当前位置:文档之家› 扬声器结构参数公式及音箱音腔设计实列综合整理精品

扬声器结构参数公式及音箱音腔设计实列综合整理精品

扬声器结构参数公式及音箱音腔设计实列综合整理精品
扬声器结构参数公式及音箱音腔设计实列综合整理精品

v1.0 可编辑可修改

普通纸盆喇叭的结构

贵阳蓝天整理

普通纸盆喇叭的结构

1:折环,和弹波一起定位鼓纸(振膜,纸盆)做径向运动。折环的材料一般有橡胶,布基加胶纸质等,折环的软硬和柔顺度,直接影响鼓纸在整个运动形成里的线性,影响喇叭在整个标称功率内的表现曲线。

折环就是接边,纸盆就是振膜

2:鼓纸,就是喇叭主要的发声部件。材料主要是纸浆加上其他材料,近年来多种特性不同的材料进入,有聚丙烯、炭纤维,金属钛等等,甚至金刚石。但是主流还是纸浆,一方面造价低廉,另一方面容易做成喇叭振膜所要求的复杂曲面。

3:T铁,夹板。材质为软铁,即纯铁,也叫电工铁,主要特性是导磁,但是没有剩磁,就是磁场消失后,它的磁性也立即消失。此铁的纯度和品质,直接影响喇叭的效率,非线性失真等重要参数,其中夹板的厚度影响喇叭的冲程。长冲程扬声器的T铁夹板都特别厚,就是在音圈的整个行程内都可以切割平行的均匀的磁力线。夹板和T铁中柱的间隙越小,音圈运动所需的功率也就越小扬声器的效率越高,所以,磁液型的扬声器在T铁和夹板之间注入磁性液体,等于缩小了他们之间距离另一方面也把音圈的热量迅速带走,提高了扬声器的功率承受能力。

4:磁钢,一般叫磁铁、永磁铁,磁钢叫法更准确一些。在扬声器组装之前是没有磁性的,在和T铁夹板用粘合剂粘好后,在充磁机上充磁,最后的剩磁就是磁钢的磁性,这个剩磁量就是磁钢的磁性大小,根据法拉第电磁感应定律,磁通量越大,一定的电流在磁场中运动的力就越大,所以为了提高扬声器的功率,现在应用了许多强磁性材料,如铷铁硼。

5:音圈:一般为扁平的自粘铜漆包线绕制,是个非常矛盾的部件,为了增大电流(增大功率),线径就要增大,线径大了,要求磁隙就大了,磁隙大了,功率效率反而下降,所以只能在矛盾中取中间值。音圈一般为两层绕制,单层绕制无法引出线。为了不改变磁隙大小又能增加电流形成的磁场,就只能增加音圈的直径。所以有了HiFi扬声器声称的大音圈,长冲程。音圈是绕制在一个纸质的骨架上的,大功率的扬声器骨架有的是铝箔作的,所谓铝音圈。音圈还是铜的,骨架是铝的罢了!

6:屏蔽罩:防漏磁的部件,一般为软铁,但是有些低价位扬声器为了降低成本用炭钢,普通铁板制作,防漏磁效果大打折扣,其实这种形式的防漏磁已经效果不好了,还是有少量漏磁的,在严格要求的防漏磁场合,扬声器磁铁是装在T铁的中柱的位置,这样整个磁力线系统闭合,完全没有静态漏磁。当然这样就要求磁铁的磁通量非常大,加工要求也高,当然成本也高。

7:引线(以前我们叫猪尾),是编制铜线加棉线构成,主要是在扬声器震动环境下保持音圈和外部导线连接正常。

结构图

在磁屏蔽的地方还有一个镜向磁钢忘了讲了,就是利用正反方向磁场互相抵消减弱漏磁!

在这里再废话几个词:

音箱(大陆叫法)=喇叭(港台叫法)

扬声器(大陆叫法)=喇叭(大陆另一种称呼)=喇叭单元(港台叫法)

由于我是在大陆,所以文章中一律遵循大陆习惯叫法。

继续将剩下的:

中心定位片:

这是喇叭中最重要部件之一,以前的工业没有这么发达的时候,竞找不到人造的东西能胜任这个小小的支片,只有一种植物-葛麻编制然后压制成型-才能获得扬声器中心定位片所要

求的理化特性,所以在六七十年代,西方对这种植物制品竟然限制向中国出口,不是中国没有这种麻,而是制作工艺不过关,好在响应毛主席号召,我们的工人兄弟攻克此项难关。现在的扬声器多是化学高分子织物做的这个支片,特性上已经很接近葛麻但是高档的Hi-Fi

扬声器依旧采用葛麻制作。定位片除了材料要求高,波纹的高低,形状密度曲线各项物理值皆影响音质,并不是随随便便制作的就可以的,有兴趣的朋友可以找更进一步的资料还有粘接中心定位片的胶也很讲究,是织物和金属之间的粘接,在今天高分子化学粘接剂大发展的今天,已经不成问题,关键是现在的扬声器制造商并不重视这个胶,随随便便粘上了事,我见过很多有这方面问题的扬声器。还有粘接工艺,粘接工艺造成扬声器质量的离散性,这里就不多讲了

盆架:

扬声器盆架主要支撑鼓纸和扬声器其他部件的稳定连接,其刚性对音质影响极大,一般的扬声器会用镀锌钢板冲压而成,在边缘形成弯角立面加强筋或压花加强筋。为什么要压加强筋,因为处于成本考虑可以用到更薄的材料。这当然不是高音质扬声器首选。现在要求高的扬声器一般会用到铸铝盆架,重量轻,刚性好,容易加工成所需形状。由于扬声器一般是垂直安装,由于地球引力影响,尤其是大磁钢的扬声器,其后部重量非常大,所以在盆架的一边会特别加强以抵消这种由于安装方式上带来的变形,国外的极品扬声器都是安装有上下的,并不会因为是圆的可以360度随便装。国内HiFi厂家少有注意这个问题,国外的极品音箱把这一点当做商业秘密-这就是为什么一样的用西亚士奥第诗喇叭的国内厂家,却做不出同样好声的音箱(当然因素不仅仅这点)。倒是在发烧友做的音箱中见到过用板子在喇叭后面做支撑的,我也曾经试验过,不过音质的变化我没有听出来,也许其他因素的影响更大吧。现在还有用工程塑料做盆架的,但是刚性还是不行,我认为短时间不会成为主流。

中音喇叭盆架除了支撑作用外还是一个小小的音箱,是封闭的,质量良好的喇叭在这个小小的音箱内还会放置吸音棉以改善音质。

防尘罩:

