当前位置:文档之家› 梳状滤波器工作原理

梳状滤波器工作原理

梳状滤波器工作原理
梳状滤波器工作原理

梳状滤波器工作原理

梳状滤波器对于画面质量是非常重要的一个技术。一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite VideoSignal,即混合视频信号(也称复合信号)。因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器。

图2-6-1 梳状滤波器框图

梳状滤波器主要由延迟线和相加电路、相减电路构成的,用以分离FU 和±FV。一个实际的梳状滤波器电路如图2-6-1所示。其中V1为延时激励放大器,DL为延迟线,T1为裂相变压器、L1为调谐电感,C2为耦合电容。

色度信号F经电容C1耦合加于V1基极,经放大后由集极输出,再经延迟线由A点加至裂相变压器T1上端,取自Rw的直通信号经C2耦合加至T1中点,这样可在输出端分别得到相加和相减输出。将直通信号和延迟信号分别以un和un-1表示,其输出电压的合成原理图如图4-32等效电路所示。调节Rw可保证两信号幅度严格相等,输出分离更彻底。

延迟线DL多为超声延迟线,它由输入、输出压电换能器和延迟介质组成。压电换能器由多晶压电陶瓷薄片制成,当信号加到输入压电换能器两端面的电极上时,输入信号在延迟介质中激起机械振动,形成超声波。延

迟介质多为熔融石英或玻璃,超声波在玻璃中传播速度较低,再将其制作

成如图4-33形式,经多次反射超声波方到达输出换能器还原为电信号,这

样使可大大地缩小延迟线体积。为使超声波按规定的路径传播,减少不规

则反射引起的干扰杂波,在延迟线表面涂有若干吸声点,吸声点所涂吸声

材料为橡胶、环氧树脂和钨粉配制而成。最后用塑料外壳封装,以减小外

界的影响。

2.6.2 PAL 解码器的梳状滤波器

PAL 的特殊电路是梳状滤波器.为使它

能够有效的分离两个色度分量,延时线的

延时时间要有准确的数值. 延时线延迟时

间τd 应选择得既非常接近行周期(64μ

s),以便相加、减时是相邻行相应像素间

的加或减;而又必须为副载波半周期的整

数倍,以保证延时前、后色度信号副载波相位相同(0°)或相反(180°)。由

fSC=283.75fH+25Hz 的关系,则行周期TH 与副载波TSC 之间的关系为:

τd 可选为副载波半周期TSC/2的567倍或568倍。通常为567, τd

略小于行周期,若为568则略大于行周期

梳状滤波器:作用是将色度信号分离出两个色差分量FU 、FV ,组成包

括一行延时线、加法器和减法器。

传统的色度延时电路采用64μs 超声波玻璃延时线,其原理是利用输

入、输出换能器实现电—超声波—电信号间的转换。

在梳状滤波器中,延时线的精确延时时间为63.943μs ,延时后的信号

与直通信号在加法器和减法器中运算,完成色度分量的分离任务。

设输入到梳状滤波器的第n 行色度信号为

F(n)=Usin ωSCt+Vcos ωSCt=FU+FV (2―35) 则第n+1行色度信号必然为

F n+1=UsinωSCt-VcosωSCt=FU-FV (2―36)

根据τd的选择知,延时前与延时后的副载波相位相反,若以F′n-1、F′n分别表示经延时后的相应行的色度信号,则

F′n-1=-F n-1=-(UsinωSCt-VcosωSCt)=-FU+FV (2―37) F′n=-Fn=-(UsinωSCt+VcosωSCt)=-FU-FV (2―38) 由此可以求得,第n行输入时,相加电路输出为

Fn+F′n-1=(FU+FV)+(-FU+FV)=2FV (2―39) 相减电路的输出为

Fn-F′n-1=(FU+FV)-(-FU+FV)=2FU (2―40) 同理,在第n+1行输入时,相加电路和相减电路分别输出为:

Fn+1+F′n=-2FV (2―41)

F n+1-F′n=2FU (2―42)

依次类推。由式(2―39)~式(2―42)明显地看出,梳状滤波器有效地分离了两个色度分量FU与±FV。

激光器激励原理

激光器激励原理 —固体激光器 1311310黄汉青 1311343张旭日辅导老师:

摘要:固体激光器目前是用最广泛的激光器之一,它有着一些非常突出的优点。介绍固体激光器的工作原理及应用,更能够加深对其的了解。本论文先从基本原理和结构介绍固体激光器,接着介绍一些典型的固体激光器,最后介绍其在军事国防、工业技术、医疗美容等三个方面的应用及未来的发展方向。 关键词:固体激光器基本原理基本结构应用 1引用 世界上第一台激光器—红宝石激光器(固体激光器)于1960年7月诞生了,距今已有整整五十年了。在这五十年时间里固体激光的发展与应用研究有了极大的飞跃,并且对人类社会产生了巨大的影响。 固体激光器从其诞生开始至今,一直是备受关注。其输出能量大,峰值功率高,结构紧凑牢固耐用,因此在各方面都得到了广泛的用途,其价值不言而喻。正是由于这些突出的特点,其在工业、国防、医疗、科研等方面得到了广泛的应用,给我们的现实生活带了许多便利。 未来的固体激光器将朝着以下几个方向发展: a)高功率及高能量 b)超短脉冲激光 c)高便携性 d)低成本高质量 现在,激光应用已经遍及光学、医学、原子能、天文、地理、海洋等领域,它标志着新技术革命的发展。诚然,如果将激光发展的历史与电子学及航空发展的历史相比,你不得不意识到现在还是激光发展的早期阶段,更令人激动的美好前景将要来到。 2激光与激光器

