当前位置:文档之家› 冷冻电镜技术

冷冻电镜技术

冷冻电镜技术
冷冻电镜技术

冷冻电镜技术

或冷冻电子显微学(Cryo-electron microscopy) (Cryo electron microscopy)

梁毅

(武汉大学生命科学学院)

生物分子的结构分析现代生物学仪器分析中的“四大谱”和“三大法”●传统上最有效的方法

是“四大谱”:

●紫外-可见光谱、红外光谱、核磁共振波谱

和质谱

生物大分子(蛋白质和核酸等)结构测定

●的最重要和应用最广泛的三大方法:

X 射线晶体衍射分析、核磁共振波谱分析

和冷冻电镜

什么是电镜?

电子显微镜,简称电镜,是根据电子光学原理,用电子束和电子透镜代替光束和光学透镜,使物质的细微结构在非常高的放大倍数下成像的仪器

●电镜用于生物样品的结构研究是众所周

高分辨率的电镜可以达到0.l 知的,目前0l 乃至水平,这是指在特定条件下nm3?

可分辨的两点的距离。

●虽然这已接近原子分辨水平,但由于种种原因要看到构成生物大分子的碳、氢、氧原子的三维排布仍是很困难的。

●首先,构成生物物质的碳、氢、氧、氮等元素对电子的散射能力较弱;

●其次高速电子的轰击会对生物样品造成辐射损伤,后者在生物样品的高分辨率结构分析中是最严重的问题。

●损伤机制包括非弹性散射引起的化学键断裂,也包括电子轰击引起离子、自由基和分子碎片扩散,从而造成生物样品的质量损失。

●因此利用电子显微镜对生物大分子进行研究必须首先把观察对象制备成特殊的样品。

●电镜的样品制备方法有许多种,在有关生物大分子结构研究中,负染、葡萄糖包埋以及冰冻含水(正染)等方法是常

用的。

电镜载网

●电镜观察的样品需要在特制的金属载网上才能送入电镜镜筒中进

行观察。载网的直径通常为4mm,可以用铜、银、铂、镍等金属或铜镍、银镍合金等制成。最常用的载网为铜制的,所以电镜载网一般又称作电镜铜网。

铜网网孔的形状多样,有圆形的、方形的、单孔形和狭缝形;网●

孔的数目有50目、100目、200目、300目和400目等多种规格。网孔越大,观察的有效面积越大,但同时对样品的支持稳定性也越差。在电子晶体学电镜观察中最常用的是100目和200目的铜网铜网在使用前要经过预处理,先用丙酮,后用无水乙醇清洗,以●

除去铜网上的油污。清洁后的铜网要真空干燥后才能制备覆盖的支撑膜。

理想中我们希望能够获得一个生物大分子完整的、具负染

●有尽可能高分辨率的三维结构,而样品制备技术就是开始的第一步。

●生物大分子大都含水,要将水化的大分子尽可能地稳定保持使它可以在电子显微镜高真空的镜筒中保持原有结构。

同时,生物大分子样品主要是由碳、氢、氧、氮等轻元素原子组成,对电子散射能力很弱,因此样品本身可以提供的衬度很低,一般很难直接观察到,于是人们发展了一些衬度增强技术来加强样品的衬度。

●负染法是最常用的衬度增强技术。

●负染技术就是用一些重金属盐,如醋酸铀来加强样品的衬度,保护分子结构不被电子束损伤。

当用重金属盐溶液染色生物样品时,重金属盐沉淀在●

样品四周,如果样品本身表面有凹凸,溶液还能积存在凹陷的部分。

●在重金属盐沉淀的区域,电子的散射能力强,使样品四周出现暗环,而在有样品的区域,电子的散射能力弱,表现为亮区。这样就把样品的外形及表面结构衬托出来。

样品包埋

随着高分辨率电镜技术的发展,人们可以从衬度很弱的图像中读出分子本身的信息。但是这种生物学意义上的信息都必须在使用一些特殊的样品支持介质后才能获取。这些样品支持介质是一些和生物大分子自身水化环境十分接近的包埋物质,如葡萄糖、单宁酸和无序冰。