材料五花八门,形状也五花八门,为什么会这样,因为除了防尘作用外,喇叭的美观也要靠它做花样。其中以丹麦丹拿为代表的超大防尘罩已经成为振膜发声的一部分可谓极限代表。还有就是国内惠威的软质防尘罩,解决了被人按下上不来的问题,至于音质的改善我不敢苟同。其中惠威10"炭塑聚丙烯扬声器因为在大功率时候防尘罩会吸下去而放弃软防尘罩,只在8"一下口径使用软的就是这样了。还是最早的纱质防尘罩最科学,气阻很小有能防尘,还不做为发声的一部分,不会影响已经按照曲面方程设计好的纸盆频响曲线。再有就是关于

子弹头,在国外品牌是以西亚士为代表,97年前后突然在国内热起来,至于对音质改善多大,就是仁者见仁,智者见智了。有一点可以肯定,这种光滑曲面一定会在空间某个地方形成声焦点,声焦点总是一个好的重放系统要避免的,就像照相技术上的尽量避免杂光点一样的道理。

纸盆喇叭结构图

扬声器的主要参数

扬声器的主要参数有额定阻抗、功率、频率特性、谐振频率、灵敏度、失真度、等效质量、等效顺性、弹性系数、总品质因数等效容积、等效振动半径、磁感应强度、磁通量、线性范围、指向性等。

1.额定阻抗扬声器额定阻抗也称标称阻抗值,即扬声器在共振峰后所呈现的最小阻抗,有4Ω、6Ω、8Ω、16Ω和32Ω等几种。

额定阻抗通常为扬声器音圈直流电阻的倍左右。

2.功率扬声器的功率分为额定功率、最小功率、最大功率和瞬间功率,单位均为W。

额定功率也称标称功率,是指扬声器长时间正常连续工作而无明显失真的输入平均电功

率。

最小功率也称起步功率,是指扬声器能被推动工作的基准电功率值。

最大功率也称最大承载功率,是指扬声器长时间连续工作时所能承受的最大输入功率。

瞬间功率也称瞬时承受功率,是指扬声器在短时间内(10ms)所能承受的最大功率,一般为额定功率的8~30倍。

瞬态:是器材对音乐信号的反应能力

该说器材的电流的供应能力

瞬态好的,音乐比较流畅,反之就拖泥带水

比如功放瞬态差的,推动喇叭就容易显得力不从心具体表现就是低音出不来,高音不够干脆

我理解的瞬态反应就是功放的电流输出能力-

3.频率特性扬声器的频率特性是指当输入扬声器的信号电压恒定不变时,扬声器有参考轴上的输出声压随输入信号的频率变化而变化的规律。它是一条随频率变化的频率响应(简称频响)曲线,反映了扬声器对不同频率声波的辐射能力。

扬声器的频响曲线是具有许多峰谷点的不规则连续曲线,将扬声器的谐振频率作为低频不限频率,而将频响曲线高频端的交点作为高频上限频率。低频下限与高频上限之间的频率范围。称为扬声器的有效频率范围。

扬声器的频响曲线越平坦,说明频率失真越小,有效频率范围越宽。

一般低音扬声器的频率范围在20H Z~3kH Z之间,中音扬声器的频率范围在500H Z~5kH Z之间,高音扬声器的频率范围在2~20kH Z之间。

4.谐振频率(Fs或F0) 谐振频率是指扬声器所能重(chong,重新还原:低音重新播放出来,现场录音后再由CD等载体播放出来,类似于音乐还原))放的最低频率,它与扬声器口径大小有关。

低音扬声器的谐振频率值一般是随其口径的增大而降低,6in(in=)低音扬声器的谐振频率为50H Z左右,8in(in=)低音扬声器的谐振频率为40H Z左右,10in低音扬声器的谐振频率为30H Z左右,12in低音扬声器的谐振频率为20H Z左右。

谐振频率是决定扬声器低频特性的重要参数,该值越低,扬声器重放低音的质感和力度也越好。

谐振频率其实是指喇叭设计时规定的使用频率,不同用途的喇叭设计的使用频率不同。因此,高音也好低音也好,都要符合设定的频率,不存在其谐振频率大好还是小好的问题5.灵敏度灵敏度也称输出声压级,主要用来反映扬声器的电-声转换效率。高灵敏度扬声器,用较小的电功率即可推动它。

扬声器的灵敏度有特性灵敏度级和平均特性灵敏度两种表示方法,前者最常用且误差较小。

6.失真度扬声器的失真主要表现为重放声音与原始声音有差异。它又分为谐波失真、瞬态失真、互调失真和相位失真。

7.等效质量扬声器的等效质量也称振动质量,是扬声器振动系统的静态质量(指振膜和音圈本身的质量)与同振质量(指振膜两边随之一起振动的部分空气层的质量)之和。

等效质量与扬声器的口径成正比,与扬声器的谐振频率成反比。

8.等效顺性等效顺性也称力顺或声顺,表示扬声器悬置系统的松紧度(指折环和定位支片的柔软程度)或称为受力后位移的顺从性。

9.弹性系数扬声器的弹性系数也称振动系统的等效力劲度,是表示锥盆折环和定位支片刚性的参数,它与扬声器的谐振频率成正比,与振动系统的等效质量成反比。

10.总品质因数扬声器的总品质因数也称Q ts值,用来反映其振动系统消耗能量的较慢,即表示振动系统损耗的大小。

11.等效容积扬声器等效容积是指扬声器振动系统顺性的等效空气容积。扬声器的口径越大,其等效容积也越大。

12.等效振动半径扬声器的等效振动半径也称振膜有效面积,它表示有助于声音辐射的面积,一般指从振膜中心到折环中间处的长度。

13.磁感应强度与磁通量磁感应强度也称磁隙强度,用来表示扬声器空气隙中磁场强度的品质标记。

磁通量等于磁感应强度与空气隙面积平均值的乘积。

14.线性范围扬声器的线性范围是指振膜的最大线性位移。扬声器工作时,若振膜的位移超过线性范围值,放音失真就会增大。

15.指向性指向性是指扬声器在不同方向的声压辐射能力随频率而变化的特性,或指扬声器声波辐射到空间各个方向的能力。输入扬声器的信号频率越高,指向性越强。

1.扬声器主要参数综合设计和分析

扬声器性能是电学、力学、声学、磁学等物理参数共同作用的结果,由鼓纸、弹波、音圈、磁路等关键零部件的性能共同确定,其中一些参数相互制约相互影响,因而必须综合考虑和设计。

扬声器常用机电参数以及计算公式、测量方法简述如下:

直流电阻Re

由音圈决定,可直接用直流电桥测量。

共振频率Fo

由扬声器的等效振动质量Mms和等效顺性Cms决定,见公式(5), Fo可直接用Fo测试仪测量或通过测量阻抗曲线获得。

共振频率处的最大阻抗Zo

由音圈、磁路、振动系统(鼓纸、弹波)共同决定,可用替代法测量或通过测量阻抗曲线获得。

Zo = Re+[(BL)2/(Rms+Rmr)] (10)

