1)求抛物线的解析式; (2)若点E是位于直线AC的上方抛物线上的一动点,试求△ACE的最大面积及E点的坐标;(3)在(2)的条件下,在抛物线上是否存在异于点E的P点,使S△PAC=S△EAC,若存在,求出点P的坐标;若不存在,请说明理由. 变式:在抛物线上是否存在点P,使S△PAC=S△ABC,若存在,求出点P的坐标;若不存在,请说明理由.

用导数研究三次函数

用导数研究三次函数 一、知识点解析 1定义: 定义1、形如y =ax3?bx2? CX ?d(a =0)的函数,称为“三次函数”。 定义2、三次函数的导函数为二次函数:f / (x) = 3ax2 2bx c(a = 0),我们把 2 2 =4b -12ac=4(b -3ac),叫做三次函数导函数的判别式。 2、三次函数图象与性质的探究: 1、单调性 2 3 2 一般地,当b -3ac二0时,三次函数y = ax bx ?cχ?d(a=0)在R上是单调函数;当b -3ac 0时,三次函数y = ax bx CX d(a 0)在R上有三个单调区间。 2、对称中心 3 2 三次函数f (x) = ax bx CX d (^?-z 0)是关于点对称,且对称中心为点 b b (—I f (—)),此点的横坐标是其导函数极值点的横坐标。 3a 3a y= f(x)图象的对称中心在导函数y=∕'O)的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点。 3、三次方程根的问题 (1)当.?, =b2 _3ac乞0时,由于不等式「(X)恒成立,函数是单调递增的,所以原方程仅有一个实根。 ■ 0时,由于方程f(X)= 0有两个不同的实根x1, X2,不妨设 (2)当厶=b2 _3ac X i :::x2, 可知,(χ1,f(χj)为函数的极大值点,(X2, f(x2))为极小值点,且函数y = f(x)在(」:,X1)和(x2, ■--)上单调递增,在"x1,x2 I上单调递减。 此时: ①若f (x1) f (x2) 0 ,即函数y = f (x)极大值点和极小值点在X轴同侧,图象均与X轴只有一个交点,所以原方程有且只有一个实根。 ②若f (χ1) f (χ2) :::0 ,即函数y = f (x)极大值点与极小值点在X轴异侧,图象

九年级数学:二次函数与图形面积

二次函数与图形面积 练习题 基础题 知识点 二次函数与平面面积 1.如图,假设篱笆(虚线部分)的长度为16 m ,则所围成矩形ABCD 的最大面积是( ) A .60 m 2 B .63 m 2 C .64 m 2 D .66 m 2 2.用一根长为40 cm 的绳子围成一个面积为a cm 2的长方形,那么a 的值不可能为( ) A .20 B .40 C .100 D .120 3.用长8 m 的铝合金条制成使窗户的透光面积最大的矩形窗框(如图),那么这个窗户的最大透光面积是 ( ) A.6425 m 2 B.43 m 2 C.83 m 2 D .4 m 2 4.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止,设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( ) 5.如图,利用一面墙(墙的长度不超过45 m),用80 m 长的篱笆围一个矩形场地.当AD =________时,矩形场地的面积最大,最大值为________. 6.如图,在△ABC 中,∠B =90°,AB =8 cm ,BC =6 cm ,点P 从点A 开始沿AB 向B 点以2 cm/s 的速度移动,点Q 从点B 开始沿BC 向C 点以1 cm/s 的速度移动,如果P ,Q 分别从A ,B 同时出发,当△PBQ 的面积为最大时,运动时间t 为________s.

7.将一根长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是________ cm2. 8.已知直角三角形两条直角边的和等于20,两条直角边各为多少时,这个直角三角形的面积最大?最大值是多少? 9.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形,抽屉底面周长为180 cm,高为20 cm.请通过计算说明,当底面的宽x为何值时,抽屉的体积y最大?最大为多少?(材质及其厚度等暂忽略不计)

第07讲(三次函数的导数问题)(原卷版)