葡萄糖包埋

葡萄糖包埋方法的过程与负染方法十分近似,生物大分子样品包埋在1%的葡萄糖溶液中蒸发。葡萄糖分子中的羟基可以取代水分子与蛋白质分子形成氢键而保持生物大分子的结构。除了葡萄糖外,其他的碳水化合物如蔗糖、核糖、环己六醇也具有同样的效应。

单宁酸包埋

●与负染和葡萄糖包埋相近似,单宁酸包埋是用

0.5%的单宁酸溶液(KOH调节pH6.0)来漂洗05%H60

样品铜网。

●单宁酸、葡萄糖和无序冰作为支持介质,在保护样品结构的高分辨率方面并无太大差别,但是单宁酸对于样品晶格稳定性的保护要优于其他两种介质。

样品包埋-冰冻含水方法

●水是所有生物大分子的重要组成,生物大分子都是高

度水化的,蛋白质体积的50%是水。当蛋白质脱水时,分子会变性而失去活性,结构也会被破坏。

世纪年代出现的低温电镜技术,使保持生物大分●2080

子在含水状态进行电镜观察成为可能,用冰冻含水方法制备样品进行冷冻电镜(低温电镜)观察(Cryo-microscopy or electron cryomicroscopy,冷冻electron cryomicroscopy

电子显微镜)代表了电子晶体学的最新潮流,在最近

15年取得飞速发展。

生物样品中通常含有生物大分子、水分子以及缓冲溶液中的其他溶质分子。当水分子低速冷冻时,缓慢结冰形成有序结晶态冰,在结晶冰形成的过程中,溶质会从水中析出而成为悬浮颗粒,溶质的析出导致溶液浓度的改变会严重影响生物大分子的结构。而当水分子被快速冷冻时,会形成无序态冰,避免溶质析出的方法就是快速冷冻使得水保持在无序状态结冰。由于水分子对电子散射能力和蛋白质有较大差别,这样在低分辨情况下,样品图像也有较好的衬度。冰冻含水(正染)是一种最佳的样品包埋方法。

所谓电镜图像的三维重构是指由样品(单颗粒)的一个电镜图像的三维重构

或多个投影图得到样品中各组成部分之间的三维关系。

电镜图像的三维重构-傅里叶变换方法

●利用电子显微图像进行三维结构重建有若干种

不同的计算方法,其中傅里叶变换方法是目前

国际上使用最广泛的一种。

●这种方法的理论依据是中心截面定理,即由实

空间的投影像的变换逐个平面地得到单颗粒在

倒易空间的频率分布,并由反变换来重构单颗

粒的实空间三维结构。

中心截面定理是:实空间三维密度分布在一个平面上的投影的傅里叶变换等于垂直于观察方向的三维傅里叶变换的中心截面,截面和投影的关系遵守傅里叶变换。

电镜图像的三维重构:将电子显微图像进行傅里叶变换,一张显微图像的傅里叶变换相应于成像物体(单颗粒)的三维傅里叶变换的一个中心截面,通过改变生物样品在电镜下的倾斜角度,就可以得到相当于傅里叶变换的其他中心截面像。收集在不同倾斜角度下样品的显微图像,就可以获得一套完整的三维倒易空间数据。利用这套数据进行傅里叶反变换运算就可以获得样品结构的三维图像。

电镜图像的三维重构

●与X射线晶体衍射分析相比,生物大分子的

电镜三维重构具有以下显著优点:

实验表明许多蛋白质(特别是膜蛋白)可能●

更容易形成二维晶体。对于蛋白质难于长出适合于X射线晶体衍射分析的三维晶体的情况,二维晶体和电镜三维重构无疑是对生物

大分子结构的重要补充。

冷冻电镜技术

实用标准文案 冷冻电镜技术课程学习报告一、课程所讲基础知识回顾 1、电子显微镜成像技术的发展历史 (1)上世纪50年代的负染技术(分辨率2mm): 该技术的原理为重金属燃料与H结合,特点为对电子散射强,视野暗,衬度大,易观察到生物材料。但不足之处在于染料颗粒较大,不易进入分子内部。此外,因样品需要脱水处理,会造成结构失真。 (2)上世纪60年代的三维重构技术 三维重构的数学原理为傅里叶变换,其关键性质为:三维函数投影的傅里叶变换等于该三维函数傅里叶变换在垂直于投影方向上的中央截面。因此,通过对待测立体物质的多角度投影信息采集,可以借助数学的桥梁,重构出该物质的三维结构。显然,对待测物质投影采集的角度越多,越精确,重构出的三维图像越接近真实。 在60年代,T4噬菌体的结构通过该方法被成功解析。 (3)上世纪70年代的电子晶体学 即根据电子衍射的花样确定物质的晶体结构。被观测的物体通过物镜形成衍射图样,而这些衍射光束的低散射角部分再通过透镜而形成显微像。该方法相当于对原物体进行两次傅里叶变换,一为将物体转换成衍射谱,二为逆傅里叶变换使衍射谱重构成显微图像。 在70年代,电子晶体学的发展使得第1个膜蛋白结构被成功解析。(4)上世纪80年代的快速冷冻技术(分辨率达到0.2nm)

主要原理为将样品快速冷冻在玻璃态的水中,样品不需脱水,结构与在溶液精彩文档. 实用标准文案 中相同,呈天然状态。因此,电镜成像得到的更接近原物质的真实结构,且分辨率高。 2、冷冻电镜技术介绍 (1)关于玻璃态冰: 冰的结构多种多样,包括六角形冰、立方体冰等,其物理状态与冷冻速率有关。若要形成玻璃态(即无定形态)的冰,需要冷冻速率达到每秒钟10摄氏度。4此时,冰的结构呈现各向同性,不会因成像角度不同导致图像产生偏差。(2)操作步骤概要: 冷冻包埋——转移至液氮或液氦中——观测,图像采集——三维重构(3)图像采集的质量要求: 应保证样品在玻璃态冰中的分布均一,厚度一致切适当,避免污染。此外,特别应注意的是,该方法对电子剂量很敏感,最适为10e/A,明显超过最适剂2量即容易因受到过量电子辐射而破坏物理结构,导致冰迅速汽化,出现气泡,造成图像采集不成功。 因此,必须采用低剂量技术(≤20e/A),用1k~3k倍的低倍镜寻找,在目 2标域的临近区聚焦,使记录区域仅在拍摄时(1s左右)受到电子辐射,保证样品不被损坏。 二、课外补充学习:冷冻电镜技术难点的扩展阅读

冷冻电镜简介

1 冷冻电镜发展背景 欧阳学文 人类基因组计划的完成,标志着科学已进入后基因组时代。虽然大量的基因序列得到阐明,但是生物大分子如何从这些基因转录、翻译、加工、折叠、组装,形成有功能的结构单元,尚需进一步的研究。后基因组时代人类面临的一个挑战是解析基因产物—蛋白质的空间结构,建立结构基因组学,并在原子水平上解释核酸—蛋白,蛋白—蛋白之间的相互作用,从而阐明由这些生物大分子和复合物所行使的生物学功能。在此过程中,结构生物学在其中扮演着重要角色。对生物大分子结构的解析,不仅具有深远的基础意义,而且具有广阔的应用前景。通过对核酸、蛋白质及其复合物的结构解析,人们对它们的功能的理解更加透彻,就可以根据他们发挥功能的结构基础有针对性地进行药物设计,基因改造,疫苗研制开发,甚至人工构建蛋白质等工作,从而对制药、医疗、疾病防治、生物化工等诸多方面产生巨大的推动作用。 日前用于解析生物大分子空间结构的主要手段是X射线晶体学技术和核滋共振波谱学。X射线晶体学可给出分子的高分辨结钩,核磁共振波谱学则可测定分子在溶液中的精确构像,并可研究构像的动态变化。虽然X射线晶体学和核磁共振波谱学是解析生物大分子结构的强有力工具,但各有局限性。X射线晶体学解析的结构常常是分子的基态结钩,而对解析分子的激发态和过渡态却往往无能为力:生物大分子在体内常常发生相互作用并形成复合物而发挥功能,这些复合物的结晶化非常困难。核磁共振波谱学虽可获得分子在溶液中的结构并可研究结构的动态变化,但目