2.1激光 2.1.1激光(LASER) 激光的英文名——LASER,是英语词组Light Amplification by Stimulated Emission of Radiation(受激辐射的光放大)的缩写[1]。2.1.2产生激光的条件 产生激光有三个必要的条件[2]: 1)有提供放大作用的增益介质作为激光工作物质,其激活粒子(原子、分子或离子)有适合于产生受激辐射的能级结构; 2)有外界激励源,将下能级的粒子抽运到上能级,使激光上下能级之间产生粒子数反转; 3)有光学谐振腔,增长激活介质的工作长度,控制光束的传播方向,选择被放大的受激辐射光频率以提高单色性。 3固体激光器 3.1工作原理和基本结构 在固体激光器中,由泵浦系统辐射的光能,经过聚焦腔,使在固体工作物质中的激活粒子能够有效的吸收光能,让工作物质中形成粒子数反转,通过谐振腔,从而输出激光。 如图1所示,固体激光器的基本结构(有部分结构没有画出)。固体激光器主要由工作物质、泵浦系统、聚光系统、光学谐振腔及冷却与滤光系统等五个部分组成[4]。

电子控制系统的组成和工作过程

电子控制系统的组成和工作过程 一、教学分析 1.教材分析 本课是第一章第二节“电子控制系统的组成和工作过程”。从对比分析两种路灯控制系统的基本组成入手,再通过搭接一个路灯自动控制的电子模型,来学习电子控制系统的基本组成和工作过程,从而为学生学习后面各章提供了一把钥匙。 2.学情分析 学生在通用技术必修2的学习中,已学过关于控制系统的一些概念,例如输入、控制、输出,以及功能模拟方法的含义,但对电子控制系统内部电子元件,例如发光二极管、光敏电阻、三极管等的工作原理不太了解,教师可用通俗的语言补充解释其作用,以利于学生的学习。 二、教学目标 1.知识与技能目标 (1)知道电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.过程与方法目标 (1)通过对两种路灯控制系统方框图的对照,知道电子控制系统的基本组成。 (2)通过搭接一个路灯自动控制的电子模型,加深对电子控制系统组成的理解。 3.情感态度和价值观目标 (1)激发学生动手尝试的兴趣和热爱技术的情感。 (2)提高学生比较及分析电子控制系统的能力。 三、教学重难点 1.重点 (1)电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.难点 电子控制系统内部常见电子元件的工作原理。 四、教学策略 本节课程以多媒体技术为辅助教学手段,通过观察、基本知识讲授、小组探究、分析表达、技术试验、能力展示等教学方法和策略,在教师指导下,通过学生自主探究建构知识和技能。 五、教学准备 通用技术专用教室、多媒体、课件、路灯自动控制模型。 六、课时安排 共1课时 七、教学过程 (一)新课导入 教师展示:路灯自动控制模型 板书:第一章电子控制系统概述 第二节电子控制系统的组成和工作过程

数字梳状滤波器讲解

数字梳状滤波器 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite Video Signal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(Comb Filtering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史: 梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTSC制副载波为3.58MHz),用选频电路将Y/C 信号分开。 内部由LC带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4.43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

CO2激光器原理及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 1引言 (2) 2激光 (2) 2.1激光产生的三个条件 (3) 2.2激光的特点 (3) 2.3激光器 (3) 3 CO2激光器的原理 (5) 3.1 CO2激光器的基本结构 (5) 3.2 CO2激光器基本工作原理 (7) 3.3 CO2激光器的优缺点 (8) 4 CO2激光器的应用 (9) 4.1军事上的应用 (9) 4.2医疗上的应用 (10) 4.3工业上的应用 (12) 5 CO2激光器的研究现状与发展前景 (14) 5.1 CO2激光器的研究现状 (14) 5.2 CO2激光器的发展前景 (15) 6 结束语 (17) 参考文献 (19) 致谢 (20)