第07讲(三次函数的导数问题) 【目标导航】 运用三次函数的图像研究零点问题, 三次函数的单调性问题, 三次函数的极值与最值问题。 【例题导读】 例1、若13 x 3-x 2+ax -a =0只有一个实数根,求实数a 的取值范围. 例2、 已知函数f (x )=13x 3-k +12x 2,g (x )=13 -kx ,若函数f (x )与g (x )的图象有三个不同的交点,求实数k 的取值范围. 例3、设函数f (x )=13x 3-a 2x 2+1,其中a >0,若过点(0,2)可作曲线y =f (x )的三条不同切线,求实数a 的取值范围. 例4、已知函数f (x )=14 x 3-x 2+x . (1)求曲线y =f (x )的斜率为1的切线方程; (2)当x ∈[-2,4]时,求证:x -6≤f (x )≤x ; (3)设F (x )=|f (x )-(x +a )|(a ∈R ),记F (x )在区间[-2,4]上的最大值为M (a ).当M (a )最小时,求a 的值. 例5、已知函数f(x)=?????-x 3+x 2,x<0,e x -ax ,x≥0,其中常数a ∈R . (1) 当a =2时,求函数f (x )的单调区间; (2) 若方程f (-x )+f (x )=e x -3在区间(0,+∞)上有实数解,求实数a 的取值范围;

例6、已知函数32()1f x x ax bx a b =+++∈,,R . (1)若20a b +=, ① 当0a >时,求函数()f x 的极值(用a 表示); ② 若()f x 有三个相异零点,问是否存在实数a 使得这三个零点成等差数列?若存在,试求出a 的值;若不存在,请说明理由; 例7、已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数'()f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:33b a >; (3)若(),'()f x f x 这两个函数的所有极值之和不小于72 -,求a 的取值范围. 例8、已知函数f(x)=2x 3-3(a +1)x 2+6ax ,a ∈R . (1) 曲线y =f (x )在x =0处的切线的斜率为3,求a 的值; (2) 若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (3) 若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a ),m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.

二次函数之面积专题

二次函数之面积专题(讲义) 一、知识点睛 1. 坐标系中处理面积问题,要寻找并利用“__________”的线. 几何中处理面积问题的思路:_______、_______、_______. 2. 坐标系中面积问题处理方法举例: ①割补求面积(铅垂法): h a a h M M P B A P B A Δ12APB S ah = Δ1 2APB S ah = ②转化求面积: Q P B A A B P Q ABP ABQ S S ??= ABP ABQ S S ??= 若P 、Q 在AB 同侧 若P 、Q 在AB 异侧 则PQ ∥AB 则AB 平分PQ

二、精讲精练 1. 如图,抛物线经过A (-1,0)、B (3,0)、C (0,3)三点. (1)求抛物线的解析式. (2)点M 是直线BC 上方抛物线上的点(不与B 、C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长. (3)在(2)的条件下,连接MB 、MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及最大面积;若不存在,说明理由. B C A O M N x y B C A O M N x y

2. 如图,抛物线322++-=x x y 与直线1+=x y 交于A 、C 两点, 其中C 点坐标为(2,t ). (1)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 面积的最大值. (2)在直线AC 下方的抛物线上,是否存在点G ,使得 Δ6AGC S =?如果存在,求出点G 的坐标;如果不存在,请说 明理由. A B P O x y C C y x O P B A

原函数和导函数的关系

课题:探究原函数与导函数的关系 首师大附中数学组王建华 设计思路 这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶 对称,研究前面的四个命题还是否成立。研究方法可以类函数的性质拓展为关于直线x a 比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1.加强学生对导函数与原函数相生相伴的关系的理解; 2.增强学生对函数对称性的理解和抽象概括表达能力; 3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。 4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,你能根据原函数的图像画出导函数的示意图吗? 一.探究由原函数的奇偶性能否推出导函数的奇偶性。

如何求解二次函数中的面积最值问题

如何求解二次函数中的面积最值问题 从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考. 题目(重庆市江津区) 如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点. (1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC 的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由; (3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由. 解答(1)抛物线解析式为 y=-x2-2x+3; (2)Q(-1,2); 下面着重探讨求第(3)小题中面积最大值的几种方法. 一、补形、割形法 几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形. 方法一 如图3,设P点(x,-x2-2x+3)(-3

