当前位置:文档之家› 研究生矩阵论课后习题答案全15章.pdf

研究生矩阵论课后习题答案全15章.pdf

研究生矩阵论课后习题答案全15章.pdf
研究生矩阵论课后习题答案全15章.pdf

2012矩阵论复习题

2012矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有 j i i T +=)( j i j T -=2)( 1)确定T 在基},{j i 下的矩阵; 2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

南航矩阵论2013研究生试卷及答案

南京航空航天大学2012级硕士研究生

二、(20分)设三阶矩阵,,. ????? ??--=201034011A ????? ??=300130013B ???? ? ??=3003003a a C (1) 求的行列式因子、不变因子、初等因子及Jordan 标准形; A (2) 利用矩阵的知识,判断矩阵和是否相似,并说明理由. λB C 解答: (1)的行列式因子为;…(3分)A 2121)1)(2()(,1)()(--===λλλλλD D D 不变因子为; …………………(3分)2121)1)(2()(,1)()(--===λλλλλd d d 初等因子为;……………………(2分) 2)1(,2--λλJordan 标准形为. ……………………(2分) 200011001J ?? ?= ? ??? (2) 不相似,理由是2阶行列式因子不同; …………………(5分) 0,a = 相似,理由是各阶行列式因子相同. …………………(5分) 0,a ≠共 6 页 第 4 页

三、(20分)已知线性方程组不相容. ?? ???=+=+++=++1,12,1434321421x x x x x x x x x (1) 求系数矩阵的满秩分解; A (2) 求广义逆矩阵; +A (3) 求该线性方程组的极小最小二乘解. 解答:(1) 矩阵,的满秩分解为 ???? ? ??=110021111011A A . …………………(5分)10110111001101A ??????=?????????? (2) . ……………………(10分)51-451-41-52715033A +?? ? ?= ? ??? (3) 方程组的极小最小二乘解为. …………(5分)2214156x ?? ? ?= ? ??? 共 6 页 第 5 页

矩阵论武汉理工大学研究生考试试题科学硕士

武汉理工大学研究生考试试题(2010) 课程 矩阵论 (共6题,答题时不必抄题,标明题目序号) 一,填空题(15分) 1、已知矩阵A 的初级因子为223 ,(1),,(1)λλ-λλ-,则其最小多项式为 2、设线性变换T 在基123,,εεε的矩阵为A ,由基123,,εεε到基123,,ααα的过渡矩阵为P ,向量β在基123,,εεε下的坐标为x ,则像()T β在基123,,ααα下的坐标 3、已知矩阵123411102101,,,00113311A A A A -????????==== ? ? ? ?--???????? ,则由这四个矩阵所生成的子空间的维数为 4、已知0100001000011 000A ?? ? ?= ? ???,则1068A A A -+= 5、已知向量(1,2,0,)T i α=--,21i =-,则其范数 1α= ;2α= ;∞α= ; 二,(20)设1112112121220a a V A a a a a ??????==-=?? ?????? ?为22?R 的子集合, 1、证明:V 是22?R 的线性子空间; 2、求V 的维数与一组基; 3、对于任意的1112111221222122,a a b b A B a a b b ????== ? ????? V ∈,定义 2222212112121111234),(b a b a b a b a B A +++= 证明:),(B A 是V 的一个内积; 4、求V 在上面所定义的内积下的一组标准正交基。 三、(15分)设{} 23210[](),0,1,2i F t f t a t a t a a R i ==++∈=为所有次数小于3的实系数 多项式所成的线性空间,对于任意的22103()[]f t a t a t a F t =++∈,定义:

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

研究生矩阵论课后习题答案全习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() ( ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1 =m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1, =, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ,,,,21m S S S , 其中m m m A c A c c S +++= 10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() ( ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21 ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1 =, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a 2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a 21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A 2121) ()(2)(1)()1(τ,

硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷) 2013~2014学年第一学期 课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页 特别注意:所有答案必须写在答题册上,答在试题纸上一律无效 一、判断题(每小题2分,共10分) 1. 方阵 A 的任意一个特征值的代数重数不大于它的几何重数。 见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基 3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。 4. n 阶λ-矩阵()A λ是可逆的充分必要条件是 ()A λ的秩是n . 见书60页,需要要求矩阵的行列式是一个非零的数 5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根. 二、填空题(每小题3分,共27分) (6)210021,003A ?? ?= ? ???则A e 的Jordan 标准型为223e 1 00e 0 ,00 e ?? ? ? ?? ?。 首先写出A e 然后对于若当标准型要求非对角元部分为1. (7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ?? ?- ? ?-+?? 见书61-63页,将矩阵做变换即得