摘要:本文从引言出发介绍了CO2激光技术的基本情况,简单介绍了激光和激光器的一些特点,重点介绍了气体激光器中的CO2激光器的相关应用,目前CO2激光器是用最广泛的激光器之一,它有着一些非常突出的高功率、高质量等优点。论文首先介绍了应用型CO2激光器的基本结构和工作原理,着重介绍了应用型CO2激光器在军事、医疗和工业三个主要领域的应用,最后介绍应用型CO2激光器的研究前景和现状。通过这些介绍使得人们能够加深对CO2激光器的了解和认识。 关键词: CO2激光器;基本原理;基本结构;应用; Abstract: This departure from the introduction of CO2 laser technology, introduced the basic situation, briefly introduced some of the characteristics of laser and laser to highlight the CO 2gas laser in laser-related applications, the current CO 2 laser was one of the most extensive laser, it had some very prominent high-power, high quality and so on. Paper introduced the application of CO 2 laser-type basic structure and working principle, focusing on the application type CO 2 laser in the military, medical and industrial application of the three main areas, Finally, applied research prospects for CO 2 laser and status. Through these presentations allowed people to deepen their knowledge and understanding of CO s lasers. Keywords:CO2Laser Basic Principle Basic Structure Application

半导体激光器工作原理及主要参数

半导体激光器工作原理及主要参数 OFweek激光网讯:半导体激光器又称为激光二极管(LD,Laser Diode),是采用半导体材料作为工作物质而产生受激发射的一类激光器。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)。激励方式有电注入、电子束激励和光泵浦激励三种形式。半导体激光器件,一般可分为同质结、单异质结、双异质结。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。半导体激光器的优点在于体积小、重量轻、运转可靠、能耗低、效率高、寿命长、高速调制,因此半导体激光器在激光通信、光存储、光陀螺、激光打印、激光医疗、激光测距、激光雷达、自动控制、检测仪器等领域得到了广泛的应用。 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外 部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。 目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs 二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些 器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。 大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数 十毫安。

柴油发电机组控制系统工作原理

柴油发电机组控系统工作原理 LIXISE 作者: 作者:LIXISE 柴油发电机组控制系统工作原理和算法是相当的复杂,每个电路的设计都有其特定的算法来予以实现。柴油发电机组的控制器系统犹如发电机组的心脏,智能控制系统的使用大大提高了柴油发电机组的运行,保障了柴油发电机组的稳定工作,那么控制系统是通过何种原理和算法来实现呢?柴油发电机组的控制部分,数字式励磁控制器较传统的模拟电路励磁控制器具有精度高,反应快,控制算法适应性强,对于不同特性的电机只要通过调整程序参数就能适应,甚至可以实现更高端的自适应智能控制算法等优点。 一、数字励磁控制器软件实现与算法研究 主要是对数字式励磁控制器的软件和所采用的控制算法进行论述。首先对数字励磁控制器的主程序进行设计,然后对电量参数采集算法和智能励磁控制算法进行研究,并在CPU上进行实现。为了实现精确的数字励磁控制,需要得到实时、精确的电量数据,而要获得实时、精确的电量数据,则需要采用交

流采样方法,并推导出交流采样下各个电量的计算公式,最终编写计算出电量数据的算法程序。交流采样是按一定的规律对被测信号的瞬时值进行采样,再按照一定的数学算法求出被测电量参数的测量方法。下面给出交流电压,交流电流,有功功率,无功功率,功率因素的各种算法中的离散公式。 二、数字式励磁控制器总体设计方案 工作电源:由于微处理器的工作电源要求,我们需要一个5V的稳定直流电源,信号调理电路的运算电路的供电需要一组±12V的直流电源,另外,开关量输出需要驱动继电器,所以需要一个+24V的直流电源,为此我们需要设计一个电源转化模块得到系统正常工作所需的三组DC电源。 三、交流采样锁相环电路 要进行交流采样,通常需要进行同步采样,目前交流采样方式主要有硬件同步采样、软件同步采样和异步采样三种。硬件同步由硬件同步电路向CPU提出中断实现同步。硬件同步电路有多种形式,常见的如锁相环同步电路等。硬件同步采样法是由专门的硬件电路产生同步于被测信号的采样脉冲。它能克服软件同步采样法存在截断误差等缺点,测量精度高。利用锁相频率跟踪原理实

常用激光器简介

几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,其效率为0.17 %,原子激光器的连续波输出功率一般为毫瓦极,其效率约为0.1%,而二氧化碳分子激光器连续波输出功率高达1200瓦,其效率为17%)。 (3)结构简单,使用一般工业气体,操作简单,价格低廉。由此可见,随着研究工作的进展、新技术的使用,输出功率和效率会不断提高,寿命也会不断增长,将会出现一系列新颖的应用。例如大气和宇宙通讯、相干探测和导航、超外