方法二 如图4,设P 点(x ,-x 2-2x +3)(-3

用导数研究三次函数

用导数研究三次函数 一、知识点解析 1、定义: 定义1、形如3 2 (0)y ax bx cx d a =+++≠的函数,称为“三次函数”。 定义2、三次函数的导函数为二次函数:)0(23)(2 /≠++=a c bx ax x f ,我们把 )3412422ac b ac b -=-=?(,叫做三次函数导函数的判别式。 2、三次函数图象与性质的探究: 1、单调性 一般地,当032 ≤-ac b 时,三次函数)0(2 3≠+++=a d cx bx ax y 在R 上是单调函数;当032 >-ac b 时,三次函数)0(2 3≠+++=a d cx bx ax y 在R 上有三个单调区间。 2、对称中心 三次函数)0()(2 3 ≠+++=a d cx bx ax x f 是关于点对称,且对称中心为点 ))3(,3(a b f a b -- ,此点的横坐标是其导函数极值点的横坐标。 y =f(x)图象的对称中心在导函数y = 的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点。 3、三次方程根的问题 (1)当032≤-=?ac b 时,由于不等式0)(≥'x f 恒成立,函数是单调递增的,所以原方程仅有一个实根。 (2)当△=032>-ac b 时,由于方程0)(='x f 有两个不同的实根21,x x ,不妨设21x x <, 可知,))(,(11x f x 为函数的极大值点,))(,(22x f x 为极小值点,且函数)(x f y =在) ,(1x -∞和),(2+∞x 上单调递增,在[]21,x x 上单调递减。

此时: ①若0)()(21>?x f x f ,即函数)(x f y =极大值点和极小值点在x 轴同侧,图象均与x 轴只有一个交点,所以原方程有且只有一个实根。 ②若0)()(21时,三次函数()y f x =在(),-∞+∞上的极值点要么有两个。 当0?≤时,三次函数()y f x =在(),-∞+∞上不存在极值点。 5、最值问题。 函数 若,且 ,则:()()()(){}max 0,,f x f m f x f n =; 。 6、过三次函数上一点的切线问题 设点P 为三次函数)0()(2 3≠+++=a d cx bx ax x f 图象上任一点,则过点P 一定有 直线与)(x f y =的图象相切。若点P 为三次函数图象的对称中心,则过点P 有且只有一条切线;若点P 不是三次函数图象的对称中心,则过点P 有两条不同的切线。 7、过三次函数外一点的切线问题 设点 ) ,(00y x P 为三次函数)0()(2 3≠+++=a d cx bx ax x f 图象外,则过点P 一定有 直线与)(x f y =图象相切。可能有一条、两条或三条。(具体情况分析不作要求)

二次函数与几何面积

二次函数与几何面积 例1 (中考变式)如图,抛物线c bx x y ++-=2 与x 轴交与A(1,0),B(-3,0)两点,顶点为D 。交Y 轴于C (1)求该抛物线的解析式与△ABC 的面积。 (2)在抛物线第二象限图象上是否存在一点M ,使△MBC 是以∠BCM 为直角的直角三角形,若存在,求出点P 的坐标。若没有,请说明理由 (3)若E 为抛物线B 、C 两点间图象上的一个动点(不与A 、B 重合),过E 作EF 与X 轴垂直,交BC 于F ,设E 点横坐标为x.EF 的长度为L , 求L 关于X 的函数关系式?关写出X 的取值范围? 当E 点运动到什么位置时,线段EF 的值最大,并求此时E 点的坐标? (4)在(5)的情况下直线BC 与抛物线的对称轴交于点H 。当E 点运动到什么位置时,以点E 、F 、H 、D 为顶点的四边形为平行四边形? (5)在(5)的情况下点E 运动到什么位置时,使三角形BCE 的面积最大?

例2 考点:关于面积最值 如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,3 -),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式; (2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长; (3)求△PBC面积的最大值,并求此时点P的坐标. 例3 考点:讨论等腰 如图,已知抛物线y= 2 1 x2+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1). (1)求抛物线的解析式; (2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最 大时,求点D的坐标; (3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若 不存在,说明理由. 备用图

导数与三次函数问题有答案

导数与三次函数问题 ★ 知识梳理★ 一、定义:、形如3 2 (0)y ax bx cx d a =+++≠的函数,称为“三次函数” 三次函数的导数2 32(0)y ax bx c a '=++≠, 2412b ac ?=-叫做三次函数导函数的判别式。 二、三次函数图象与性质 1.三次函数3 2 ()(0)f x ax bx cx d a =+++≠图象 2.函数()(0)f x ax bx cx d a =+++≠单调性、极值点个数情况。()f x =32ax bx c ++, 记?=2 2 4124(3)b ac b ac -=-,(其中x 1,x 2是方程' ()f x =0的根,且x 1-ac b ,且0)()(21>?x f x f ,则0)(=x f 恰有一个实根; (3) 若032 >-ac b ,且0)()(21=?x f x f ,则0)(=x f 有两个不相等的实根; (4) 若032 >-ac b ,且0)()(21