前只能用于分子量较小的生物大分子(<10000道尔顿),而对分子量大的生物大分子尤其是超分子复合物却无能为力。 人类对生物体系的研究经历了由个体到器官,由器官到组织,由组织到细胞,由细胞到生物大分子这样一个层次由高到低的过程。随着科学的发展,人们对生物体系的研究又转向由低层次到高层次,由简单体系到复杂体系。在此过程中,细胞作为生命的基本单位起着承上启下的重要作用。多少年来,科学家的一个梦想是能观察到生物大分子在细胞内的行为,几十年来,人们对大量的生物大分子及其复合物应用电子显微镜进行研究,发展出了强有力的电子显微学来研究生物大分子结构的方法学。近年来,由于快速冷冻和低温冷却技术的引进,导致了冷冻电子显微学技术的诞生。冷冻电镜在研究生物大分子结构尤其是超分子体系的结构方面取得了突飞猛进的发展,在生物学领域的应用越来越受到重视,逐渐成为一种被普遍接受的公认的研究生物大分子尤其是超分子体系结构的有效研究手段,成为连接生物大分子和细胞的纽带和桥梁。 2 冷冻电镜发展过程及分类 2.1 冷冻电镜发展过程 冷冻电子显微镜技术(cryoelectron microscopy)是在20世纪70年代提出的,早在20世纪70年代科学家们就利用冷冻电镜研究病毒分子的结构,首次提出了冷冻电镜技术的原理、方法以及流程的概念。到了20世纪90年代,随着冷冻传输装置、场发射电子枪以及CDD成像装置的出现,冷冻电镜单颗粒技术出现。21世纪初,冷冻电镜技术进一步发展,利用三维重构技术获得了二十面体病毒的三维结