机械力阻Rms

由鼓纸、弹波的内部阻尼及使用胶水的特性决定,可由测量出机械品质因数Qms后通过下列公式计算:

Rms =(1/Qms)*SQR(Mms/Cms) (11)

这里SQR( )表示对括号( )中的数值开平方根,下同。

辐射力阻Rmr

由口径、频率决定,低频时可忽略。

Rmr = *(f/Sd)2 (12)

等效辐射面积Sd

只与口径(等效半径a)有关。

Sd =π* a2 (13)

机电耦合因子BL

由磁路Bg值和音圈线有效长度L决定,也可通过测量电气品质因数Qes后用下列公式计算:

(BL)2 =(Re/Qes)*SQR(Mms/Cms) (14)

等效振动质量Mms

由音圈质量Mm1、鼓纸等效质量Mm2、辐射质量Mmr共同决定, Mms可由附加质量法测量获得。

Mms=Mm1+Mm2+2Mmr

辐射质量Mmr

只与口径(等效半径a)有关。

Mmr =*ρo* a3 (16)

其中ρo=m3为空气密度, a为扬声器等效半径。

等效顺性Cms

是指扬声器振动系统的支撑部件的柔顺度.其值越大,扬声器的整个振动系统越软.单位:毫米/牛顿(mm/N).

由鼓纸顺性Cm1、弹波顺性Cm2共同决定,此顺性即是我们所称的变位,只是单位需换算为国际单位制:m/N,

而变位可以用变位仪直接测量。Cms可由附加容积法测量获得。

Cms=(Cm1*Cm2)/(Cm1+Cm2) (17)

等效容积Vas

只与等效顺性、等效辐射面积有关。

Vas =ρo*c2*Sd2*Cms (18)

此处c为空气中的声速,c=344m/s

机械品质因数Qms

由振动系统的等效振动质量Mms、等效顺性Cms、机械力阻Rms共同决定,Qms可由阻抗曲线的测量获得。

Qms =(1/Rms)*SQR(Mms/Cms)=(Fo/Δf)*(Zo/Re) (19)

f 为阻抗曲线上阻抗等于SQR(Zo*Re)所对应的两个频率的差值。

电气品质因数Qes

由振动系统的等效振动质量Mms、等效顺性Cms、机电耦合因子BL共同决定,由阻抗曲线的测量获得。

Qes =[Re/(BL)2]*SQR(Mms/Cms)=(Fo/Δf)*SQR(Zo*Re)/(Zo-Re) (20)

总品质因数Qts

由机械品质因数Qms和电气品质因数Qes共同决定。

Qts =(Qms*Qes)/(Qms+Qes)=(Fo/Δf)*SQR(Re/Zo) (21)

参考电声转换效率ηo

由机电耦合因子BL、等效辐射面积Sd、等效振动质量Mms共同决定。

ηo =(ρo/2πc)*(BL*Sd/Mms)2/Re (22)

参考灵敏度级SPLo

与参考电声转换效率ηo直接相关。

SPLo = 112+10lgηo (23)

参考振幅ξ

与参考电声转换效率ηo、电功率Pe、等效半径a、频率f有关。

ξ = *SQR(Pe*ηo)/(a*f)2

以上这些参数现在均可用扬声器计算机测试系统进行测量和计算,常用的测试系统有LMS、CLIO、MLSSA、DAAS、SYSID、LAUD、IMP等。另外,也可利用一些计算机模拟软件进行扬声器参数的基本设计,如LEAP、CALSOD、Speaker Easy、DLC Design、AudioCad、SOUNDEASY 等。

扬声器的功率、失真指标无法直接用公式进行定量计算,只能作些定性分析和探讨。

扬声器的额定正弦功率以及纯音检听功率,基本上由低频最大振幅ξo决定。一般低频最大振幅是在共振频率Fo处。扬声器的低频最大振幅主要取决于磁路结构和音圈卷宽,当

机械设计基础公式计算例题

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 3-2) 3-3) 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为:

(1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: 四、从动件位移s与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称? S曲线) -位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律

???? ? ?? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 ,两轮的中心距α=630mm ,主动带轮转速1n 1 450 r/min ,能传递的最大功率P=10kW 。试求:V 带中各应力,并画出各应力1σ、σ2、σb1、σb2及σc 的分布图。 附:V 带的弹性模量E=130~200MPa ;V 带的质量q=0.8kg/m ;带与带轮间的当量摩擦系数fv=0.51;B 型带的截面积A=138mm2;B 型带的高度h=10.5mm 。

确定音响的箱体尺寸

确定最佳的箱体尺寸 确定最佳的箱体尺寸音响中国论坛' U* D9 x$ Z. D5 r无论是家庭影院音箱还是HI-FI音箱,箱体尺寸如何确定才能既美观,又符合声学原理呢?相信阅读本文一定使您得益非浅。 如果能适当应用建造埃及金字塔的相同比例,音箱爱好者也能制造出经得起时间考验的结构(原编者按)。 ,专业音响技术论坛爱好者在购买新的扬声器单元时,往往会发现扬声器单元制造商推荐有最佳的箱体尺寸。这方面可能包括密闭箱,开口箱的体积。通常,这个值与VAS或锥盆支撑顺性的等效空气容积有关,该顺性是由锥盆和音圈质量,以及称为扬声器单元支撑的折环和定心支片的刚性等几个方 (一)箱体的比例 当爱好者制作扬声器箱体时,有各种不同的结构选择包括从立方体,圆管形,或矩形到许多其它的形状。 每种形状都有特殊的特性、优点和缺陷。但是,常用的音箱不管是闭箱还是倒相箱大都是长方形的箱体,所以,本文就是对长方形箱体尺寸关系进行的讨论。 假定扬声器特性表中建议箱体容积Vb为0.09056立方米。爱好者就能用这个值为实际扬声器单元确定理想的箱体尺寸了。,专业音响技术论坛如容积已定,先要把所要求的内部容积的立方米单位转换为立方厘米,然后再求得结果的立方根,就可以得出所要求的高度、宽度、厚度了。 正方形箱体(即高度、宽度、厚度相同的箱体)对用于超低音箱是很满意的,因为这种箱体能通过增强内部驻波而提升箱体的总输出。许多市售的超低音箱都是按这种样子设计的。但是,本文的用意并非是用于超低音箱的,而是能覆盖全音频范围的两分频或三分频的音箱。 通过实践,许多音箱制造商已经采用了Kao经验得到的“黄金”比率或“黄金”分割率,这个比例或比率与根据理想比率0.618而确定的箱体尺寸比有关。举例

声学计算公式大全

当声波碰到室内某一界面后(如天花、墙),一部分声能被反射, 一部分被吸收(主要是转化成热能),一部分穿透到另一空间。 透射系数: 反射系数: 吸声系数: 声压和声强有密切的关系,在自由声场中,测得声压和已知测点到声源的距离,就可计算出该测点之声强和声源的声功率。 声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为:

听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 1、声压级Lp 取参考声压为Po=2*10-5N/m2为基准声压,任一声压P的Lp为: 听觉下限: p=2*10-5N/m2 为0dB 能量提高100倍的 P=2*10-3N/m2 为20dB 听觉上限: P=20N/m2 为120dB 2、声功率级Lw 取Wo为10-12W,基准声功率级 任一声功率W的声功率级Lw为: 3、声强级: 3、声压级的叠加 10dB+10dB=? 0dB+0dB=? 0dB+10dB=? 答案分别是:13dB,3dB,10dB.

