当前位置:文档之家› 高中数学导数概念的引入

高中数学导数概念的引入

高中数学导数概念的引入
高中数学导数概念的引入

一.导数概念的引入

1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是

000

()()

lim

x f x x f x x

?→+?-?,

我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即

0()f x '=000

()()

lim

x f x x f x x

?→+?-?

2. 导数的几何意义: 当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的

斜率k ,即

000

()()

lim

()n x n f x f x k f x x x ?→-'==-

3. 导函数

二.导数的计算

1. 基本初等函数的导数公式

2. 导数的运算法则

3. 复合函数求导

()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=?

三.导数在研究函数中的应用 1.函数的单调性与导数: 2.函数的极值与导数

极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:

(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数

函数极大值与最大值之间的关系.

求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;

(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.

四.生活中的优化问题

1、已知函数2

()21f x x =-的图象上一点(1,1)及邻近一点,1(1)x y ?++?,则

y

x

??等于( )A .4 B .4x ? C .42x +? D .242x +? 2、如果质点M 按规律23S t =+运动,则在一小段时间[2,2.1]中相应的平均速度为( )

A .4

B .4.1

C .0.41

D .3

3、如果质点A 按规律32S t =运动,则在3t =秒的瞬时速度为( )

A .6

B .18

C .54

D .81

4、曲线1y x =-在点1

(,2)2

-处的切线斜率为_________,切线方程为__________________. 5、已知函数2

()2f x ax =+,若(1)1f '-=,则a =__________.

6、计算:

(1)()57f x x =+,求(3)f ';(2)22()23f x x =-,求1

()2

f '-; (3)1

1

y x =

+,求0|x y =' 7、在自行车比赛中,运动员的位移与比赛时间t 存在函数关系2105S t t =+,(S 的单位:

m ,t 的单位:s ),求:

(1)0120,.t t ?==时的S t

??; (2)求20t =的速度.

1

、函数y =

A .315x

B .3

25

x C .1545x - D .1545x --

2、曲线212y x =在点1

(1,)2

处切线的倾斜角为( )

A .1

B .4π-

C .4

π

D .54π

3、已知曲线2

22y x x =+-在点M 处的切线与x 轴平行,则点M 的坐标是( )

A .(1,3)-

B .(1,3)--

C .(2,3)--

D .(2,3)-

4、(2009全国卷Ⅱ理)曲线在点(1,1)处的切线方程为____________________.

5、曲线3

y x =在点(1,1)处的切线与x 轴、直线2x =所围成的三角形面积为__________.

6、求下列函数的导数:

(1)31

()log 3

x y x =+;(2

)(1y =-+

;(3)cos2sin cos x y x x =+.

7、已知2

()21f x x =-.

21

x

y x =-

(1)求()f x 在点(1,1)处的切线方程;(2)求过点(1,0)的切线方程. 8、函数32

(2)y x =+的导数是( )

A .52612x x +

B .342x +

C .33

2(2)x + D .3

2(2)3x x +?

9、已知1

sin 2sin 2

y x x =

+,那么y '是( ) A .仅有最小值的奇函数 B .既有最大值又有最小值的偶函数 C .仅有最大值的偶函数 D .非奇非偶函数 10、曲线12

x y e

=在点2

(4,)e 处的切线与坐标轴所围三角形的面积为( )

A .

2

92

e B .24e

C .22e

D .2e 11、已知2

()ln(1)f x x x =++,若()1f a '=,则实数a 的值为__________.

12、sin3y x =在(

,0)3

π

处的切线斜率为__________________.

13、求下列函数的导数:

(1

)()f x =(2)223

()x x f x e

-++=;(3)1ln

1x

y x

+=-,11x -<<. 14、已知x x x f 22sin 1cos )(+= ,求()4

f π

'.

1、(09广东文)函数的单调递增区间是( )

A .

B .(0,3)

C .(1,4)

D .

2、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )

3、若函数3

2

()6f x x ax x =--+在(0,1)内单调递减,则实数a 的取值范围是( )

A .1a ≥

B .1a =

C .1a ≤

D .01a <<

4、函数3

()f x ax x =-在R 上为减函数,则实数a 的取值范围是______________. 5、求函数2

()2ln f x x x =-的单调区间. 6、(09北京理)设函数.

x

e x x

f )3()(-=)2,(-∞),2(+∞()(0)kx

f x xe k =≠A

B C D

(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)若函数在区间内单调递增,求的取值范围.