三次函数)0()(2 3≠+++=a d cx bx ax x f 是关于点对称,且对称中心为点 ))3(,3(a b f a b -- ,此点的横坐标是其导函数极值点的横坐标。 ★典型考题★ 1.已知函数f(x)=ax 3+bx 2+cx+d 的图象如图所示,则( A ) A .b ∈(-∞,0) ∈(0,1) C .b ∈(1,2) D. b ∈(2,+∞) 2.如图,函数y =f (x )的图象如下,则函数f (x )的解析式可以为( A ) A)f (x )=(x -a )2 (b -x ) B)f (x )=(x -a )2 (x +b ) C)f (x )=-(x -a )2(x +b ) D)f (x )=(x -b )2(x -a ) 3.设<b,函数的图像可能是( C ) 4.已知函数,当(,0)(5,)k ∈-∞?+∞时,只有一个实数根;当(0,5),()0k f x k ∈-=时有3个相异实根,现给出下列4个命题: ①函数有2个极值点; ②函数()f x 有3个极值点;③方程()5f x =-的根小于()0f x '=的任意实根; ④()0f x =和()0f x '=有一个相同的实根.其中正确命题的个数是( C )。 A .1 B .2 C .3 D .4 5、函数在闭区间[-3,0]上的最大值、最小值分别是( C ) A. 1,-1 B. 1,-17 C. 3,-17 D. 9,-19 6.函数f (x )=x 3/3+ax 2/2+ax-2 (a ∈R)在(-∞,+∞)上为单调增函数,求实数a 的取值范围是——————。a ∈[0,4] 7.已知函数f (x )=x 3/3-(4m -1)x 2+(15m 2-2m -7)x +2在实数集R上是增函数,求实数m 的取值范围。 解:∵y =f (x )在R上是单调增函数 ∴f ′(x )=x 2-2(4m -1)x +15m 2 -2m -7≥0在R上恒成立, Δ=… =m 2 -6m +8≤0得2≤m ≤4 8.已知曲线y = x 3/3+4/3,求曲线在点(2,4)处的切线方程 解:f ′(x )=x 2,f ′(2)=4, 曲线在点(2,4)处的切线斜率为k =f ′(2)=4 ∴代入直线方程的斜截式,得切线方程为:y -4=4(x -2), 即 y =4x -4 变式:已知曲线y =x 3/3+4/3,则曲线过点(2,4)的切线方程——————。 错解:依上题,直接填上答案4x -y -4=0 错因剖析:如下图所示,在曲线上的点A 处的切线与该曲线还有一个交点。

导数与三次函数(教案)

导数与三次函数(教案) 教学目标 (1)知识目标:以三次函数为载体,掌握用导数研究函数的单调性、极值、最值等问题的方法。 (2)能力目标:深化数形结合、转化与化归、分类讨论、从特殊到一般等数学思想在解有关问题中的运用,培养学生探究问题的能力和综合分析、解决问题的能力。 (3)情感目标:以数形联系的观点看数学问题,体会由特殊到一般的方法探究数学问题的过程。鼓励学生大胆猜想,敢于质疑,严密论证。 教学重点:导数应用。 教学难点:三次函数的单调性、极值点个数的探求。 教学模式:以问题为主线,运用探究式与变式教学相结合的教学模式。 教学过程 一 回顾复习 引出本课课题 叙述利用导数求可导函数单调区间的步骤。 二 再现陈题 掌握导数应用 例1 已知函数3()3f x x x =-,R x ∈ (1)求函数()f x 的单调区间; (2)求()f x 在[0,3]上的最值; (3)过点A (2,2)作曲线y=f(x)的切线,求切线方程。 特别警示:求切线方程首先要判断该点是否在曲线上 点评1 导数的主要应用:可导函数的单调性、极值、在闭区间上的最值,以及利用导数的几何意义研究切线问题。 变式一 若关于x 的不等式()f x a ≥在0≤x ≤3上恒成立,求实数a 的取值范围; 变式二 关于x 的方程f(x)=a 恰有3个不等的实根,求实数a 的取值范围.(图象法) 画3 ()3f x x x =-草图的方法:利用函数有关性质 (1)确定极值点对应的点(简称关键点) (2)结合单调性 点评 2 数形结合,以形助数来解决问题。 二 改变命题 探求字母系数 例 2 若函数32 ()331f x kx x x =+++(0k ≠)在R 上是增函数,求实数k 的取值范围。 分析 '()f x =2 363kx x ++,0k ≠,'()f x ∴图象是一条过(0,3)的抛物线, 由于f(x)在R 上是增函数,则 1)300k >?? ?在R 上恒成立,f(x)在R 上是增函数; 2)300 k >???=?,即1k =,323()331(1)f x x x x x =+++=+,显然f(x)在R 上是增函数;