几个声源同时作用时,某点的声能是各个声源贡献的能量的代数和。因此其声压是各声源贡献的声压平方和的开根号。 即: 声压级为: 声压级的叠加 ?两个数值相等的声压级叠加后,总声压级只比原来增加3dB,而不是增加一倍。这个结论对于声强级和声功率级同样适用。 ?此外,两个声压级分别为不同的值时,其总的声压级为

两个声强级获声功率级的叠加公式与上式相同 在建筑声学中,频带划分的方式通常不是在线性标度的频率轴上等距离的划分频带,而是以各频率的频程数n都相等来划分。 声波在室内的反射与几何声学 3.2.1 反射界面的平均吸声系数 (1)吸声系数:用以表征材料和结构吸声能力的基本参量通常采用吸声系数,以α表示,定义式: 材料和结构的吸声特性和声波入射角度有关。

手机音腔部品选型及音腔结构设计指导及规范

手机音腔部品选型及音腔结构设计指导及规范 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

手机音腔部品选型及音腔结构设计指导及规范 1. 声音的主观评价 声音的评价分为主观和客观两个方面,客观评价主要依赖于频响曲线﹑SPL值等声学物理参数,主观则因人而异。一般来说,高频是色彩,高中频是亮度,中低频是力度,低频是基础。音质评价术语和其声学特性的关系如下表示: 从人耳的听觉特性来讲,低频是基础音,如果低频音的声压值太低,会显得音色单纯,缺乏力度,这部分对听觉的影响很大。对于中频段而言,由于频带较宽,又是人耳听觉最灵敏的区域,适当提升,有利于增强放音的临场感,有利于提高清晰度和层次感。而高于 8KHz略有提升,可使高频段的音色显得生动活泼些。一般情况下,手机发声音质的好坏可以用其频响曲线来判定,好的频响曲线会使人感觉良好。 声音失真对听觉会产生一定的影响,其程度取决于失真的大小。对于输入的一个单一频率的正弦电信号,输出声信号中谐波分量的总和与基波分量的比值称为总谐波失真(THD),其对听觉的影响程度如下:THD<1%时,不论什么节目信号都可以认为是满意的; THD>3%时,人耳已可感知; THD>5%时,会有轻微的噪声感; THD>10%时,噪声已基本不可忍受。 对于手机而言,由于受到外形和Speaker尺寸的限制,不可能将它与音响相比,因此手机铃声主要关注声音大小、是否有杂音、是否有良好的中低音效果。 2. 手机铃声的影响因素 铃声的优劣主要取决于铃声的大小、所表现出的频带宽度(特别是低频效果)和其失真度大小。对手机而言,Speaker、手机声腔、音频电路和MIDI选曲是四个关键因素,它们本身的特性和相互间的配合决定了铃声的音质。 Speaker单体的品质对于铃声的各个方面影响都很大。其灵敏度对于声音的大小,其低频性能对于铃声的低音效果,其失真度大小对于铃声是否有杂音都是极为关键的。

2020年常见音箱结构设计及选用

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 常见音箱结构设计及选用 1、音箱设计流程 产品规划与造型设计:确认音箱用途、定位、使用场景与方式、外形大小等——声学设计:音箱总体方案设计、扬声器选型、音质效果评估——结构设计:音箱的箱体设计、扬声器结构设计——开模具——样机:音箱性能测试与评价、音箱性能优化与改进——音箱系统音质调试 2、音箱的分类及简要特性 音箱又称扬声器系统,是将扬声器装到专门设计的箱体内,并用分频网络把输入信号分频以后分别送给相应的扬声器的一种系统。因此,音箱由扬声器、分频网络、扬声器箱共同组成。 音箱按伴音模式分为:单声道、立体声(2.0系统)、2.1声道系统、3.0/3.1声道系统、家庭影院(5.1、7.1等环绕声)系统; 按产品形态可以分为:有源音箱、无源音箱; 按用途分为:书架式、落地式、监听式、电影立体声、大功率扩声、有线广播、防水、迷你型、返送式、带角架型、对讲型、拐角式、球型无指向式、高音半固定式、调相式等音箱。 按扬声器箱分为: 封闭箱:固定式、书架式; 倒相式:倒相管式、阻尼倒相式、分布倒相式、R-J式、卡鲁逊式、曲径式、后加载号筒式、折叠号筒式、空纸盆式 号筒障板式、前加载号筒式

利用反射的扬声器箱:角隅式、JBL式 指向性的扬声器箱:无指向性障板、球形箱、声柱; 最为普及的是封闭式声箱和倒相式声箱。封闭式声箱是为了达到隔离扬声器后面声波的目的,而将扬声器的后面完全封闭起来的声箱;倒相式声箱是将扬声器后面所发声波加以充分利用的一种声箱。 扬声器中使用最广泛的是电动式纸盆扬声器,由于其振膜面积可以做得比较大,能够得到比较大的振幅,所以具有低声频重放下限频率低的特点,同时结构简单、成本低,多年以来都是扬声器生产中的主流。 3、音箱设计的总体技术要求(倒相箱) 3.1 音箱发声的指向性 声波在传播中会产生反射, 绕射和干涉等现象, 并具有一定的传播规律。扬声器辐射声波的波长随频率的增加而变短。当声波的波长与扬声器的几何尺寸可比拟时,由于声波的绕射特性及干涉特性,扬声器辐射的声波将出现明显的指向性。扬声器的指向性是表征扬声器在不同方向上辐射声波的能力,且与频率有关,高频声音具有较强的指向性,低频声指向性相对较弱。 超重低音、重低音音箱,扬声器的发声方向无限制,音箱可以放置于听音区的任何位置。 全频、中高频、高频音箱,扬声器的发声方向尽量正对听音位置。若因结构、外观形态等限制,无法正对听音者位置,需要设计声音反射装置,以减小指向性带来的声音衰减。 扬声器发声方向与听音者方向不大于90°,可采用以下声波反射装置。