7、函数

x

x

y

1

42+

=的单调递增区间是()

A.)

,0(+∞B.)

,

2

1

(+∞C.)1

,

(-

-∞D.)

2

1

,

(-

-∞

8、若函数1

2

3+

+

+

=mx

x

x

y是R上的单调函数,则实数m的取值范围是()A.)

,

3

1

(+∞B.]

3

1

,

(-∞C.)

,

3

1

[+∞D.)

3

1

,

(-∞

9.函数2

2

1

ln

)

(x

x

x

f-

=的图象大致是()

10、如果函数()

y f x

=的导函数的图象如下图所示,给出下列判断:

①函数()

y f x

=在区间

1

(3,)

2

--内单调递增;

②函数()

y f x

=在区间

1

(,3)

2

-内单调递减;

③函数()

y f x

=在区间(4,5)内单调递增;

④当2

x=时,函数()

y f x

=有极小值;

⑤当

1

2

x=-时,函数()

y f x

=有极大值.

则上述判断中正确的是____________.

11、已知函数32

()

f x x ax bx c

=+++,()124

g x x

=-,若(1)0

f-=,且()

f x的图象在点(1,(1))

f处的切线方程为()

y g x

=.

(1)求实数a,b,c的值;(2)求函数的单调区间

12、已知函数2

1

()ln(4)

2

f x x x a x

=++-在(1,)

+∞上是增函数,求实数a的取值范围.13、已知函数x

a

x

x

f ln

1

)

(-

+

=(R

a∈),()

f x的单调区间.

()

y f x

=(0,(0))

f()

f x

()

f x(1,1)

-k

)

(

)

(

)

(x

g

x

f

x

h-

=

1.C 2.B 3.C 4.4;44y x =- 5.12- 6.5;2

3

-;-1 7.210.5;210

1.C 2.C 3.B 4.2y x =-+ 5.83 6.111

()ln 3ln3

x x +

;31221()2x x ---+ ;

sin cos x x -- 7.43y x =-;(4(4y x =+-+或

(4(4y x =--- 8.A 9.B 10.D 11.0或 1 12.-3

13

;223

(22)x x x e -++-+;221x - 14.89

-

1.D 2.D 3.A 4.0a ≤ 5.增区间1(,2)+∞,减区间1

(0,)2

6.y x =;0k >时,增区间()1,k -+∞,减区间(1

,)k

-∞-

0k <时,增区间(1,)k -∞-,减区间()1

,k

-+∞;[1,0)(0,1]-

7.B 8.C 9.B 10.③ 11.3,3,1a b c ===;增区间(,3)-∞-和(1,)+∞,减区间(3,1)- 12.2a ≥ 13.0a ≤时,增区间为(0,)+∞

0a >时,在2(0,22a +上减,在2(22)a +∞+

仰望天空时,什么都比你高,你会自卑; 俯视大地时,什么都比你低,你会自负; 只有放宽视野,把天空和大地尽收眼底, 才能在苍穹泛土之间找准你真正的位置。 无须自卑,不要自负,坚持自信。

用心工作,快乐生活!(工作好,才有好的生活!)