冷冻电镜简介

1 冷冻电镜发展背景 人类基因组计划的完成,标志着科学已进入后基因组时代。虽然大量的基因序列得到阐明,但是生物大分子如何从这些基因转录、翻译、加工、折叠、组装,形成有功能的结构单元,尚需进一步的研究。后基因组时代人类面临的一个挑战是解析基因产物—蛋白质的空间结构,建立结构基因组学,并在原子水平上解释核酸—蛋白,蛋白—蛋白之间的相互作用,从而阐明由这些生物大分子和复合物所行使的生物学功能。在此过程中,结构生物学在其中扮演着重要角色。对生物大分子结构的解析,不仅具有深远的基础意义,而且具有广阔的应用前景。通过对核酸、蛋白质及其复合物的结构解析,人们对它们的功能的理解更加透彻,就可以根据他们发挥功能的结构基础有针对性地进行药物设计,基因改造,疫苗研制开发,甚至人工构建蛋白质等工作,从而对制药、医疗、疾病防治、生物化工等诸多方面产生巨大的推动作用。 日前用于解析生物大分子空间结构的主要手段是X射线晶体学技术和核滋共振波谱学。X射线晶体学可给出分子的高分辨结钩,核磁共振波谱学则可测定分子在溶液中的精确构像,并可研究构像的动态变化。虽然X射线晶体学和核磁共振波谱学是解析生物大分子结构的强有力工具,但各有局限性。X射线晶体学解析的结构常常是分子的基态结钩,而对解析分子的激发态和过渡态却往往无能为力:生物大分子在体内常常发生相互作用并形成复合物而发挥功能,这些复合物的结晶化非常困难。核磁共振波谱学虽可获得分子在溶液中的结构并可研究结构的动态变化,但目前只能用于分子量较小的生物大分子(<10000道尔顿),而对分子量大的生物大分子尤其是超分子复合物却无能为力。 人类对生物体系的研究经历了由个体到器官,由器官到组织,由组织到细胞,由细胞到生物大分子这样一个层次由高到低的过程。随着科学的发展,人们对生物体系的研究又转向由低层次到高层次,由简单体系到复杂体系。在此过程中,细胞作为生命的基本单位起着承上启下的重要作用。多少年来,科学家的一个梦想是能观察到生物大分子在细胞内的行为,几十年来,人们对大量的生物大分子及其复合物应用电子显微镜进行研究,发展出了强有力的电子显微学来研究生物大分子结构的方法学。近年来,由于快速冷冻和低温冷却技术的引进,导致了冷冻电子显微学技术的诞生。冷冻电镜在研究生物大分子结构尤其是超分子体系的结构方面取得了突飞猛进的发展,在生物学领域的应用越来越受到重视,逐渐成为一种被普遍接受的公认的研究生物大分子尤其是超分子体系结构的有效研究手段,成为连接生物大分子和细胞的纽带和桥梁。

冰冻蚀刻技术

4、冰冻蚀刻法。所谓冰冻蚀刻,是把样品放在-196℃的液态氮中迅速冷冻,然后加温到-100℃,使样品变得非常脆弱易碎,再用预先也冷却到-196℃的非常锋利的玻璃断口切割经冷冻的样品,这样使样品在最容易断裂的部位断开(如果是微生物细胞,则多半是沿内膜中部),然后让样品放在真空条件下升华掉断口处的冰,最后用重金属喷镀该断口表面,即可用电子显微镜观察其结构。用这种制备方法的优点是可以避免在固定、脱水和包埋过程中造成细胞结构的人为改变而形成的假象。 冰冻蚀刻(freeze-etching)亦称冰冻断裂(freeze-fracture)。标本置于-100?C的干冰或-196?C的液氮中,进行冰冻。然后用冷刀骤然将标本断开,升温后,冰在真空条件下迅即升华,暴露出断面结构,称为蚀刻(etching)。蚀刻后,向断面以45度角喷涂一层蒸汽铂,再以90度角喷涂一层碳,加强反差和强度。然后用次氯酸钠溶液消化样品,把碳和铂的膜剥下来,此膜即为复膜(replica)。复膜显示出了标本蚀刻面的形态,在电镜下得到的影像即代表标本中细胞断裂面处的结构。 和投射电子显微镜是靠透过物体的电子成像不同,扫描电子显微镜的成像是靠观察物体表面发射的电子。扫描电子显微镜是用聚焦得很细的电子束在样品表面扫描。电子激发样品表面的原子放电,释放出微细的电子簇(二次电子),用灵敏的检测装置可以捕获它们,然后通过类似电视机的原理将样品图象呈现出来。二次电子对检测器的作用取决于样品表面的性质,当电子激发样品表面突起部位时,会有大量二次电子进入检测器,而表面凹陷处则只有少量二次电子进入,所以可以显出反差突出、明暗清晰的三维图象。而且它的成像焦深较长,图象的立体感强,和肉眼所见差别不大。制备扫描电子显微镜的样品也先要经过固定、脱水等处理,以免在真空条件下变形失真,为了获得较多的二次电子,表面要喷涂重金属和碳原子。