三次函数与导数专题 10

导数与三次函数问题 [真题1] (优质试题年安徽卷)设a<b,函数2 ()() y x a x b =--的图像可能是() [命题探究] 考题的命制,直接给出函数图像,然后设计了四个选项,意在通过对问题的判断, 直接考查三次函数的性质:单调区间和极值问题。这里,函数的化简、图像的观察等等,不仅需要 扎实的基本功,而且还需要熟练的解题技巧。 [知识链接] 1.三次函数32 ()(0) f x ax bx cx d a =+++≠ a>0 a<0 ?>0 ?≤0 ?>0 ?≤0 图 象 32 ()(0) f x ax bx cx d a =+++≠ '() f x=2 32 ax bx c ++, x x1 x2 x0 x x1 x2 x x0 x

记?=224124(3)b ac b ac -=- 1,x 2是方程'()f x 1

数是二次函数,这类问题的难点是研究其中的参数的取值范围.破解难点的方法是对三次函数求导后,化归成二次函数,通过二次函数要的分布求解,或利用数形结合思想画出函数的极大值、极小值后进行对比分析,求出参数的取值范围。解三次函数的问题,可借助导数工具进行研究,推进了二次函数性质的深化与二次函数方法的研究。 《规范解答》 [考题再现](06福建文21)已知()f x 是二次函数,不等式()0f x <的解集是(0,5),且()f x 在区 间[]1,4-上的最大值是12。 (I )求()f x 的解析式;(II )是否存在自然数,m 使得方程37()0f x x +=在区间(,1)m m +内有 且只有两个不等的实数根?若存在,求出m 的取值范围;若不

二次函数与面积专题(可编辑修改word版)

3 图 1 图 2 重庆市巴川中学初 2019 级九上数学专题训练三 ——二次函数与面积问题 班级 姓名 等级 题型一:在抛物线上求一点,与已知三角形的面积相等(或成倍数). 例 1、定义:如图 1,抛物线 y=ax 2+bx+c(a≠0)与 x 轴交于 A ,B 两点,点 P 在抛物线上(点 P 与 A ,B 两点不重合),如果△ABP 的三边满足 AP 2+BP 2=AB 2,则称点 P 为抛物线 y=ax 2+bx+c(a ≠0)的勾股点. (1) 直接写出抛物线 y=-x 2+1 的勾股点的坐标; (2) 如图 2,已知抛物线 C :y=ax 2+bx(a≠0)与 x 轴交于 A ,B 两点,点 P(1, )是抛物线 C 的 勾股点,求抛物线 C 的函数表达式; (3) 在(2)的条件下,点 Q 在抛物线 C 上,求满足条件 S △ABQ =S △ABP 的点 Q (异于点 P )的 坐标.

练习 1. 如图,已知抛物线y =-x 2+ 2x + 3 与x 轴交于点A 和点B,与y 轴交于点C,连接BC 交抛物线的对称轴于点E,D 是抛物线的顶点. (1)直接写出点A、B、C、D 的坐标,并求出S△ABD; (2)求出直线BC 的解析式; (3)若点P 在第一象限内的抛物线上,且S△ABP=4S△COE,求P 点坐标.