此文档可编辑,欢迎使用!

~~~专业文档,VIP专享。更多精彩文档,尽在Baidu文库~~~

高中数学导数概念的引入

一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即 0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义: 当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的 斜率k ,即 000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数 二.导数的计算 1. 基本初等函数的导数公式 2. 导数的运算法则 3. 复合函数求导 ()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=? 三.导数在研究函数中的应用 1.函数的单调性与导数: 2.函数的极值与导数 极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数 函数极大值与最大值之间的关系. 求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值; (2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值. 四.生活中的优化问题

导数概念及意义

导数概念及意义 1.已知函数()y f x =的图象在点()() 1,1f 处的切线方程210x y -+=,则()()121f f +'的值是( ). A. B. 1 C. D. 2 2.设函数在x =1处存在导数,则=( ) A. B. 3f ′(1) C. ′(1) D. f ′(3) 3.设函数()2 f x x x =+,则=( ) A. -6 B. -3 C. 3 D. 6 4.设 是可导函数,且 ,则 ( ) A. B. C. D. 0 5.若 ,则 ( ) A. B. C. D. 6.设函数()f x 可导,则 ) A. ()1f ' B. C. D. ()31f -' 7.函数()x f x xe =在点()() 0,0A f 处的切线斜率为( ) A. 0 B. D. e 8在点()1,4P 处的切线与直线l 平行且距离为,则直线l 的方程为( ) A. 490x y -+= B. 490x y -+=或4250x y -+= C. 490x y ++=或4250x y +-= D. 以上均不对 9.设()1 f x x =,则()()lim f x f a x a x a -→-等于( ) A. 1a - B. 2a C. 21a - D. 21a ()() 011lim 3x f x f x ?→+?-?

10.已知()y f x =的图象如图所示,则()'A f x 与()'B f x 的大小关系是( ) A. ()()''A B f x f x > B. ()()''A B f x f x = C. ()()''A B f x f x < D. ()'A f x 与()'B f x 大小不能确定 11.若曲线()y h x =在点()() ,P a h a 处的切线方程为210x y ++=,那么( ) A. ()'0h a = B. ()'0h a < C. ()'0h a > D. ()'h a 不确定 12( ) A. 30? B. 45? C. 135? D. 60? 13.如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 1 2 B. 3 C. 4 D. 5 14.已知函数()3 1f x x x =-+,则曲线()y f x =在点()0,1处的切线与两坐标轴所围 成的三角形的面积为( ) A. B. C. D. 2 15.曲线 在点 处的切线方程是( ) A. B. C. D. 16.设曲线2 y x =在其上一点P 处的切线斜率为3,则点P 的坐标为________. 17.设函数()y f x =的0x x =处可导,则()0f x '等 于__________.

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

导数的概念教学设计

《导数的概念》教学设计 胡雪东 一、【教材分析】 1. 本节内容: 《导数的概念》这一小节分“曲线的切线”,“瞬时速度与瞬时加速度”,“导数的概念”,“导数的几何意义”四个部分展开,大约需要4个课时.第一、二课时学习“曲线的切线”,“瞬时速度”,今天说的是第三课时的内容导数概念的形成. 2. 导数在高中数学中的地位与作用: “导数的概念”是全章核心.不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性,获得更为理想的结果;把运算对象作用于导数上,可使我们扩展知识面,感悟变量,极限等思想,运用更高的观点和更为一般的方法解决或简化中学数学中的不少问题;导数的方法是今后全面研究微积分的重要方法和基本工具,在在其它学科中同样具有十分重要的作用;在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用.