冷冻电镜简介

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 1 冷冻电镜发展背景 人类基因组计划的完成,标志着科学已进入后基因组时代。虽然大量的基因序列得到阐明,但是生物大分子如何从这些基因转录、翻译、加工、折叠、组装,形成有功能的结构单元,尚需进一步的研究。后基因组时代人类面临的一个挑战是解析基因产物—蛋白质的空间结构,建立结构基因组学,并在原子水平上解释核酸—蛋白,蛋白—蛋白之间的相互作用,从而阐明由这些生物大分子和复合物所行使的生物学功能。在此过程中,结构生物学在其中扮演着重要角色。对生物大分子结构的解析,不仅具有深远的基础意义,而且具有广阔的应用前景。通过对核酸、蛋白质及其复合物的结构解析,人们对它们的功能的理解更加透彻,就可以根据他们发挥功能的结构基础有针对性地进行药物设计,基因改造,疫苗研制开发,甚至人工构建蛋白质等工作,从而对制药、医疗、疾病防治、生物化工等诸多方面产生巨大的推动作用。 日前用于解析生物大分子空间结构的主要手段是X射线晶体学技术和核滋共振波谱学。X射线晶体学可给出分子的高分辨结钩,核磁共振波谱学则可测定分子在溶液中的精确构像,并可研究构像的动态变化。虽然X射线晶体学和核磁共振波谱学是解析生物大分子结构的强有力工具,但各有局限性。X射线晶体学解析的结构常常是分子的基态结钩,而对解析分子的激发态和过渡态却往往无能为力:生物大分子在体内常常发生相互作用并形成复合物而发挥功能,这些复合物的结晶化非常困难。核磁共振波谱学虽可获得分子在溶液中的结构并可研究结构的动态变化,但目前只能用于分子量较小的生物大分子(<10000道尔顿),而对分子量大的生物大分子尤其是超分子复合物却无能为力。 人类对生物体系的研究经历了由个体到器官,由器官到组织,由组织到细胞,由细胞到生物大分子这样一个层次由高到低的过程。随着科学的发展,人们对生物体系的研究又转向由低层次到高层次,由简单体系到复杂体系。在此过程中,细胞作为生命的基本单位起着承上启下的重要作用。多少年来,科学家的一个梦想是能观察到生物大分子在细胞内的行为,几十年来,人们对大量的生物大分子及其复合物应用电子

冷冻电镜技术

冷冻电镜技术课程学习报告 一、课程所讲基础知识回顾 1、电子显微镜成像技术的发展历史 (1)上世纪50年代的负染技术(分辨率2mm): 该技术的原理为重金属燃料与H结合,特点为对电子散射强,视野暗,衬度大,易观察到生物材料。但不足之处在于染料颗粒较大,不易进入分子内部。此外,因样品需要脱水处理,会造成结构失真。 (2)上世纪60年代的三维重构技术 三维重构的数学原理为傅里叶变换,其关键性质为:三维函数投影的傅里叶变换等于该三维函数傅里叶变换在垂直于投影方向上的中央截面。因此,通过对待测立体物质的多角度投影信息采集,可以借助数学的桥梁,重构出该物质的三维结构。显然,对待测物质投影采集的角度越多,越精确,重构出的三维图像越接近真实。 在60年代,T4噬菌体的结构通过该方法被成功解析。 (3)上世纪70年代的电子晶体学 即根据电子衍射的花样确定物质的晶体结构。被观测的物体通过物镜形成衍射图样,而这些衍射光束的低散射角部分再通过透镜而形成显微像。该方法相当于对原物体进行两次傅里叶变换,一为将物体转换成衍射谱,二为逆傅里叶变换使衍射谱重构成显微图像。 在70年代,电子晶体学的发展使得第1个膜蛋白结构被成功解析。 (4)上世纪80年代的快速冷冻技术(分辨率达到0.2nm) 主要原理为将样品快速冷冻在玻璃态的水中,样品不需脱水,结构与在溶液中相同,呈天然状态。因此,电镜成像得到的更接近原物质的真实结构,且分辨率高。 2、冷冻电镜技术介绍 (1)关于玻璃态冰: 冰的结构多种多样,包括六角形冰、立方体冰等,其物理状态与冷冻速率有关。若要形成玻璃态(即无定形态)的冰,需要冷冻速率达到每秒钟104摄氏度。此时,冰的结构呈现各向同性,不会因成像角度不同导致图像产生偏差。 (2)操作步骤概要: 冷冻包埋——转移至液氮或液氦中——观测,图像采集——三维重构 (3)图像采集的质量要求: 应保证样品在玻璃态冰中的分布均一,厚度一致切适当,避免污染。此外,特别应注意的是,该方法对电子剂量很敏感,最适为10e/A2,明显超过最适剂量即容易因受到过量电子辐射而破坏物理结构,导致冰迅速汽化,出现气泡,造成图像采集不成功。 因此,必须采用低剂量技术(≤20e/A2),用1k~3k倍的低倍镜寻找,在目标域的临近区聚焦,使记录区域仅在拍摄时(1s左右)受到电子辐射,保证样品不被损坏。 二、课外补充学习:冷冻电镜技术难点的扩展阅读 1、冰晶污染 冰晶污染是冷冻电镜的主要问题和最重要的难点,可发生在冷冻电镜的各个