2020年常用激光器简介

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 几种常用激光器的概述 一、CO2激光器 1、背景 气体激光技术自61年问世以来,发展极为迅速,受到许多国家的极大重视。特别是近两年,以二氧化碳为主体工作物质的分子气体激光器的进展更为神速,已成为气体激光器中最有发展前途的器件。 二氧化碳分子气体激光器不仅工作波长(10.6微米)在大气“窗口”,而且它正向连续波大功率和高效率器件迈进。1961年,Pola-nyi指出了分子的受激振动能级之间获得粒子反转的可能性。在1964年1月美国贝尔电话实验室的C.K.N.Pate 研制出第一支二氧化碳分子气体激光器,输出功率仅为1毫瓦,其效率为0.01%。不到两年,现在该类器件的连续波输出功率高达1200瓦,其效率为17 %,电源激励脉冲输出功率为825瓦,采用Q开关技术已获得50千瓦的脉冲功率输出。最近,有人认为,进一步提高现有的工艺水平,近期可以达到几千瓦的连续波功率输出和30~40% 的效率。 2、工作原理 CO2激光器中,主要的工作物质由CO?,氮气,氦气三种气体组成。其中CO?是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020的抽空。氮气加入主要在CO?激光器中起能量传递作用,为CO?激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。CO?分子激光跃迁能级图CO?激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这时受到激发的氮分子便和CO?分子发生碰撞,N2分子把自己的能量传递给CO2分子,CO?分子从低能级跃迁到高能级上形成粒子数反转发出激光。 3、特点 二氧化碳分子气体激光器不但具有一般气体激光器的高度相干性和频率稳定性的特点,而且还具有另外三个独有的特点: (1)工作波长处于大气“窗口”,可用于多路远距离通讯和红外雷达。 (2)大功率和高效率( 目前,氩离子激光器最高连续波输出功率为100瓦,

梳状滤波器工作原理

梳状滤波器工作原理 梳状滤波器对于画面质量是非常重要的一个技术。一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite VideoSignal,即混合视频信号(也称复合信号)。因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器。 图2-6-1 梳状滤波器框图 梳状滤波器主要由延迟线和相加电路、相减电路构成的,用以分离FU 和±FV。一个实际的梳状滤波器电路如图2-6-1所示。其中V1为延时激励放大器,DL为延迟线,T1为裂相变压器、L1为调谐电感,C2为耦合电容。 色度信号F经电容C1耦合加于V1基极,经放大后由集极输出,再经延迟线由A点加至裂相变压器T1上端,取自Rw的直通信号经C2耦合加至T1中点,这样可在输出端分别得到相加和相减输出。将直通信号和延迟信号分别以un和un-1表示,其输出电压的合成原理图如图4-32等效电路所示。调节Rw可保证两信号幅度严格相等,输出分离更彻底。 延迟线DL多为超声延迟线,它由输入、输出压电换能器和延迟介质组成。压电换能器由多晶压电陶瓷薄片制成,当信号加到输入压电换能器两端面的电极上时,输入信号在延迟介质中激起机械振动,形成超声波。延

迟介质多为熔融石英或玻璃,超声波在玻璃中传播速度较低,再将其制作 成如图4-33形式,经多次反射超声波方到达输出换能器还原为电信号,这 样使可大大地缩小延迟线体积。为使超声波按规定的路径传播,减少不规 则反射引起的干扰杂波,在延迟线表面涂有若干吸声点,吸声点所涂吸声 材料为橡胶、环氧树脂和钨粉配制而成。最后用塑料外壳封装,以减小外 界的影响。 2.6.2 PAL 解码器的梳状滤波器 PAL 的特殊电路是梳状滤波器.为使它 能够有效的分离两个色度分量,延时线的 延时时间要有准确的数值. 延时线延迟时 间τd 应选择得既非常接近行周期(64μ s),以便相加、减时是相邻行相应像素间 的加或减;而又必须为副载波半周期的整 数倍,以保证延时前、后色度信号副载波相位相同(0°)或相反(180°)。由 fSC=283.75fH+25Hz 的关系,则行周期TH 与副载波TSC 之间的关系为: τd 可选为副载波半周期TSC/2的567倍或568倍。通常为567, τd 略小于行周期,若为568则略大于行周期 梳状滤波器:作用是将色度信号分离出两个色差分量FU 、FV ,组成包 括一行延时线、加法器和减法器。 传统的色度延时电路采用64μs 超声波玻璃延时线,其原理是利用输 入、输出换能器实现电—超声波—电信号间的转换。 在梳状滤波器中,延时线的精确延时时间为63.943μs ,延时后的信号 与直通信号在加法器和减法器中运算,完成色度分量的分离任务。 设输入到梳状滤波器的第n 行色度信号为 F(n)=Usin ωSCt+Vcos ωSCt=FU+FV (2―35) 则第n+1行色度信号必然为