导数的出现推动了人类事业向前发展. 二、【学情分析】 1. 有利因素:学生已较好地掌握了函数极限的知识,又刚刚学过曲线的切线、瞬时速度,并积累了大量的关于函数变化率的经验;另外,学生思维较活跃,对数学新内容的学习,有相当的兴趣和积极性,这为本课的学习奠定了基础. 2. 不利因素:导数概念建立在极限基础之上,超乎学生的直观经验,抽象度高;再者,本课内容思维量大,对类比归纳,抽象概括,联系与转化的思维能力有较高的要求,学生学习起来有一定难度. 三、【目标分析】 1. 教学目标 (1)知识与技能目标:①理解导数的概念.②掌握用定义求导数的方法. (2)过程与方法目标:通过导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力. (3)情感、态度与价值观目标: ①通过合作与交流,让学生感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,激发学生对数学知识的热爱,养成实事求是的科学态度. ②培养学生正确认识量变与质变、运动与静止等辩证唯物主义观点,形成正确的数学观.

导数的概念教案

导数的概念(中级版) 许建芳 一、教学目标 1、知识与技能目标 (1)通过实例的分析,理解平均变化率、瞬时变化率的概念;了解平均变化率与瞬时变化率之间的关系; (2)通过导数概念的形成过程,了解导数概念的实际背景,体会导数的思想及内涵; (3)通过观察和动手实践培养学生的分析、比较和归纳的能力,并感悟到极限思想. 2、过程与方法目标 (1)通过问题的探究,体会逼近、类比、以已知求未知、从特殊到一般的数学思想方法; (2)通过问题的探究,培养学生的探究意识和探究方法. 3、情感、态度与价值观目标 (1)通过导数概念的学习,体验和认同“有限和无限对立统一”的辩证观点,接受用运动变化的辩证唯物主义思想处理数学问题的方法; (2)通过了解导数产生的历史及它在实际生活、生产和科研中的广泛应用及巨大作用,认识学习导数的必要性,从而激发学生学习导数的兴趣. 二、教学重点 导数概念的形成过程及导数概念的内涵. 三、教学难点 对导数概念的理解. 四、教学准备 计算器、多媒体课件等. 五、教学方法 引导探究法:设疑——点拨——引导——探究。 六、教学流程

教 学环节教学内容设计思想师生活动 时 间 创设情景 【展示课件1】 1、播放女子双人10m跳台跳水录像 片段 【展示课件2】 2、奇怪的平均速度: 在10米高台跳水运动中,运动员相 对水面的高度h(单位:m)与起跳后的时 间t(单位:s)存在函数关系: h(t)=-4.9t 2 +6.5t+10. 计算运动员在 65 49 t ≤≤这段时间 里的平均速度. 【展示课件3】 3、思考下面的问题: (1)运动员在这段时间里是静止的 吗? (2)运动员在 65 49 t=时,速度为0吗? (3)用平均速度描述运动员的运动状 态有什么问题吗? 【展示课件4】 引入新课. 以新开题,扣人 心弦. 新问题:平均速 度为“0”? 引起学生的好 奇. 让学生带着问 题走进课堂,激发学 生求知欲. 1、师引导学生 观看跳水的轨迹及 速度变化. 2、全体学生计算 平均速度,之后,一 学生回答计算结果. 3、教师抛出三个 思考题. 一学生答题,其 他学生补充; 教师总结. 引 入新课. 8 分 引导探究 任务一:感受平均速度的变化. 【展示课件5-10】 1、函数图像h(t)当t=2,Δt取不 同值时的斜率变化. 2、当Δt取不同值时,尝试计算 (2)(2) 4.9 13.1 h t h t t +?- ==-?- ? v 的值? Δt vΔt v -0.1 0.1 -0.01 0.01 -0.001 0.001 -0.0001 0.0001 -0.00001 0.00001 ………. … . ……. … 3、计算 Δt=0.0000001,Δt=-0.0000001时 的值. 【展示课件11】 感受变化,动手 探究. 借助直观的图 像和数据,归纳、探 求导数的概念. 培养学生的探 究意识和探究方法, 培养学生的动手操 作能力. 1、教师讲解图 像的变化. 2、全体同学笔 练,一学生板演. 教师讲解学生 的板演. 3、学生看教材 第四页表. 学生计算. 展示课件. 10 分

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

导数的概念

第二章导数与微分 本章教学目标与要求 理解导数的概念,会利用导数定义求导数。了解导数的物理意义(速度),几何意义(切线的斜率)和经济意义(边际),掌握基本初等函数的导数公式,导数的四则运算法则,复合函数求导法则。掌握反函数和隐函数求导法,对数求导法。理解可导性与连续性的关系。了解高阶导数的概念,会求简单函数的高阶导数。理解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分。 本章教学重点与难点 1.导数概念及其求导法则; 2.隐函数的导数; 3.复合函数求导; 4.微分的概念,可微和可导的关系,微分的计算 §2.1 导数的概念 教学目的与要求 1.理解函数导数的概念及其几何意义. 2.掌握基本初等函数的导数,会求平面曲线的切线和法线. 3.了解导数与导函数的区别和联系. 4.理解左右导数的概念、可导与连续的关系. 教学重点与难点 1.函数导数的概念、基本初等函数的导数 2.函数导数的概念、利用定义求函数在某一点的导数 一、引例 导数的思想最初是由法国数学家费马(Fermat)为研究极值问题而引入的,但与导数概念直接相联系的是以下两个问题:已知运动规律求速度和已知曲线求它的切线.这是由英国数学家牛顿(Newton)和德国数学家莱布尼茨(Leibniz)分别在研究力学和几何学过程中建立起来的. 下面我们以这两个问题为背景引入导数的概念.