研究生2008矩阵理论试卷

矩阵理论试卷(A )(2008级) (共1页) 成绩 学院班级__ _; 姓名___ __; 学号_ __ __ 1 (15分)给定 2222{()|}ij ij R A a a R ??==∈(数域R 上二阶实方阵按通常矩阵的加法与数乘构成的线性空间)的子集 221122i j {()|0, } i j V A a a a a R ?==+=∈ (1)证明V 是22R ?的子空间;(2)求V 的维数和一组基;(3)求3253A ??= ?-?? 在所求基下的坐标。 2 (15分)设α为n 维欧氏空间V 中的单位向量,对V 中任意一向量x , 定义线性变换: ()2(,)T T x x x αα=-, (1)证明:T 为正交变换; (2)证明 T 对应特征值1有n-1 个线性无关的特征向量;(3)问T 能否在某组基下的矩阵为对角阵,说明理由。 3 (15分)设矩阵010120110A ?? ?=- ? ?-?? (1)求A 的若当标准形;(2)求A 的最小多项式;(3)计算532()45g A A A A E =+-+。 4(10分)设3 R 中的线性变换T 如下:123122323(,,)(2,,) ; ()i T x x x x x x x x x x R =--+∈ (1) 写出T 在基T T T 123 =(1, 1, 0),=(0, 1, 1), =(0, 0, 1)βββ下的矩阵;(2) 求3()T R 及()Ker T 。 5 (10分)已知多项式矩阵 2210007(2)00()00(1)00 00(1)(5)A λλλλλλλ-?? ?++ ?= ?- ?++??,求()A λ的初等因子及史密斯标准形。 6(10分)在欧氏空间4R 中, 对任意两个向量12341234(,,,) , (,,,),T T a a a a b b b b αβ==定义内积 1122334(, )2a b a b a b a b αβ=+++ 求齐次方程组1234123 20 = 0x x x x x x x +-+=??+-? 的解空间的一组标准正交基。 7 (10分)(1) 设A 为可逆矩阵, 证明对任何矩阵的算子范数, 都有11||||||||--≥A A 。 (2)设???? ? ??--+-=21512363 11684i i A , 利用(1)的结论分别估计11||||-A 和∞-||||1A 的下界。 8(15分)已知200111113?? ?= ? ?-?? A , 求矩阵函数()e t f =A A 。

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

矩阵论华中科技大学课后习题答案

习题一 1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11 {()| 0}n ij n n ii i V A a a ?====∑,对矩阵加法和数乘运算; (2)2{|,}n n T V A A R A A ?=∈=-,对矩阵加法和数乘运算; (3)33V R =;对3R 中向量加法和如下定义的数乘向量:3 ,,0R k R k αα?∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。 解: (1)、(2)为R 上线性空间 (3)不是,由线性空间定义,对0α?≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。 2.求线性空间{|}n n T V A R A A ?=∈=的维数和一组基。 解:一组基 100 010 10 101010000000100............ ......0010010?? ???? ?????? ???? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ?? ? ? ?? ?? ? ? ? ?????? dim W =n ( n +1)/2 3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。 证明:因为dim U 1=dim U 2,故设 {}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基 2U γ?∈,有 ()12 r X γγβββ= 而 ()()12 12r r C αααβββ=,C 为过渡矩阵,且可逆 于是 ()()()112 12121r r r X C X Y U γγγγβββαααααα-===∈ 由此,得 21 U U ?

研究生矩阵论试题与答案

中国矿业大学 级硕士研究生课程考试试卷 考试科目矩阵论 考试时间年月 研究生姓名 所在院系 学号 任课教师

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 33644421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A (1)能与对角矩阵相似;(2)特征值全为实数。

南航07-14矩阵论试卷

南京航空航天大学07-14硕士研究生矩阵论试题 2007 ~ 2008学年《矩阵论》 课程考试A 卷 一、(20分)设矩阵 ?? ??? ??-----=111322211 A , (1)求A 的特征多项式和A 的全部特征值; (2)求A 的行列式因子、不变因子和初等因子; (3)求A 的最小多项式,并计算I A A 236 -+; (4)写出A 的Jordan 标准形。 二、(20分)设2 2?R 是实数域R 上全体22?实矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。 (1)求2 2?R 的维数,并写出其一组基; (2)设W 是全体22?实对称矩阵的集合, 证明:W 是2 2?R 的子空间,并写出W 的维数和一组基; (3)在W 中定义内积W B A BA tr B A ∈=,),(),(其中,求出W 的一组标准正交基; (4)给出22?R 上的线性变换T : 22,)(?∈?+=R A A A A T T 写出线性变换T 在(1)中所取基下的矩阵,并求T 的核)(T Ker 和值域)(T R 。 三、(20分) (1)设 ? ??? ??-=121312A ,求1A ,2A ,∞A ,F A ; (2)设n n ij C a A ?∈=)(,令 ij j i a n A ,*max ?=, 证明: *是 n n C ?上的矩阵范数并说明具有相容性; (3)证明:*2*1 A A A n ≤≤。 四、(20分)已知矩阵 ?????? ? ??-=10010001111 1A ,向量 ??? ??? ? ??=2112b , (1)求矩阵A 的QR 分解;