电控系统工作原理

电控系统工作原理 一、电控系统工作原理 随着科技进步和电子工业的发展,国产轿车采用电子控制燃油喷射系统的比率逐年增加,早在2000年,一汽—大众就宣布停止化油器式发动机的生产,产品全部采用电子控制燃油喷射系统。最早研究和开发汽油喷射式发动机的是德国博世(Bosch)公司,汽油喷射技术首先应用于飞机发动机,随着对汽车节能降耗、降低排放和提高舒适性、增加动力性的要求,这一技术被应用于汽车发动机上。目前,博世公司在这一领域的技术和产品仍处于世界领先地位。捷达王轿车就采用了博世公司最新开发的Motronic M3.8.2发动机电控管理系统,并根据中国的国情做了改进和匹配。Motronic M3.8.2发动机电控管理系统为电子控制多点燃油顺序喷射系统,闭环控制,其突出特点是喷油量及点火时刻综合控制。该系统由电子控制单元、传感器、执行器等组成,传感器为燃油喷射系统和点火系统所共用。 1.Motronic M3.8.2发动机电控管理系统的组成及工作原理 Motronic M3.8.2电控系统由电控单元(即ECU,俗称电脑)、发动机转速传感器(也称曲轴位置传感器)、空气流量传感器、节流阀体、进气温度传感器、冷却液温度传感器(发动机水温传感器)、k传感器(即氧传感器)、爆震传感器、相位传感器(也称凸轮轴位置传感器或霍尔传感器)、双点火线圈、油压调节器和喷油器等组成。 驾驶员通过节气门(俗称油门)控制发动机进气量,控制单元通过节气门位置传感器得知节气门开度,再综合发动机转速、空气流量、进气温度、λ探测值等各传感器及电子开关提供的信息,经分析、计算,确定出最佳喷油量和点火时刻,向喷油器和点火线圈发出喷油和点火指令。发动机转速和空气流量信号是ECU计算基本喷油量的主信号,ECU再根据进气温度传感器、冷却液温度传感器、A传感器、爆震传感器和节气门位置等信号对喷油量进行必要的修正,确定出实际喷油量,然后根据转速传感器得到的曲轴位置信号和相位传感器检测到的1缸压缩上止点信号,适时地向喷油器和点火线圈发出动作指令。 发动机工作可分为如下工况: (1)起动工况 发动机被起动机带动运转,当转速低于某值时,ECU识别出发动机处于起动工况,根据转速传感器、凸轮轴位置传感器、节流阀位置传感器、冷却液温度传感器、进气温度传感器等提供的信号,以及ECU中存储的最佳控制参数,计算出起动喷油量、点火角度和怠速直流电机的位置,并驱动喷油器和点火动力组件动作,使节气门处于起动位置,保证发动机顺利起动。发动机起动后,当转速超过某值时,则起动工况结束。捷达王轿车起动时,司机无需踏油门踏板、节气门会自动处于最佳起动位置。 (2)怠速工况 发动机起动后,怠速运转时,节流阀体内的怠速开关触点闭合,ECU根据此信号得知发动机处于怠速工况,同时根据冷却液温度传感器信号计算出目标转速(存储在ECU中的理论转速,温度越低,理论转速越高,以保证发动机在低温时稳定运转并快速暖机),并与实际转速进行比较,根据转速差的正负和大小,使节气门处于目标位置,以保证发动机怠速转速达到目标值。KCU同时还通过改变点火提前角来稳定发动机怠速。捷达王发动机热车后怠速转速理论值设置为840r/mjn,怠速点火提前角设置为上止点前12°,这些值存储在ECU中,人工不能调整。 (3)运行工况 运行工况又包括部分负荷、全负荷、加减速过渡及被拖动等工况。ECU根据转

梳状滤波器的设计

NANHUA University 课程设计(论文) 题目梳状滤波器 学院名称电气工程学院 指导教师陈忠泽 班级电子091班 学号 20094470128 学生姓名周后景 2013年 1 月

摘要 现如今随着电子设备工作频率范围的不断扩大,电磁干扰也越来也严重,接收机接收到的信号也越来越复杂。为了得到所需要频率的信号,就需要对接收到的信号进行过滤,从而得到所需频率段的信号,这就是滤波器的工作原理。对于传统的滤波器而言,如果滤波器的输入,输出都是离散时间信号,则该滤波器的冲激响应也必然是离散的,这样的滤波器定义为数字滤波器。它通过对采样数据信号进行数学运算来达到频域滤波的目的。滤波器在功能上可分为四类,即低通(LP)、高通(HP)、带通(BP)、带阻(BS)滤波器等,每种又有模拟滤波器(AF)和数字滤波器(DF)两种形式。对数字滤波器,从实现方法上,由有限长冲激响应所表示的数字滤波器被称为FIR滤波器,具有无限冲激响应的数字滤波器增称为IIR滤波器。在MATLAB工具箱中提供了几种模拟滤波器的原型产生函数,即Bessel低通模拟滤波器原型,Butterworth滤波器原型,Chebyshev(I型、II型)滤波器原型,椭圆滤波器原型等不同的滤波器原型。本实验需要产生滤除特定频率的梳状滤波器 关键字: MATLAB,,梳状滤波器