1.瞬时速度 思考:已知一质点的运动规律为)(t s s =,0t 为某一确定时刻,求质点在0t 时刻的速度。 在中学里我们学过平均速度 t s ??,平均速度只能使我们对物体在一段时间内的运动大致情况有个了解, 这不但对于火箭发射控制不够,就是对于比火箭速度慢的多的火车、汽车运行情况也是不够的,火车上坡、下坡、转弯、穿隧道时速度都有一定的要求, 至于火箭升空那就不仅要掌握火箭的速度,而且要掌握火箭飞行速度的变化规律. 不过瞬时速度的概念并不神秘,它可以通过平均速度的概念来把握.根据牛顿第一运动定理,物体运动具有惯性,不管它的速度变化多么快,在一段充分短的时间内,它的速度变化总是不大的,可以近似看成匀速运动.通常把这种近似代替称为“以匀代不匀”. 设质点运 动的路程是时间的函数 )(t s ,则质点在 0t 到 t t ?+0 这段时间内的平均速度为 t t s t t s v ?-?+= ) ()(00 可以看出它是质点在时刻0t 速度的一个近似值,t ?越小,平均速度 v 与 0t 时刻的瞬时速度越接近.故当0→?t 时,平均速度v 就发生了一个质的飞跃,平均速度转化为物体在0t 时刻的瞬时速度,即物体在 0t 时刻的瞬时速度为 t t s t t s v v t t ?-?+==→?→?) ()(lim lim 000_ (1) 思考:按照这种思想和方法如何计算自由落体的瞬时速度? 因为自由落体运动的运动方程为: 2 2 1gt s = , 按照上面的公式,可知自由落体运动在0t 时刻的瞬时速度为 00020 2000000)2 1(lim 21)(21lim )()(lim )(0gt t g gt t gt t t g t t s t t s t v t t t =?+=?-?+=?-?+=→?→?→?。 这正是我们高中物理上自由落体运动的速度公式. 2.切线的斜率 思考:圆的的切线的定义是什么?这个定义适用于一般的切线吗? 引导学生得出答案:与圆只有一个交点的直线叫做圆的切线,但这个定义只适用于圆周曲线,并不适用于一般的曲线.因此,曲线的某一点的切线应重新定义. (1)切线的概念

高中数学导数知识点归纳

导数及其应用 一.导数概念的引入 1. 导数的物理意义:瞬时速率。一般的,函数()y f x =在0x x =处的瞬时变化率是 000 ()() lim x f x x f x x ?→+?-?, 我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000 ()() lim x f x x f x x ?→+?-? 2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于 P 时,直线PT 与曲线相切。容易知道,割线n PP 的斜率是00 ()() n n n f x f x k x x -= -,当点n P 趋近于 P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000 ()() lim ()n x n f x f x k f x x x ?→-'==- 3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有 时也记作y ',即0 ()() ()lim x f x x f x f x x ?→+?-'=? 例一: 若2012)1(/=f ,则x f x f x ?-?+→? )1()1(l i m 0 = ,x f x f x ?--?+→?) 1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 二.导数的计算 1)基本初等函数的导数公式: 2 若()f x x α =,则1 ()f x x αα-'=; 3 若()sin f x x =,则()cos f x x '= 4 若()cos f x x =,则()sin f x x '=-; 5 若()x f x a =,则()ln x f x a a '=

导数的概念(教学设计)