冷冻电镜简介

冷冻电镜简介标准化管理部编码-[99968T-6889628-J68568-1689N]

1冷冻电镜发展背景 人类基因组计划的完成,标志着科学已进入后基因组时代。虽然大量的基因序列得到阐明,但是生物大分子如何从这些基因转录、翻译、加工、折叠、组装,形成有功能的结构单元,尚需进一步的研究。后基因组时代人类面临的一个挑战是解析基因产物—蛋白质的空间结构,建立结构基因组学,并在原子水平上解释核酸—蛋白,蛋白—蛋白之间的相互作用,从而阐明由这些生物大分子和复合物所行使的生物学功能。在此过程中,结构生物学在其中扮演着重要角色。对生物大分子结构的解析,不仅具有深远的基础意义,而且具有广阔的应用前景。通过对核酸、蛋白质及其复合物的结构解析,人们对它们的功能的理解更加透彻,就可以根据他们发挥功能的结构基础有针对性地进行药物设计,基因改造,疫苗研制开发,甚至人工构建蛋白质等工作,从而对制药、医疗、疾病防治、生物化工等诸多方面产生巨大的推动作用。 日前用于解析生物大分子空间结构的主要手段是X射线晶体学技术和核滋共振波谱学。X射线晶体学可给出分子的高分辨结钩,核磁共振波谱学则可测定分子在溶液中的精确构像,并可研究构像的动态变化。虽然X射线晶体学和核磁共振波谱学是解析生物大分子结构的强有力工具,但各有局限性。X射线晶体学解析的结构常常是分子的基态结钩,而对解析分子的激发态和过渡态却往往无能为力:生物大分子在体内常常发生相互作用并形成复合物而发挥功能,这些复合物的结晶化非常困难。核磁共振波谱学虽可获得分子在溶液中的结构并可研究结构的动态变化,但目前只能用于分子量较小的生物大分子 (<10000道尔顿),而对分子量大的生物大分子尤其是超分子复合物却无能为力。 人类对生物体系的研究经历了由个体到器官,由器官到组织,由组织到细胞,由细胞到生物大分子这样一个层次由高到低的过程。随着科学的发展,人们对生物体系的研究又转向由低层次到高层次,由简单体系到复杂体系。在此过程中,细胞作为生命的基本单位起着承上启下的重要作用。多少年来,科学家的一个梦想是能观察到生物大分子在细胞内的行为,几十年来,人们对大量的生物大分子及其复合物应用电子显微镜进行研究,发展出了强有力的电子显微学来研究生物大分子结构的方法学。近年来,由于快速冷冻和低温冷却技术的引进,导致了冷冻电子显微学技术的诞生。冷冻电镜在研究生物大分子结构尤其是超分子体系的结构方面取得了突飞猛进的发展,在生物学领域的应用越来越受到重视,逐渐成为一种被普遍接受的公认的研究生物大分子尤其是超分子体系结构的有效研究手段,成为连接生物大分子和细胞的纽带和桥梁。