机械设计转动惯量计算公式-参考模板

1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 8 2 MD J = 对于钢材:3 410 32-??=g L rD J π ) (1078.0264s cm kgf L D ???-M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。 2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量(kgf·cm·s 2); i-降速比,1 2 z z i = 3. 工作台折算到丝杠上的转动惯量 g w 22? ?? ??? =n v J π g w 2s 2 ? ?? ??=π (kgf·cm·s 2) v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm) 2. 丝杠传动时传动系统折算到驱轴上的总转动惯量: ()) s cm (kgf 2g w 122 221??? ??? ??????? ??+++=πs J J i J J S t J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg). 5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量 2 g w R J = (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf)

6. 齿轮齿条传动时传动系统折算到马达轴上的总转动惯量 ???? ??++=2221g w 1R J i J J t J 1,J 2-分别为Ⅰ轴, Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)。 马达力矩计算 (1) 快速空载时所需力矩: 0f amax M M M M ++= (2) 最大切削负载时所需力矩: t 0f t a M M M M M +++= (3) 快速进给时所需力矩: 0f M M M += 式中M amax —空载启动时折算到马达轴上的加速力矩(kgf·m); M f —折算到马达轴上的摩擦力矩(kgf·m); M 0—由于丝杠预紧引起的折算到马达轴上的附加摩擦力矩(kgf·m); M at —切削时折算到马达轴上的加速力矩(kgf·m); M t —折算到马达轴上的切削负载力矩(kgf·m)。 在采用滚动丝杠螺母传动时,M a 、M f 、M 0、M t 的计算公式如下: (4) 加速力矩: 2a 106.9M -?= T n J r (kgf·m) s T 17 1= J r —折算到马达轴上的总惯量; T —系统时间常数(s); n —马达转速( r/min ); 当 n = n max 时,计算M amax n = n t 时,计算M at n t —切削时的转速( r / min )

音箱的音腔计算方法

ASW计算公式开口腔计算公式:V A = (2S x Q。)² x V AS(L) 通带纹波系数是带通式音箱的重要设计参数。选取合适的封闭腔带通Q值QB,查表得出fL和fH,用f。/Q。分别乘以这两个系,求出音箱频响曲线上下降3dB的两个频率点,要求与设计值相符。带通Q值越高,音箱的灵敏度越高,但通频带越窄;带通Q值取得越低,音箱的灵敏度越低,但通频带越宽。导相管的调振频率fB = QB x ( f。/ Q。) 导相管长度L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 密封腔计算公式:VB = V AS / a 顺性比a = (QB² / Q。²) – 1 箱体总容积为V = VA + VB 单腔倒相式音箱计算公式 1.低频扬声器单元的品质因数Q。、谐振频率f。及等效容积V AS是决定音箱低频响应的重要参数。品质因数Q。、谐振频率f。及等效容积V AS由喇叭供应商给出,或自己根护喇叭的基本性能参数进行公式计算,在已知品质因数Q。、谐振频率f。的前提下计算VAS。2.箱体容积计算公式:VB = V AS / a 箱体顺性比a值可由倒相音箱设计图表查出(91页图3-9),设QL=7。也可由下面的简表进行估算,如下表:3.确定倒相管截面积。 4.确定导相管长度,可用公式:L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 5.音箱的调整要点:原则是将倒相箱的谐振频率调整到最合适的频率点,使音箱的低频响应平坦。调整音箱的系统品质因数,使音箱的低音深沉,听起来即不干涩也不混浊;调整分频网络的分频点和相位特性,使音箱各频段的声压均匀,频率响应曲线平坦。一般的设计流程多媒体音箱并不是简单的将功放音箱结合到一块,因为使用环境上的不同,所以在设计上也应该注意到这个问题。但是很少有厂家注意到这个问题,这些厂家大多只是注意到了音箱外表的美与丑,根本没有考虑到音箱的工作环境,也就是说根本没有进行正确的音箱设计,所以其音质平平也就不足为奇了。有关这个问题以前曾先生写过不少文章,大家可以参看,我在此着重的谈一谈作为一款高质量重放声音的多媒体音箱的具体的设计过程,以及如何处理在设计时所遇到的问题。一选择合适的单元多媒体音箱工作状态处于近场小环境听音,因此决定了我们只能使用小容积箱体,选择小口径单元,这要求单元拥有合理的重放声压,以及足够宽的重放带宽。但从性能价格比来看,在中高档多媒体音箱中还是采用稍大一些口径的单元为好,4.5寸的口径可以认为是最易于做到性能价格比的一种尺寸,同时如果要生产高保真产品的话5寸是一种不错的口径。我觉得现在的多媒体音箱大都体积偏小,不过惠威的M200是一种不错的入门产品。我认为现代多媒体音箱应该将箱体控制在4--8升之间,当然还要与相关参数相配合,也就是我们常说的Thiele-Small参数一定要合适,而不是片面的夸大某一参数。由于低音单元口径小,所以更应该注意低频大动态性能,因为低音单元的震动系统最大线性位移量即反映了扬声器系统的大动态性能。如线性位移量偏小,则在高声压级大动态时,不但低音不能有效重放而且各种失真也会增大,特别是影响音质的奇次谐波失真。现在大多数多媒体音箱的磁路设计也欠佳,磁体小,上下夹板导磁率低,对振盆控制能力低,因此而引起的非线性失真也较大。因此在现代多媒体音箱中的总的失真率将达到7%左右或更高。这在HI-FI看起来是不可容忍的。还有就是振盆材料,由于近年来低档PP盆,防弹布盆,玻璃纤维盆,碳纤维盆的价格日益低下,再加上外观好,因此更多的被用在了多媒体音箱上来,但殊不知,后三种振盆的自阻尼很小,工作状态是极难控制的,一般在中高端的某一频率点上会产生很多的失真,大到不可忍受的地步,这个频率点就是我们常说的盆分裂点。因为现代多媒体音箱都没有分频器,再加上设计不合理的箱体,是很难压制这个分裂点的。而第一种振盆即PP盆,虽然听起来韧性好,中频饱满,低频富有弹性,但由于刚性相对较低,因而在大音量下引起的失真也较大。中频的层次感也不是很好。而相对个性较小,较容易控制的质量好的纸盆单元,却很难见到有厂家应用。就个人DIY制作而言,南京的110,150系列防磁低音,银笛的QG4,QG5系列防磁高音单元,都是不错的DIY选择,要求高一点的还可以选择惠威,发友等厂家专为多媒体音箱设计的

音箱设计手册DOC

音箱设计手册作者:2008.1.26

目录 1.音响系统介绍 (1) 2.扬声器部品材料的作用 (2) 3.扬声器分类 (2) 4.声学知识 (4) 5.扬声器参数解译 (10) 6.扬声器参数运算 (12) 7.扬声器设计 (13) 8.分频器设计 (17) 9.密闭式音箱设计 (20) 10.密闭式音箱调试 (23)

調音台 話筒 效果器 VCD TV 功放 音響系統 L R 1.音响系统介绍: VCD :提供音频、视频信号。 调音台:调配、控制声系统。 效果器:混响、延时、补赏音质。 功放:声音放大、立体感。 音箱:声音重放。 1