导数的概念 樊加虎 导数是近代数学中微积分的核心概念之一,是一种思想方法,这种思想方法是人类智慧的骄傲.《导数的概念》这一节内容,大致分成四个课时,我主要针对第三课时的教学,谈谈我的理解与设计,敬请各位专家斧正. 一、教材分析 1.1编者意图《导数的概念》分成四个部分展开,即:“曲线的切线”,“瞬时速度”,“导数的概念”,“导数的几何意义”,编者意图在哪里呢?用前两部分作为背景,是为了引出导数的概念;介绍导数的几何意义,是为了加深对导数的理解.从而充分借助直观来引出导数的概念;用极限思想抽象出导数;用函数思想拓展、完善导数以及在应用中巩固、反思导数,教材的显著特点是从具体经验出发,向抽象和普遍发展,使探究知识的过程简单、经济、有效. 1.2导数概念在教材的地位和作用“导数的概念”是全章核心.不仅在于它自身具有非常严谨的结构,更重要的是,导数运算是一种高明的数学思维,用导数的运算去处理函数的性质更具一般性,获得更为理想的结果;把运算对象作用于导数上,可使我们扩展知识面,感悟变量,极限等思想,运用更高的观点和更为一般的方法解决或简化中学数学中的不少问题;导数的方法是今后全面研究微积分的重要方法和基本工具,在在其它学科中同样具有十分重要的作用;在物理学,经济学等其它学科和生产、生活的各个领域都有广泛的应用.导数的出现推动了人类事业向前发展. 1.3 教材的内容剖析知识主体结构的比较和知识的迁移类比如下表: 表2. 知识迁移类比(导数像速度)

通过比较发现:求切线的斜率和物体的瞬时速度,这两个具体问题的解决都依赖于求函数的极限,一个是“微小直角三角形中两直角边之比”的极限,一个是“位置改变量与时间改变量之比”的极限,如果舍去问题的具体含义,都可以归结为一种相同形式的极限,即“平均变化率”的极限.因此以两个背景作为新知的生长点,不仅使新知引入变得自然,而且为新知建构提供了有效的类比方法. 1.4 重、难点剖析 重点:导数的概念的形成过程. 难点:对导数概念的理解. 为什么这样确定呢?导数概念的形成分为三个的层次:f(x)在点x 0可导→f(x)在开区间(a ,b )内可导→f(x)在开区间(a ,b )内的导函数→导数,这三个层次是一个递进的过程,而不是专指哪一个层次,也不是几个层次的简单相加,因此导数概念的形成过程是重点;教材中出现了两个“导数”,“两个可导”,初学者往往会有这样的困惑,“导数到底是个什么东西?一个函数是不是有两种导数呢?”,“导函数与导数是怎么统一的?”.事实上:(1)f(x)在点x 0处的导数是这一点x 0到x 0+△x 的变化率 x y ??的极限,是一个常数,区别于导函数. (2)

高中数学学案-导数的概念及计算

高中数学学案 导数及其应用 第1讲导数的概念及计算 考点导数的概念及其几何意义 知识点 1 导数的有关概念 (1)导数:如果当Δx→0时,Δy Δx有极限,就说函数 y=f(x)在x=x0处可导,并把这个极限叫 做f(x)在x=x0处的导数(或瞬时变化率).记作f′(x0)或y′|x=x ,即f′(x0)=lim Δx→0Δy Δx=lim Δx→0 f x0+Δx-f x0 Δx. (2)导函数:如果函数f(x)在开区间(a,b)内每一点都可导,那么其导数值在(a,b)内构成一个新的函数,我们把这个函数叫做f(x)在开区间(a,b)内的导函数.记作f′(x)或y′. 注意点 如果函数f(x)在x=x0处可导,那么函数y=f(x)在x=x0处连续. 2 导数的几何意义 函数f(x)在x=x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率(瞬时速度就是位移函数s(t)对时间t的导数).相应地,切线方程为y-f(x0)=f′(x0)(x-x0). 3 几种常见函数的导数 原函数导数 y=C(C为常数)y′=0 y=x n(n∈Q*)y′=nx n-1 y=sin x y′=cos x y=cos x y′=-sin x y=e x y′=e x y=ln x y′=1 x y=a x(a>0,且a≠1)y′=a x ln_a

y =log a x (a >0,且a ≠1) y ′= 1 x ln a 4 导数的四则运算法则 若y =f (x ),y =g (x )的导数存在,则 ①[f (x )±g (x )]′=f ′(x )±g ′(x ); ②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); ③?? ?? ??f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0). 注意点 “过某点”和“在某点”的区别 曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0, y 0)为切点,而后者P (x 0,y 0)不一定为切点. 入门测 1.思维辨析 (1)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (2)曲线的切线不一定与曲线只有一个公共点.( ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)若f (x )=f ′(a )x 2+ln x (a >0),则f ′(x )=2xf ′(a )+1 x .( ) 答案 (1)× (2)√ (3)× (4)√ 2.(1)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2 B .e C.ln 2 2 D .ln 2 (2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2 D .0 答案 (1)B (2)B 解析 (1)由f (x )=x ln x 得f ′(x )=ln x +1. 根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e. (2)f ′(x )=4ax 3+2bx , ∵f ′(x )为奇函数且f ′(1)=2,∴f ′(-1)=-2.