冷冻电镜技术在线粒体中的应用研究

技术应用 Technical application ·100· 中国高新科技 2019 年第39期 直,要尽量将焦距对准。 (3)对温感进行设置,可先借助自动模式对温度范围进行测量,再通过手动方式对水平及跨度进行设置,设置最小的温度范围。 (4)无人机对成像系统进行搭载,要配备电量充足的电池,确保续航时间。 3 相关案例 某大型光伏电站采用无人机红外热斑检测。该站主要采用多晶硅光伏组件,工作人员在现场对检测区域进行确定,并抽选16排光伏组件。随后,对无人机自动巡检具体路线进行设定,抽选的16排光伏组件具有2MW容量,检测所用时间为10min,后续采用相关软件对检测结果实施科学分析,并生成相应的检测报告。 对检测结果进行对比分析,发现16排抽检的光伏组件中,有2块组件存在热斑,分别是位于第5组串第11排,从西向东数第11列的1#组件,该组件温度达到28℃,组件局部温度甚至达到42℃,高出组件温度14℃,因此,判定该组件存在热斑。第7组串第11排,从西向东数第7列的2#组件,该组件温度达到28℃,组件局部温度甚至达到42.8℃,高出组件温度14.8℃,因此,判定该组件存在热斑。 4 结语 综上所述,大型光伏电站极易发生热斑故障。热斑故障会减少大 型光伏电站的发电量,并严重影响光伏电站运行的安全性和稳定性。无人机红外热斑检测在大型光伏电站中的应用,能大幅度减少热斑检测成本,增强热斑检测的精确性,大幅度提高热斑检测效率。因此,要加强无人机红外热斑检测在大型光伏电站中的推广应用。 [1]车曦.基于红外图像识别的光伏组件热斑故障检测方法研究[D].重庆:重庆大学,2015. [2]桑轩昂.无人机红外热斑检测在光伏电站中的应用[J ].产业与科技论坛,2017(9):66-67. (作者系三峡新能源西南分公司工程师) 冷冻电镜技术在线粒体中的应用研究 0 引言 线粒体在生物体生命生活中发挥着极为重要的作用,是有氧呼吸的主要场所,为生物细胞提供新陈代谢必需的能量。线粒体有着自身的遗传体系和遗传物质,参与细胞分化、细胞信息物质传递及诱导细胞凋亡等过程,从而直接或间接地调控细胞周期。与此同时,线粒体在生理功能的内稳态方面也发挥 着重要作用,如果这些生理功能出现了障碍,则会引发诸多疾病。如糖尿病、癌症及遗传线粒体疾病,分别由能量转运系统的功能障碍、细胞凋亡调节的缺失及线粒体DNA 的突变引起。众多关键的生理功能使得线粒体成为引人瞩目的药物靶点,线粒体既可以作为主要药理学靶点,通过直接的药物相互作用产生生理效应,抗氧化药物、抗肿瘤 药物互作等,也可以作为次要靶位与药物作用后产生毒副作用。由此可见,线粒体功能结构十分复杂,已有的研究成果主要集中在功能学及动力学方面,更深层次理解其功能发挥过程则需要微观结构的解析工作。近年来,冷冻电镜技术飞速发展,在结构生物学中发挥着关键作用,也为线粒体生理活动的深入研究提供了新的方向。

相关主题
文本预览
相关文档 最新文档