华中科技大学硕士研究生矩阵论2012年试题

矩陣論2012年試題 一、 填空題:(每個空3分,共27分) 1、設矩陣??????????+---=i i i i i A 1013122131,??????????=111X ,其中1-=i ,則 ______,1=AX .______ 1=A 2、設矩陣1000030012-???? ??????=P P A ,則______;)(dim =A N .______)(λA m 3、矩陣???? ??????=000a a a a a a A ,則a 滿足條件______時,矩陣冪級數∑∞=0k k A 收斂. 4、論矩陣???? ??????-??????????=221132332211A ,則A 的LDV 分解為.______= 5、設???? ??????=3/10002/10001A ,)sin(A 的Jordan 矩陣______;)sin(=A J .______)sin(lim =∞>-n n A 6、設??????=201a A ,?? ????=1203B ,則矩陣方程0=+XB AX 有非零解的條件是.______≠a 二、(15分)設線性空間3R 上的線性變換T 在基},,{321e e e 下的變換矩陣為 ???? ??????=3332312322 211312 11a a a a a a a a a A , (1) 求變換T 在基},3,{321e e e 下的變換矩陣. (2) 求變換T 在基},,{3211e e e e +下的變換矩陣.

三、(15分)設矩陣???? ??????=000012A (1)求矩陣A 的奇異值分解. (2)求矩陣A 的P M -廣義逆+A . 四、(15分)設?? ????????????????????????????=111,011L W 是空間3R 的子空間, (1)求空間3R 上的正交投影變換P ,使得P 的象空間.)(W P R = (2)求空間3R 的向量T ]3,2,1[=α在投影變換P 下的象. 五、(15分)設???? ??????---=502613803A ,計算矩陣函數.At e 六、證明題: (1)(7分)設A 是可逆矩陣,n σ是矩陣A 的最小奇異值,證明 n A σ121 =- (2)(6分)設矩陣A 和B 都是n 階方正,證明)()()(B rank A rank B A rank ?=?

矩阵论课后习题 1.1

习 题 1.1 1. 解: 除了由一个零向量构成的集合{}θ可以构成线性空间外,没有两个和有限(m )个向量构成的线性空间,因为数乘不封闭(k α有无限多个,k ∈p 数域). 2. 解:⑴是;⑵不是,因为没有负向量;⑶不是,因为存在两向量的和向量处在第二或第四象限,即加法不封闭;⑷是;⑸不是,因为存在二个不平行某向量的和却平行于某向量,即加法不封闭. 3. 解:⑴ 不是,因为 当k ∈Q 或R 时,数乘k α不封闭;⑵ 有 理域上是;实数域上不是,因为当k ∈R 时,数乘k α不封闭.⑶ 是;⑷ 是;⑸ 是;⑹ 不是,因为加法与数乘均不封闭. 4. 解:是,因为全部解即为通解集合,它由基础解系列向量乘以相应常数组成,显然对解的加法与数乘运算满足二个封闭性和八条公理. 5. 解:(1)是线性空间;(2)不是线性空间(加法不封闭;或因无零向量). 6. 解:(1)设A 的实系数多项式()A f 的全体为 (){} 正整数m R a A a A a I a A f i m m , 1 ∈++=