《导数的概念》说课稿(完成稿)

实验探究,让数学概念自然生长 ——《导数的概念》说课 江苏省常州市第五中学张志勇 一. 教学内容与内容解析 1、教学内容:本节课的教学内容选自苏教版普通高中课程标准实验教科书数学选修2-2第一章第一节的《导数的概念》第2课时“瞬时变化率——导数”,导数的概念包括三部分教学内容,即平均变化率、瞬时变化率、导数,其中瞬时变化率包括曲线上一点处的切线和瞬时速度、瞬时加速度,本节课之前学生已完成平均变化率的学习. 2、内容解析:导数是研究现代科学技术必不可少的工具,是进一步学习数学和其他自然科学的基础,在物理学、经济学等领域都有广泛的应用.对于中学阶段而言,导数是研究函数的有力工具,在求函数的单调性、极值、曲线的切线以及一些优化问题时有着广泛的应用,同时对研究几何、不等式起着重要作用.从而导数在函数研究中的应用应是整个章节的重点,但不能仅仅将导数作为一种规则和步骤来学习,导数的概念无疑是教学的起点也是关键,否则学生很难体会导数的思想及其内涵.事实上导数概念的建立基于“无限逼近”的过程,这与初等数学所涉及的思想方法有本质的不同.囿于学生的认知水平和可接受能力,教材中并没有引进极限概念(过多的极限知识可能会冲淡甚至干扰对导数本质的理解),而是从学生的生活经验出发,通过实例引导学生经历由平均变化率到瞬时变化率的过程,直至建立起导数的数学模型. 3、教学设想:导数的本质在于从平均变化率到瞬时变化率的“无限逼近”,而无限逼近有三种方式:数值逼近、几何直观感知、解析式抽象;而达成学生极限思想形成之教学目标,需要以问题为背景,关键是设计活动让学生经历从平均变化率到瞬时变化率的过程.因此教学处理时,试图还 原知识建构的完整过 程,实现导数概念的“再 创造”,其中数学探究 环节采用数学实验的方

高中数学导数及其应用

高中数学导数及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高中数学导数及其应用 一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如

在点处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间 ()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时,

高中数学选修2-2导数的概念

导数的概念 教学目标与要求:理解导数的概念并会运用概念求导数。 教学重点:导数的概念以及求导数 教学难点:导数的概念 教学过程: 一、导入新课: 上节我们讨论了瞬时速度、切线的斜率和边际成本。虽然它们的实际意义不同,但从函数角度来看,却是相同的,都是研究函数的增量与自变量的增量的比的极限。由此我们引出下面导数的概念。 二、新授课: 1.设函数)(x f y =在0x x =处附近有定义,当自变量在0x x =处有增量x ?时,则函数)(x f Y =相应地有增量)()(00x f x x f y -?+=?,如果0→?x 时,y ?与x ?的比 x y ??(也叫函数的平均变化率)有极限即 x y ??无限趋近于某个常数,我们把这个极限值叫做函数)(x f y =在0x x →处的导数,记作0/x x y =,即 x x f x x f x f x ?-?+=→?)()(lim )(0000/ 注:1.函数应在点0x 的附近有定义,否则导数不存在。 2.在定义导数的极限式中,x ?趋近于0可正、可负、但不为0,而y ?可能为0。 3.x y ??是函数)(x f y =对自变量x 在x ?范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ?+?+)的割线斜率。 4.导数x x f x x f x f x ?-?+=→?)()(lim )(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度,它的几何意义是曲线)(x f y =上点()(,00x f x )处的切线的斜率。因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为))(()(00/0x x x f x f y -=-。 5.导数是一个局部概念,它只与函数)(x f y =在0x 及其附近的函数值有关,与x ?无关。 6.在定义式中,设x x x ?+=0,则0x x x -=?,当x ?趋近于0时,x 趋近于0x ,因此,导数的定义式可写成0 0000/)()(lim )()(lim )(0x x x f x f x x f x x f x f x x o x --=?-?+=→→?。

导数的概念试题含答案