2.扬声器部品材料的作用: 纸盆:声波辐射组件,它决定音质。 音圈:策动源,扬声器的心脏。 振动系统防尘盖:防尘、美观,改变高频曲线。 弹波:定位,控制音圈振幅。 Edge悬边:支撑,保持纸盆振动平衡。 磁铁:提供磁场。 T 铁:导磁。 扬声器磁路系统华司:导磁。 后盖:防磁泄漏。 盆架:支撑和固定磁路及振动系统。 垫片:加强悬边粘接及保护悬边。 支撑系统端子:导电,固定锦丝线连接。 锦丝线:导电,传输给音圈线音频信号。 3.扬声器分类: 按辐射方式分: 直接辐射式----声波由发声组件直接向空间辐射。 间接辐射式----声波由发声组件经过号筒向空间辐射。 耳机式----声波由发声组件经密闭气室(耳道)辐射。 按换能方式分: 电动式----利用磁场对载流导体的作用力来实现电声能转换。 电磁式----利用馈有音频电流的电磁铁与连有振膜的衔铁之间的相互作用来实现电声能转换。 压电式----利用压电体的反向压电效应来实现电声能转换。 电容式----利用电容极板之间的静电力来实现电声能转换。 按纸盆结构分: 锥形扬声器 平板扬声器 2

常见音箱结构设计与选用

常见音箱结构设计及选用 1、音箱设计流程 产品规划与造型设计:确认音箱用途、定位、使用场景与方式、外形大小等——声学设计:音箱总体方案设计、扬声器选型、音质效果评估——结构设计:音箱的箱体设计、扬声器结构设计——开模具——样机:音箱性能测试与评价、音箱性能优化与改进——音箱系统音质调试 2、音箱的分类及简要特性 音箱又称扬声器系统,是将扬声器装到专门设计的箱体,并用分频网络把输入信号分频以后分别送给相应的扬声器的一种系统。因此,音箱由扬声器、分频网络、扬声器箱共同组成。 音箱按伴音模式分为:单声道、立体声(2.0系统)、2.1声道系统、 3.0/3.1声道系统、家庭影院(5.1、7.1等环绕声)系统; 按产品形态可以分为:有源音箱、无源音箱; 按用途分为:书架式、落地式、监听式、电影立体声、大功率扩声、有线广播、防水、迷你型、返送式、带角架型、对讲型、拐角式、球型无指向式、高音半固定式、调相式等音箱。 按扬声器箱分为: 封闭箱:固定式、书架式; 倒相式:倒相管式、阻尼倒相式、分布倒相式、R-J式、卡鲁逊式、曲径

式、后加载号筒式、折叠号筒式、空纸盆式 号筒障板式、前加载号筒式 利用反射的扬声器箱:角隅式、JBL式 指向性的扬声器箱:无指向性障板、球形箱、声柱; 最为普及的是封闭式声箱和倒相式声箱。封闭式声箱是为了达到隔离扬声器后面声波的目的,而将扬声器的后面完全封闭起来的声箱;倒相式声箱是将扬声器后面所发声波加以充分利用的一种声箱。 扬声器中使用最广泛的是电动式纸盆扬声器,由于其振膜面积可以做得比较大,能够得到比较大的振幅,所以具有低声频重放下限频率低的特点,同时结构简单、成本低,多年以来都是扬声器生产中的主流。 3、音箱设计的总体技术要求(倒相箱) 3.1 音箱发声的指向性 声波在传播中会产生反射, 绕射和干涉等现象, 并具有一定的传播规律。扬声器辐射声波的波长随频率的增加而变短。当声波的波长与扬声器的几何尺寸可比拟时,由于声波的绕射特性及干涉特性,扬声器辐射的声波将出现明显的指向性。扬声器的指向性是表征扬声器在不同方向上辐射声波的能力,且与频率有关,高频声音具有较强的指向性,低频声指向性相对较弱。 超重低音、重低音音箱,扬声器的发声方向无限制,音箱可以放置于听音区的任何位置。 全频、中高频、高频音箱,扬声器的发声方向尽量正对听音位置。若因结

教你看懂扬声器的构造图

教你看懂扬声器的构造图 作为音箱最基本的组成部分,扬声器单元(简称单元)对于普通读者来说是既简单又复杂的。为什么这么说呢?因为单元的工作原理似乎很简单,往复运动的振膜不停的振动,带动空气形成声波,似乎就这么简单。不过本文也没有让您一下子就能肉眼辨别单元好坏的妙方,只能先为大家揭秘这么个看似简单的单元,部究竟是个什么样,各部件有何功能等等。 惠威M200MKIII原木豪华版 扬声器的爆炸图(分解图):

惠威M200MKIII原木豪华版:低音单元爆炸图 将单元按照中轴及大致的装配顺序进行分解排列的说明图被行业人士称为爆炸图,上图便是典型的扬声器爆炸图。 锥形扬声器的特点及其部组成: 锥形扬声器是我们最常的扬声器类型,它的结构相对简单、容易生产,而且本身不需要大的空间,这些原因令其价格便宜,可以大量普及。其次,这类扬声器可以做到性能优良,在中频段可以获得均匀的频率响应,因此能够满足大部分普通消费者的常规听感需求。最后,这类扬声器已有几十年的发展史,而其工艺、材料也在不断改进,性能与时俱进,这也令这两款扬声器能够获得成为主流的持续的原动力。

惠威M200MKIII原木豪华版:低音单元 锥形扬声器的结构可以分为三个部分: 1、振动系统包括振膜、音圈、定型支片、防尘罩 2、磁路系统包括导磁上板、导磁柱、导磁下板、磁体等 3、辅助系统包括盆架、压边、接线架、相位塞等 下面我们将为大家逐一介绍锥形扬声器部的主要部件。最新扬声器部解构: 惠威M200MKIII原木豪华版:低音单元爆炸图

具体到上图,根据序号,他们分别是:1.防磁罩、2&4.磁体、3.导磁下板、5.导磁上板、6.盆架、7.定心支片(弹拨)、8.音圈、9.振膜+折环、10.防尘帽。 振膜:电动式扬声器,当外加音频信号时,音圈推动振膜振动,而振膜则推动空气,产生声波。 常见的锥盆有三种形式:直线式锥盆振膜、指数式锥盆振膜和抛物线式锥盆振膜。 振膜在振动频率较高时,会出现分割振动,在振膜锥形斜面上增加褶皱可以改变分割振动的状态,如果设计得当,可以改善单元的高频特性,还可以增加振膜的强度及阻尼。