引言 随着社会的发展,各种频率的波都在被不断的开发以及利用,这 就导致了不同频率的波相互之间的干扰越来越严重,因此滤波器的市 场是庞大的。所以各种不同功能滤波器的设计就越来越重要,在此要 求上实现了用各种不同方式来实现滤波器的设计。本设计通过MATLAB 软件对IIR 型滤波器进行理论上的实现。 设计要求 设计一个梳状滤波器,其性能指标如下,要求阻带最小衰减为 dB As 40=,N=8..0=ω?8rad π 手工计算 因为梳状滤波器的转移函数公式为H(Z)=b N N eZ Z ----11 ,现已知N=8,As=40dB, 2498.0=ω?rad π, H(jw e )=b jwN jwN e e ---- 11,b=21 +因为As=60Db,故)(jw e H =0.01 H(jw e )=b jwN e e --- 11 = 21 +)sin (cos 1)sin (cos 1wN j wN wN j wN ---- =

控制系统的工作过程及方式

控制系统的工作过程与方式 一、教学目标 1.通过案例分析,归纳控制系统的基本特征; 2.了解开环控制和闭环控制的特点; 3.分析典型案例,熟悉简单的开环控制系统的基本组成和简单的工作过程 4.学会用框图来归纳控制系统实例的基本特征,逐步形成理解和分析简单开环和闭环控制系统的一般方法 二、教学内容分析 本节是“控制与设计”第二节的内容,其内容包括“控制系统”、“开环控制系统与闭环控制系统的组成及其工作过程”是学生在学习控制在我们的生活和生产中的应用后,进一步学习有关控制系统的组成、工作方式以及两种重要的控制系统:开环控制和闭环控制,并熟悉它们工作原理和作用。 生活中不乏简单控制系统的应用,人们对此往往象看待日出日落一类自然景色般的习以为常。本部分内容的学习,正是要引导学生,从技术的角度、用控制的思维看周围的存在,分析其道理,理解其基本的组成和工作过程。 本课教学内容,从学生生活经验出发,从实例分析入手,归纳出对控制系统的一般认识,以及根据控制系统方式分类的开环控制系统和闭环控制系统两类,并侧重对开环控制系统的工作过程、方框图、重要参数进行分析。本课要解决的重点是:开环控制系统的工作过程分析,用方框图描述开环控制系统的工作过程。 三、学习者分析 学生在前面的学习中已经学习和分析了控制在生活生产中的应用,获得了有关控制及其应用的初步感性认识和体验,但是对控制的基本工作方式和工作机理还缺乏了解,他们对进一步了解控制系统的知识是有探究的欲望的。结合前面的应用案例分析,进一步分析案例中控制是如何工作的,以及有怎样的工作方式,是学生学习的最近发展区。 四、教学策略: 1. 教法: 本章的教学结合具体的教学内容和目标我们采用“案例情景—机理分析—总结归纳-认识提升”的模式展开。在教学中把知识点的教与学置于具体的案例情景当中,通过丰富而贴近生活的案例使学生从生活体验到理性分析的思维升华过程。同时关注学生能否用不同的语言表达、交流自己的体验和想法。通过富有吸引力的现实生活中的问题,使学生回想和体会控制系统的工作过程,激发学生的好奇心和主动学习的欲望。让学生本着“回想—分析—联想—猜想”的思维过程,对教学内容进行步步展开,使学生亲历自主探索和思维升华的过程。 2. 学法: 鼓励学生自主探究和合作交流,引导学生自主观察、总结,在与他人的交流中丰富自己的思维方式,获得不同的体验和不同的发展。注意引导学生体会控制系统的工作过程和方式,特别是引导学生会学用系统框图来抽象概括控制系统、帮助分析和理解控制系统的组成及其工作过程的方法 五、教学资源准备 多媒体设备、相关图片资料、技术试验工具、材料等

激光的原理及激光器分类

激光器的原理及分类 一、基础原理 量子理论认为,所有物质都是由各种微观”粒子”组成,如分子,原子,质子,中子,电子等。在微观世界里,各种粒子都有其固有的能级结构。当一个粒子从高能级掉到低能级时,根据能量守恒定律,它要把两个能级相差部分的能量释放出来,通常这个能量以光和热两种形式释放出来。 二、自发辐射、受激辐射 1、自发辐射 普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。但是处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量=E2-E1。过程各自独立、互补关联,所有辐射的光在发射方向上是无规律的

射向四面八方,并且频率不同、偏振状态和相位不同。 2、受激辐射 在原子中也存在这样一些特定高能级,一旦电子被激发到这个高能级之上,却由于不满足跃迁的条件,发生跃迁的几率很低,电子能够在高能级上的时间很长,就所谓的亚稳定状态。但在能在外界光场的照射下发生往下跃迁,并且向下跃迁时释放出一个与射入光场相同的光子,在同一个方向、有同一个波长。这就是受激辐射,激光正是利用这一原理激发出来。 二、粒子数反转 通过受激辐射出来的光子,不仅可以引起其他粒子受激辐射,也可以引起受激吸收。只有在处于高能级的原子数量大于处于低能级原子数时,所产生的受激辐射才能大于受激吸收。但是在自然条件下,原子都是都处于稳定的基态,只能通过技术手段将大量的原子都调整到高能级的状态,才能有多余的辐射向外产生。这个技术叫粒子数反转。