题型二:已知二定点,在抛物线上求一动点,使三角形面积最大

例2. 如图,已知抛物线 y=ax 2+bx-3 与 x 轴交于 A 、B 两点,过点 A 的直线 l 与抛物线交于点 C , 其中 A 点的坐标是(-1,0),C 点坐标是(-4,-3). (1) 求抛物线的解析式; (2) 若点 E 是位于直线 AC 的上方抛物线上的一动点,试求△ACE 的最大面积及 E 点的坐标; (3) 在(2)的条件下,在抛物线上是否存在异于点 E 的 P 点,使 S △PAC =S △EAC ,若存在,求 出点 P 的坐标;若不存在,请说明理由. 变式:在抛物线上是否存在点 P ,使 S △PAC =S △ABC ,若存在,求出点 P 的坐标;若不存在,请说明理由.

(完整版)专题三导数与三次函数

专题三 导数与三次函数 三次函数()32f x ax bx cx d =+++(a 、b 、c 、d R ∈且0a ≠)是中学数学利用导数研究函数的单调性、极值(最值)的一个重要载体,是应用二次函数图象和性质的好素材,既可以整合函数图象和性质、不等式、方程、导数等相关知识,完善知识结构,又能体会其中蕴涵的数学思想方法。近几年的全国各省市高考试卷以导数为工具,有重点地考查了有关三次函数的单调性、极值、在闭区间上的最值、对参数的取值范围的探究等函数性质,凸显“在知识网络交汇点上”命题的理念。 例1、已知函数()33f x x x =- ⑴求函数()f x 的单调区间及极值;⑵求()f x 在[]0,3上的最值。 解:令()2123301,1f x x x x '=-=?==- x 、()f x '、()f x 的变化情况如下表 ∴()f x 的单调递增区间是(),1-∞-和()1,+∞ ()f x 的单调递减区间是()1,1- 当1x =-时,()f x 有极大值()()()3 11312f -=--?-= 当1x =时,()f x 有极小值()311312f =-?=- ⑵()00f =,()3333318f =-?= ∵()f x 在[]0,3上只有一个极值点()12f =- ∴()f x 在[]0,3上的最小值为-2,最大值为18 变式一、已知函数()3233f x x x x =++,其他不变

解:()()2 2363310f x x x x '=++=+≥ ∴()f x 在(),-∞+∞单调递增,()f x 没有极值 ()f x 在[]0,3上的最小值为()00f =,最大值为()363f = 变式二、已知函数()323f x x x x =++;其他不变 解:()2323f x x x '=++ △22433200=-??=-< ∴()0f x '=没有实数根 ∴()0f x '>在R 上恒成立 ∴()f x 在(),-∞+∞上单调递增,()f x 没有极值 ()f x 在[]0,3上的最小值为()00f =,最大值为()345f = 变式三、已知函数1y t =,323y x x =-,实数t 为何值时,函数1y 与2y 的图象的 交点有一个、二个、三个? 解:由例1画出函数2y 的大致图象如图,观察图象,可得 当2t >或2t <-时,函数1y 与2y 只有一个交点。 当2t =-或2t =时,函数1y 与2y 有二个交点。 当22t -<<时,函数1y 与2y 变式四、a 为何值时,函数3 ()3f x x x a =-+有一个零点?两个零点?三个零点? 解:令()2 123301,1f x x x x '=-=?==- x 、()f x '、()f x 的变化情况如下表

二次函数与几何综合--面积问题

二次函数与几何综合--面积问题 知识点睛 1.“函数与几何综合”问题的处理原则:_________________,__________________. 2.研究背景图形: ①研究函数表达式.二次函数关注____________,一次函数关注__________. ② ___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息. 3.二次函数之面积问题的常见模型 ①割补求面积——铅垂法: ②转化法——借助平行线转化: 若S △ABP =S △ABQ , 若S △ABP =S △ABQ , 当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时, PQ ∥AB . AB 平分PQ . 例题示范 x B -x A x B -x A B M P P M A 1 ()2 APB B A S PM x x =??-△B A P O y x A B C

例1:如图,抛物线y =ax 2+2ax -3a 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OA =OC ,连接AC . (1)求抛物线的解析式. (2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值. (3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A , B ,E ,F 为顶点的四边形是平行四边形若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由. 第一问:研究背景图形 【思路分析】 读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (-3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,-3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】 解:(1)由223y ax ax a =+- (3)(1)a x x =+- 可知(30)A -, ,(10)B ,, ∵OA OC =, ∴(03)C -, , 将(03)C -, 代入223y ax ax a =+-,

相关主题
文本预览
相关文档 最新文档