导数的概念 一.选择题(共16小题) 1.(2013?河东区二模)已知曲线的一条切线的斜率为,则切点的横坐标为() A.3B.2C.1D. 2.(2012?汕头一模)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0平行,则a=() A.1B.C.D.﹣1 3.(2011?烟台一模)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=() A.2B.C.D.﹣2 4.(2010?泸州二模)曲线在点处的切线与坐标轴围成的三角形面积为()A.B.C.D. 5.(2010?辽宁)已知点P在曲线y=上,α为曲线在点P处的切线的倾斜角,则α的取值范围是() A. [0,) B.C.D. 6.(2010?江西模拟)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为() A.30°B.45°C.60°D.120°7.(2009?辽宁)曲线y=在点(1,﹣1)处的切线方程为() A.y=x﹣2 B.y=﹣3x+2 C.y=2x﹣3 D.y=﹣2x+1 8.(2009?江西)若存在过点(1,0)的直线与曲线y=x3和都相切,则a等于() A. ﹣1或B. ﹣1或 C. 或 D. 或7 9.(2006?四川)曲线y=4x﹣x3在点(﹣1,﹣3)处的切线方程是() A.y=7x+4 B.y=7x+2 C.y=x﹣4 D.y=x﹣2 10.(2012?海口模拟)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有 >2恒成立,则a的取值范围是() A.(0,1]B.(1,+∞)C.(0,1)D.[1,+∞)

11.(2013?安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是() A.{3,4} B.{2,3,4} C.{3,4,5} D.{2,3} 12.(2010?沈阳模拟)如图一圆锥形容器,底面圆的直径等于圆锥母线长,水以每分钟9.3升的速度注入容器内,则注入水的高度在分钟时的瞬时变化率()(注:π≈3.1) A.27分米/分钟B.9分米/分钟C.81分米/分钟D.分米/分钟 13.若函数f(x)=2x2﹣1的图象上一点(1,1)及邻近一点(1+△x,1+△y),则等于() A.4B.4x C.4+2△x D.4+2△x2 14.如果f(x)为偶函数,且f(x)导数存在,则f′(0)的值为() A.2B.1C.0D.﹣1 15.设f(x)是可导函数,且=() A.﹣4 B.﹣1 C.0D. 16.若f′(x0)=2,则等于() A.﹣1 B.﹣2 C. D. ﹣ 二.填空题(共5小题) 17.(2013?江西)设函数f(x)在(0,+∞)内可导,且f(e x)=x+e x,则f′(1)=_________.

高中数学导数及其应用

高中数学导数及其应用 一、知识网络 二、高考考点?1、导数定义的认知与应用; ?2、求导公式与运算法则的运用; ? 3、导数的几何意义; ?4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。??三、知识要点? (一)导数?1、导数的概念?(1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果

时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作 ,即 。 ?(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值 ,都对应着一个确定的导数 ,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间( )内的导函数(简称导数),记作或, 即。??认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当 时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量 ;? ②求平均变化率; ③求极限?上述三部曲可简记为一差、二比、三极限。?? (2)导数的几何意义:?函数在点处的导数,是曲线在点 处的切线的斜率。? (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别:?(Ⅰ)若函数在点处可导,则在点处连续;?若函数在开区间()内可导,则在开区间()内连续(可

导一定连续)。??事实上,若函数在点处可导,则有 此 时,? ? ? ?记 ,则有即在点处连续。?(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。?反例:在点处连续,但在点处无导数。 事实上,在点处的增量?当 时,, ;?当时,, 由此可知,不存在,故在点处不可导。??2、求导公式与 求导运算法则 (1)基本函数的导数(求导公式) 公式1 常数的导数:(c为常数),即常数的导数等于0。??公式2 幂函 数的导数:。? 公式3 正弦函数的导数:。??公式4 余弦函数的导数: ??公式5 对数函数的导数:? (Ⅰ); ?(Ⅱ)

(精心整理)高中数学导数知识点归纳总结

§14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)] ()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→

相关主题
文本预览
相关文档 最新文档