欧洲总线EI控制系统的工作原理及应用

欧洲总线EIB控制系统的工作原理及应用 一、EIB 系统工作原理 1、EIB 总线系统的发展进程 20 世纪80 年代中期,随着微电子技术和通讯技术的迅猛发展,自动控制领域尤其是工业界的过程控制领域对现场底层设备之间的通讯和控制问题提出了越来越高的要求,促使了控制技术的又一次大变革,即现场总线技术的产生。现场总线技术从出现开始,就以其在性能和结构上的巨大优势吸引了专家和用户的注意,众多知名的自动化集团公司纷纷独自或联合推出了各有特色的现场总线协议标准。这些优秀的总线标准在全世界得到了广泛的应用。 相对于对实时性、精确性及通讯效率等要求极高的工业自动化领域而言,建筑自动化领域的要求相对要低一些,从经济成本角度考虑,上面那些造价昂贵的现场总线技术并不非常适合于建筑领域。但是作为建筑本身的发展而言,随着用户对建筑提出的功能要求越来越高,满足这些功能而使用的现代化技术也日益复杂,在所谓的智能建筑中就集成了现代的通讯技术、微电子技术等多项尖端技术。这些技术的应用,不仅给建筑带来了较重的建设成本压力,其运行和维护的管理成本也越来越高,正是建筑对安全性、经济性、舒适性、应变性等各方面的不断提高的要求成为建筑领域的现场总线技术标准――欧洲安装总线(European Installation Bus)技术产生和发展的基础。 1990 年,欧洲著名的电气产品制造商为核心组成联盟,制定了

EIB 技术标准并成立了中立的非商业性组织EIBA(EIB Associate,欧洲安装总线协会),总部设在比利时的布鲁塞尔。这个协会的成立极大的推动了EIB 标准的发展,迄今为止,已有一百多家制造厂商成为了EIBA 的会员,按照开放的EIB 标准生产能够相互兼容和交互操作的各种元器件,各类产品品种多达4000 多种,几乎覆盖了建筑中各个行业和各种用途的需要。经过十多年的发展,EIB 不仅成为事实上的欧洲标准,也被成功地引入世界各地,2000 年时在IEC 国际现场总线标准大会上被作为提名国际标准之一。 1999 年,EIB 技术开始被引入中国,在短短的三年多时间内,以其优越的性能和质量获得了很大的成功,2001 年 3 月,为配合EIB 技术的推广,在同济大学建立了亚洲规模最大的EIB 认证技术培训中心。 2、EIB 总线系统基本原理 现代的建筑离开电是无法想象的。无论是传统的照明和插座,还是现代化的通讯、安保等技术,都离不开电源的供应。EIB 技术本身在传统电气安装技术基础上引入现场总线概念而发展起来的,它对传统电气安装技术而言是一次突破性的革命,它具有现场总线技术的核心优点如系统结构简单,设计、安装和维护方便,全分散控制等,解决了建筑由于涉及工种和功能过多而导致系统过于独立和操作复杂的问题,是当今技术领域非常优秀的技术标准。 2.1 总线传输介质

前馈控制系统的基本原理

前馈控制系统 前馈控制系统的基本原理 前馈控制的基本概念是测取进入过程的干扰(包括外界干扰和设定值变化),并按其信号产生合适的控制作用去改变操纵变量,使受控变量维持在设定值上。图2.4-1物料出口温度θ需要维持恒定,选用反馈控制系统。若考虑干扰仅是物料流量Q ,则可组成图2.4-2前馈控制方案。方案中选择加热蒸汽量s G 为操纵变量。 图2.4-1 反馈控制 图2.4-2 前馈控制 前馈控制的方块图,如图2.4-3。 系统的传递函数可表示为: )()()()()(1S G S G S G S Q S Q PC ff PD += (2.4-1) 式中)(s G PD 、)(s G PC 分别表示对象干扰 道和控制通道的传递函数; )(s G ff 为前馈控 图2.4-3 前馈控制方块图 制器的传递函数。 系统对扰动Q 实现全补偿的条件是:

0)(≠s Q 时,要求0)(=s θ (2.4-2) 将(1-2)式代入(1-1)式,可得 )(s G ff =) ()(S G S G PC PD - (2.4-3) 满足(1-3)式的前馈补偿装置使受控变量θ不 受扰动量Q 变化的影响。图2-4-4表示了这 种全补偿过程。 在Q 阶跃干扰下,调节作用c θ和干扰作用d θ的响应曲线方向相 反,幅值相同。所以它们的合成结果,可使θ达到 图2.4-4 前馈控制全补偿示意图 理想的控制连续地维持在恒定的设定值上。显然,这种理想的控制性能,反馈控制系统是做不到的。这是因为反馈控制是按被控变量的偏差动作的。在干扰作用下,受控变量总要经历一个偏离设定值的过渡过程。前馈控制的另一突出优点是,本身不形成闭合反馈回路,不存在闭环稳定性问题,因而也就不存在控制精度与稳定性矛盾。 1.前馈控制与反馈控制的比较 图 2.4-5 反馈控制方块图 图 2.4-6 前馈控制方块图