显然,它满足两个封闭性和八条公理,故是线性空间. (2)与(3)也都是线性空间. 7. 解:是线性空间.不难验证t sin ,t 2sin ,…,nt sin 是线性无关的,且任一个形如题中的三角多项式都可由它们惟一地线性表示,所以它们是V 中的一个组基.由高等数学中傅里叶(Fourier )系数知 ? = π π 20 sin 1 itdt t c i . 8. 解:⑴ 不是,因为公理2)'不成立:设r=1, s=2, α=(3, 4), 则 (r+s) (3, 4)= (9, 4), 而 r (3, 4) ⊕ s (3, 4)=(3,4) ⊕(6, 4)= (9, 8), 所以 (r+s) α≠r α⊕s α. ⑵ 不是,因为公理1)不成立:设α= (1,2) , β= (3,4) , 则α⊕β=(1,2) ⊕ (3,4) = (1,2), β⊕α= (3,4) ⊕ (1,2) = (3,4) , 所以 α⊕β≠β⊕α. ⑶ 不是,因为公理2)'不成立:设 r=1, s=2, α=(3,4) , 则 (r+s) α=3 (3, 4)= (27, 36) 而 r α⊕s α=1 (3,4)⊕2 (3,4)=(3, 4)⊕(12, 16)= (15, 20), 于是 (r+s) α≠ r α⊕s α. ⑷ 是. 9. 证 若∈βα,V ,则 ()()()()()()()β βααββααββααβαβαβα+++=+++=+++=+++=+=+) 11(111111222

哈尔滨工程大学矩阵论答案模板

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 哈尔滨工程大学研究生试卷 ( 年 秋 季学期) 课程编号: 30003 课程名称: 矩阵论 一.填空( 每题3分, 共45分) 1.已知3R 中的两组基: [][][]T T T 221,010,101321===ααα [][][]T T T 111,011,001321===βββ, 则由基321,,ααα到基 321,,βββ的过渡矩阵为?? ?? ??????--011132122 。 2.设, n R W ?} 0 ),,,{(2121=+++=n T n x x x x x x W , 则=W dim n-1 。 3.线性变换T 在基()()()1,1,0,1,0,1,1,1,1321=-=-=ηηη下的矩阵 A =???? ? ??-121011101, 则T 在基()()()1,0,0,0,1,0,0,0,1321===εεε下的矩阵为??? ? ? ??--203022211 4.设33 33 {}T S A R A A R ??=∈=-?, 则S 的一组基底为: ???? ? ??-????? ??-????? ??-010100000 , 001000100 , 000001010。 5.设V 为数域P 上的n 维线性空间, 且),,,(21n L V ααα =, 若V ∈α在基},,,{21n ααα 下的坐标为)1,2,,1,( -n n ,则α在基 },,,{21211n αααααα++++ 下的坐标为 T )1,1,1( 。 6.设3][x P 是内积空间, 3][)(),(x P x g x f ∈?, 定义内积 ?=2 )()())(),((dx x g x f x g x f 则内积在基 2)1( , 1,1--x x 下的矩阵为 ??????? ????????? =320 32032 3202A 7.由向量T )1,2,1(1=α与T )2,1,1(2-=α生成的3R 的子空间 ),(21ααspan V =的正交补=⊥V )}3,1,5{(-span 8.设122212221A ?? ??=?????? , 1-=λ为A 的一个特征值, 则λ的几何重复度 =λa 2 。 9.设,,O A C A k n n =∈?则=+)det(I A 1 。

级研矩阵论试题与答案

中国矿业大学 08级硕士研究生课程考试试卷 考试科目矩阵论 考试时间2008年12月 研究生姓名 所在院系 学号 任课教师 中国矿业大学研究生培养管理科印制

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 336 44421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A L L L M M M M L (1)能与对角矩阵相似;(2)特征值全为实数。

2014年矩阵论考试样卷(研究生)

同济大学课程考核试卷(样卷) 2013—2014学年第一学期 命题教师签名: 审核教师签名: 课号:2102001 课名:矩阵论 考试考查:考试 此卷选为:期中考试( )、期终考试( √ )、重修( )试卷 (注意:本试卷共七大题,三大张,满分100分.考试时间为120分钟.要求写出解题过程,否则不予计分) 一、填空与选择题(4?6分) 1.设矩阵134251122A --?? ? =-- ? ??? 的三角分解A LR =,则单位下三角形矩阵L = 2.设5阶矩阵A 的特征矩阵E A λ-的初等因子是2 ,,2,2λλλλ--,则A 的最小多项式 ()m λ= 。 3.设T 是22 R ?上的线性变换:对任意2 2R ?∈A ,()2T T A A A =+,则T 的特征值 是 。 4.设A 为4阶实矩阵,线性方程组0Ax =的解空间是V ,4 (){|R }R A Ax x =∈,则V 在4 R 内的正交补是 A. ()R A B. ()T R A C. ()()T R A R A ? D. ()()T R A R A + 5. 设3 R 中1{(,0,0)|R }T V x x =∈,2{(,,)|R }T V x x x x =∈,则12V V += A.{(,,)|,R }T x x y x y ∈ B.{(,,)|,R }T x y x x y ∈ C.{(,,)|,R }T x y y x y ∈ D. }R ∈x x x x T |),,{( 6.设A 是m n ?矩阵,则[()]T R AA += A.()R A B.()T R A )(+A R D.前三个选项都不对 二、(14分)设1231231001002,1,0;0,1,1121111αααβββ???????????? ? ? ? ? ? ? ====== ? ? ? ? ? ? ? ? ? ? ? ?---???????????? 是3R 的两 组基,T 为3 R 上的线性变换,T T 1231313((,,))(2,,2)T x x x x x x x =+,求 (1)求由基123,,ααα到基123,,βββ的过度矩阵; (2)T 在基123,,βββ的下的矩阵。

矩阵论--武汉理工大学研究生考试试题2010(科学硕士)

武汉理工大学研究生考试试题(2010) 课程矩阵论 (共6题,答题时不必抄题,标明题目序号) ,填空题(15 分) 1 1 1 0 已知矩阵A 0 °,A 2 1 1 ,A 3 所生成的子空间的维数为 证明:(代B )是V 的一个内积; 多项式所成的线性空间,对于任意的 f (t ) a 2t 2 a 1t a 。 F[t]3,定义:1、 已知矩阵A 的初级因子为 ,( 1)2, 2 ,( 1)3,则其最小多项式为 2、 设线性变换T 在基 1, 2, 3的矩阵为A ,由基 3到基 3的过渡矩阵为P , 向量在基 3下的坐标为x ,则像T ()在基 3下的坐标 1 ,则由这四个矩阵 1 4、 0 已知A 0 ,则 A 10 A 6 8A 已知向量 1,2,0, T i), i 2 则其范数 二,(20)设 V A a 11 a 21 a 22 an a 21 0为R 2 2的子集合, 1、 证明:V 是R 2 2的线性子空间; 2、 求V 的维数与一组基; 3、 a*i1 a^ 对于任意的A , a 21 a 22 V ,定义 (A, B) 4a 11b 11 3a 〔2b [2 2玄21匕21 a 22b 22 4、 求V 在上面所定义的内积下的一组标准正交基。 三、(15 分)设 F[t]3 2 f(t) a 2t a 〔t 玄 a j R, i 0,1,2为所有次数小于3的实系数

1、 证明:T 是F[tb 上的线性变换; 2、 求T 在基1,t,t 2下的矩阵A 。 四,(15分)设矩阵 1 2 3 A 0 1 2 0 0 1 1、 求A 的Jordan 标准形; 2、 求A 的最小多项式。 五(20分)已知 1 0 1 0 A 0 11, b 1 1 0 1 1 1、 求A 的满秩分解; 2、 求 A ; 3、 求AX b 的最小二乘解; 4、 求AX b 的极小范数最小二乘解。 六、(15分)已知 X 。 0 1、求矩阵函数e At ; 2 T[f(t)] (a 。a i )t (a 。 a 2)t ⑻ a 2) 2、求微分方程组 dx(t) dt Ax(t)满足初始条件x(0) X 0的解。

2011矩阵论B研究生试卷答案

线性变换T 满足2212321(()),(()),(())T f t t T f t t T f t t t =+==++. (1) 求T 在基123(),(),()f t f t f t 下的矩阵A ; (2) 求T 在基123(),(),()g t g t g t 下的矩阵B ; (3) 设2123()f t t t =++,求(())T f t . 【解答】 [][][]1231231 23110101012() () ()() () ()()() ()f t f t f t g t g t g t g t g t g t C ?? ??=-=?????? (1) [][][][]2 212312312312321 =201 011101 () () ()()() ()()()()() ()()T f t f t f t t t t t f t f t f t A g t g t g t CA g t g t g t ??=+++=???? ??=?? ????[]1231 () () ()g t g t g t C = 则 1CA C =,11A C C -=,1121221111C ---????=-????--??,则122323111A ---?? ?? =????---?? ;………………(5分) (2)123(),(),()g t g t g t 到123(),(),()f t f t f t 的过度阵为C ,T 在基123(),(),()f t f t f t 下的矩阵A ,则T 在基123(),(),()g t g t g t 下的矩阵1353110232B CAC ---???? ==????--?? ;………………(5分) (3)[]123123()()()()f t g t g t g t ????=??????,设[]112323(())()()()a T f t g t g t g t a a ???? =??????,则 123135314211023323232a a B a ---?????????? ??????????===?????????? ??????????---??????????,则2 432(())T f t t t =-+-.……………(5分)

相关主题
文本预览
相关文档 最新文档