梳状滤波器的设计与应用

梳状滤波器的设计与应用 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF 射频接口和AV接口),它所能接收的信号叫CompositeVideoSignal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite (混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(CombFiltering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因

有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史:梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTS C制副载波为3.58MHz),用选频电路将Y/C信号分开。内部由LC 带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4. 43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

控制系统工作原理

一、控制系统工作原理 1、控制系统原理:(控制面板图如下) (1)、“电源”按钮:按下该按钮,控制系统通电,再次按该按钮,控制器断电; (2)、“操作方式”选择开关:用于选择“手动”和“自动”两种工作状态,“手动”状态下,调整电机旋转方向、速度、焊枪高度及起弧位置等,为正常焊接做准备;“自动”状态下,进行正常焊接流程。 (3)、“正转/停/反转”开关:“手动”状态下,将该旋钮旋转到“正转”位置,电机正向旋转;在“停”位置时,电机停止旋转;反知,当旋钮指向“反向”位置时,电机作反向旋转。 (4)、“旋转速度”旋钮用于调节电机转动速度,用户根据工件直径大小及焊接工艺调整电机速度。 (5)、“顶紧”按钮:电动该按钮,尾座升出,将工件顶紧;再次点动该按钮,尾座缩回,将工件松开。 (6)、“焊枪升降”按钮:“手动”状态下点动该按钮,焊枪下降;再次点动该按钮,焊枪上升。 (7)、“启动”按钮:再“自动”状态下,点动该按钮,进入自动焊接程序。 (8)、“急停”按钮,在正常焊接工程中出现紧急情况时,按下该开关,将系统停止。

2、参数设置

文本开机画面,点“↓”键,叶面跳转到 该叶面中, “电机采样脉冲”用于设置电机旋转角度,该脉冲数目与电机旋转的实际角度成正比。 “电机启动延时”:该参数指焊接工程中,从焊枪下降到位到电机开始旋转的那段时间; “焊机启动延时”:该参数指焊接工程中,从焊枪下降到位到焊机开始起弧的那段时间; 再次点击文本面板上的“↓”键,页面跳转到下图: “填丝延时”:在用到自动氩弧焊填丝的情况下,该参数指从焊枪下降到位到自动填丝机开始送丝的那段时间; “停丝延时”:即在焊接工程中,电机工作至设定角度到自动填丝机停止送丝的那段时间。

CO2激光器基本原理.

CO2 激光器基本原理 CO2 激光器基本原理、机构介绍 CO2激光器效率高,不造成工作介质损害,发射出10.6μm波长的不可见激光,是一种比较理想的激光器。按气体的工作形式可分封闭式及循环式,按激励方式分电激励,化学激励,热激励,光激励与核激励等。在医疗中使用的CO2 激光器几乎百分之百是电激励。 CO2激光器的工作原理:与其它分子激光器一样,CO2激光器工作原理其受激发射过程也较复杂。分子有三种不同的运动,即分子里电子的运动,其运动决定了分子的电子能态;二是分子里的原子振动,即分子里原子围绕其平衡位置不停地作周期性振动——并决定于分子的振动能态;三是分子转动,即分子为一整体在空间连续地旋转,分子的这种运动决定了分子的转动能态。分子运动极其复杂,因而能级也很复杂。 CO2分子为线性对称分子,两个氧原子分别在碳原子的两侧,所表示的是原子的平衡位置。分子里的各原子始终运动着,要绕其平衡位置不停地振动。根据分子振动理论,CO2有三种不同的振动方式:①二个氧原子沿分子轴,向相反方向振动,即两个氧在振动中同时达到振动的最大值和平衡值,而此时分子中的碳原子静止不动,因而其振动被叫做对称振动。②两个氧原子在垂直于分子轴的方向振动,且振动方向相同,而碳原子则向相反的方向垂直于分子轴振动。由于三个原子的振动是同步的,又称为变形振动。③三个原子沿对称轴振动,其中碳原子的振动方向与两个氧原子相反,又叫反对称振动能。在这三种不同的振动方式中,确定了有不同组别的能级。 CO2激光的激发过程:CO2激光器中,主要的工作物质由CO2,氮气,氦气三种气体组成。其中CO2是产生激光辐射的气体、氮气及氦气为辅助性气体。加入其中的氦,可以加速010能级热弛预过程,因此有利于激光能级100及020 的抽空。氮气加入主要在CO2激光器中起能量传递作用,为CO2激光上能级粒子数的积累与大功率高效率的激光输出起到强有力的作用。 CO2分子激光跃迁能级图 CO2激光器的激发条件:放电管中,通常输入几十mA或几百mA的直流电流。放电时,放电管中的混合气体内的氮分子由于受到电子的撞击而被激发起来。这

相关主题
文本预览
相关文档 最新文档