音腔结构设计思考与总结

音腔结构设计思考与总结 通过参观XX电机厂,就音腔与Speaker方面,与其公司技术人员交换意见,结合本公司的产品结构,现归纳如下,如有不同意见,请各位提出您宝贵的意见,进行分析讨论,以比较不同方案优缺点,最后论证及确认这些结构方式适用范围及其可行性。 一、Speaker音腔出声孔的结构设计 1、Speaker前腔设计方式及说明: 1)音腔出声孔为穿插方式的结构形式: a、红色为硅胶 b、黄色为面壳 c、青色为Speaker 公司目前采用的设计(图1) 喇叭前腔H1尺寸较小,以使前腔空间小,同时要防止喇叭振膜在振动中接触到塑胶平面,即要求留有足够的振动空间,当然,这个H1不是越大越好,它有一个相对腔体出声孔面积较佳的权益值(以前是通过试听方式作调整)。

结构方式(2) 喇叭前腔之对应的塑胶做成弧面,即可以使得H1尺寸加大,但要 考虑H2尺寸,保证面壳胶厚有足够的强度。其目的是合理增加喇叭之前腔腔体的空间。此情况,喇叭网粘剂为液体最好。 注意: 1、作成弧面的情况,喇叭网若是背双面胶,那么装配就不方便,喇叭网不易装平; 2、作成弧面的情况,装配硅胶垫需为平面,以使装配牢固可靠。 2)音腔孔为碰穿方式: 3.m m 000. mm 50TC700音腔孔(图 3)

分析: 1、 结构及加工上:H=3.0mm,W=0.5mm,模具强度不够好,来料品质 不能保证; 2、 音腔孔0.50x3.0mm :尺寸太小、太深,喇叭振动过程中需要的气 流循环(空气进出音腔孔)出现不连续现象,导致削弱高音,影响音量大小。 改善方法: 1、 穿插结构方式:(如TC700S )不仅可以解除模具加工强度不良问 题,同时可以很好地控制音腔孔大小,从而改善气流循环,音量大小得以改善。 2、 也可以在TC700音腔孔(图3)上作如下的改善,详见下图(图 4) 060080.. mm —10020 ..±R W (示意图4---仅作示意) 说明:在后模开一个沉台,宽度为2.50mm 左右,尽可能圆滑过渡,音腔孔尺寸请上图所示。这样也可以改善音量效果。(当然此结构在TC700相应

耳机喇叭的结构设计

龙源期刊网 https://www.doczj.com/doc/2416602939.html, 耳机喇叭的结构设计 作者:周磊 来源:《信息技术时代·下旬刊》2018年第01期 摘要:随着科学技术的进步,耳机的设计制造得到了长足的发展。然而耳机知名品牌都是国外品牌,如德国的Beyerdynamic(拜亚动力)和Sennheiser(森海塞尔),美国的Beats (节拍)和Bose(博士),奥地利的AKG(爱科技);中国的耳机制造企业还处于萌芽发展阶段,如Merry(美特科技)和欧仕达(AST),相信不久的将来,它们也会像华为一样发展壮大,走出国门,走向世界。 关键词:耳机;喇叭;结构设计 随着中国城市化进程的加快,越来越多的人们选择通过户外运动方式来缓解面临的各种压力,各种各样的运动耳机也越来越被人们所使用。下文讲解运动耳机中最重要的部件-喇叭,以及和喇叭相配合机构件的设计。 一、耳机的分类 耳机根据其换能方式分类,主要有:动圈方式、动铁方式、静电式。 1. 动圈式耳机是最普通、最常见的耳机,它的驱动单元基本上就是一只小型的动圈扬声器,由处于永磁场中的音圈驱动与之相连的振膜振动。动圈式耳机效率比较高,大多可为音响上的耳机输出驱动,且可靠耐用。通常而言驱动单元的直径越大,耳机的性能越出色,目前在消费级耳机中驱动单元最大直径为70mm,一般为旗舰级耳罩式耳机。 2.动铁式耳机是通过一个结构精密的连接棒传导到一个微型振膜的中心点,从而产生振动并发声的耳机。动铁式耳机由于单元体积小得多,所以可以轻易的放入耳道。这样的做法有效地降低了入耳部分的面积可以放入更深的耳道部分 3.静电耳机有轻而薄的振膜,由高直流电压极化,极化所需的电能由交流电转化,也有电池供电的。振膜悬挂在由两块固定的金属板(定子)形成的静电场中,静电耳机必须使用特殊的放大器将音频信号转化为数百伏的电压信号,驱动,所能到达的声压级也没有动圈式耳机大,但它的反应速度快,能够重放各种微小的细节,失真极低。 二、喇叭的工作原理及结构 喇叭的工作原理:是由磁铁构成的磁间隙内的音圈在电流流动时,产生上下方向的推动力使振动体(振动膜)振动,从而振动空气,使声音传播出去,完成了电-声转换。喇叭实际上是一个电声换能器。

噪声计算公式

三、时间平均声级或等效连续声级Leq A 声级能够较好地反映人耳对噪声的强度和频率的主观感觉,对于一个连续的稳定噪声,它是一种较好的评价方法。但是对于起伏的或不连续的噪声,很难确定A 声级的大小。例如我们测量交通噪声,当有汽车通过时噪声可能是75d B ,但当没有汽车通过时可能只有50dB ,这时就很难说交通噪声是75dB 还是50dB 。又如一个人在噪声环境下工作,间歇接触噪声与一直接触噪声对人的影响也不一样,因为人所接触的噪声能量不一样。为此提出了用噪声能量平均的方法来评价噪声对人的影响,这就是时间平均声级或等效连续声级,用Leq 表示。这里仍用A 计权,故亦称等效连续A 声级L Aeq 。 等效连续A 声级定义为:在声场中某一定位置上,用某一段时间能量平均的方法,将间歇出现的变化的A 声级以一个A 声级来表示该段时间内的噪声大小,并称这个A 声级为此时间段的等效连续A 声级,即: ()?? ???????????????=?dt P t P T L T A eq 2001lg 10 =??? ? ???T L dt T A 01.0101lg 10 (2-4) 式中:p A (t )是瞬时A 计权声压;p 0是参考声压(2×10-5 Pa );L A 是变化A 声级的瞬时值,单位dB ;T 是某段时间的总量。 实际测量噪声是通过不连续的采样进行测量,假如采样时间间隔相等,则: ?? ? ??=∑=n i L eq Ai N L 11.0101lg 10 (2-5) 式中:N 是测量的声级总个数,L A i 是采样到的第i 个A 声级。 对于连续的稳定噪声,等效连续声级就等于测得的A 声级。 四、昼夜等效声级 通常噪声在晚上比白天更显得吵,尤其对睡眠的干扰是如此。评价结果表明,晚上噪声的干扰通常比白天高10dB 。为了把不同时间噪声对人的干扰不同的因素考虑进去,在计算一天24h 的等效声级时,要对夜间的噪声加上10dB 的计权,这样得到的等效声级为昼夜等效声级,以符号L dn 表示;昼间等效用L d 表示,指的是在早上6点后到晚上22点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来;夜间等效用L n 表示,指的是在晚上22点后到早上6点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来:

声学计算

声学计算 1.已知音箱灵敏度90dB/w/m,加1w功率,则8m处声压级为72dB。 2.已知音箱灵敏度72dB/w/m,加64w功率,则1m处声压级为90dB。 3.已知声波信号频率f=50Hz,其周期为0.02s。 4.已知声波信号频率f=50Hz,其波长为6.8m。 5.已知声波信号波长为0.34m,其频率为1KHz。 6.已知声波信号波长为0.34m,其周期为0.001s。 7.某电压放大器输入100mv时,输出100v,其电压增益是60分贝。 8.某衰减器输入2v时输出1v,其电压增益是-6分贝。 9.某功率放大器输入100mw时输出10w,其功率增益是20分贝。 10.某电流放大器,输入20mA时输出200mA,其电流增益是20分贝。 11.某分频器特性为-6dB/oct表示每倍频程衰减6分贝。 12.某滤波器特性为-6dB/oct表示每十倍频程衰减6分贝。 13.一台额定功率100w,8Ω的功放,接4Ω音箱时,输出功率为200w。 14.一台额定功率100w,8Ω的功放,接16Ω音箱时,输出功率为50w。 15.三台电压增益各为100倍的电压放大器串接,总增益为120dB。 16.三台电压增益各为100倍的功率放大器串接,总增益为60dB。 17.三台电压增益各为10:1的衰减器串接,总增益为-60dB。 18.某放大器输出电压为0dBu,等于0.775伏。 19.某放大器输出电压为20dBu,等于7.75伏。 20.某放大器输出电压为-20dBu,等于0.0775伏。 21.放大器输出功率的计算式等于(输出电压)平方/负载阻抗。

22.放大器信号噪声比的计算式等于20lg(输出信号电压/噪声电压)。 23.放大器接8Ω负载时测出输出电压为8v,此时放大器输出功率为8w。 24.放大器输出信号电压10v时,噪声电压为100mv,其信噪比为40dB。 25.扬声器1m处的声压级为110dB,那么在距扬声器8m处的直达声扬声压级是92分贝。 26.扬声器1m处的声压级为110dB,那么在距扬声器2m处的直达声扬声压级是104分贝。 27.扬声器1m处的声压级为110dB,那么在距扬声器4m处的直达声扬声压级是98分贝。 28.语音和音乐兼用的厅堂扩声系统2级技术指标要求0.125~4KHz的传声增益为≥-12dB。 29.要求距扬声器16m处的直达声扬声压为84dB,在距离扬声器1m处的声扬声压级是108分贝。 30.声速C=340m/s,声波波长λ=0.034m,声频f=10KHz。 31.声速C=340m/s,声波波长λ=0.068m,声频f=5KHz。 32.一扬声器,其额定灵敏度为93dB/m/w,现给它加100w电功率,在距扬声器1m处的声压级应为113分贝

音箱的音腔计算

ASW计算公式 开口腔计算公式:VA = (2S x Q。)² x VAS(L) 通带纹波系数是带通式音箱的重要设计参数。 选取合适的封闭腔带通Q值QB,查表得出fL和fH,用f。/Q。分别乘以这两个系,求出音箱频响曲线上下降3dB的两个频率点,要求与设计值相 符。带通Q值越高,音箱的灵敏度越高,但通频带越窄;带通Q值取得越低,音箱的灵敏度越低,但通频带越宽。 导相管的调振频率fB = QB x ( f。/ Q。) 导相管长度L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 密封腔计算公式:VB = VAS / a 顺性比a = (QB² / Q。²) – 1 箱体总容积为V = VA + VB 单腔倒相式音箱计算公式 1.低频扬声器单元的品质因数Q。、谐振频率f。及等效容积VAS是决定音箱低频响应的重要参数。 品质因数Q。、谐振频率f。及等效容积VAS由喇叭供应商给出,或自己根护喇叭的基本性能参数进行公式计算,在已知品质因数Q。、谐振频率f。的前提下计算VAS。 2.箱体容积计算公式:VB = VAS / a 箱体顺性比a值可由倒相音箱设计图表查出(91页图3-9),设QL=7。也可由下面的简表进行估算,如下表: 3.确定倒相管截面积。 4.确定导相管长度,可用公式: L=[(c²S]/(4*3.14²*fb²*V)] -0.82*S?² 5.音箱的调整要点: 原则是将倒相箱的谐振频率调整到最合适的频率点,使音箱的低频响应平坦。调整音箱的系统品质因数,使音箱的低音深沉,听起来即不干涩也不混浊;调整分频网络的分频点和相位特性,使音箱各频段的声压均匀,频率响应曲线平坦。

常见音箱结构设计及选用

1、音箱设计流程 产品规划与造型设计:确认音箱用途、定位、使用场景与方式、外形大小等——声学设计:音箱总体方案设计、扬声器选型、音质效果评估——结构设计:音箱的箱体设计、扬声器结构设计——开模具——样机:音箱性能测试与评价、音箱性能优化与改进——音箱系统音质调试 2、音箱的分类及简要特性 音箱又称扬声器系统,是将扬声器装到专门设计的箱体内,并用分频网络把输入信号分频以后分别送给相应的扬声器的一种系统。因此,音箱由扬声器、分频网络、扬声器箱共同组成。 音箱按伴音模式分为:单声道、立体声(系统)、声道系统、声道系统、家庭影院(、等环绕声)系统; 按产品形态可以分为:有源音箱、无源音箱; 按用途分为:书架式、落地式、监听式、电影立体声、大功率扩声、有线广播、防水、迷你型、返送式、带角架型、对讲型、拐角式、球型无指向式、高音半固定式、调相式等音箱。 按扬声器箱分为: 封闭箱:固定式、书架式; 倒相式:倒相管式、阻尼倒相式、分布倒相式、R-J式、卡鲁逊式、曲径式、后加载号筒式、折叠号筒式、空纸盆式 号筒障板式、前加载号筒式 利用反射的扬声器箱:角隅式、JBL式 指向性的扬声器箱:无指向性障板、球形箱、声柱;

最为普及的是封闭式声箱和倒相式声箱。封闭式声箱是为了达到隔离扬声器后面声波的目的,而将扬声器的后面完全封闭起来的声箱;倒相式声箱是将扬声器后面所发声波加以充分利用的一种声箱。 扬声器中使用最广泛的是电动式纸盆扬声器,由于其振膜面积可以做得比较大,能够得到比较大的振幅,所以具有低声频重放下限频率低的特点,同时结构简单、成本低,多年以来都是扬声器生产中的主流。 3、音箱设计的总体技术要求(倒相箱) 音箱发声的指向性 声波在传播中会产生反射, 绕射和干涉等现象, 并具有一定的传播规律。扬声器辐射声波的波长随频率的增加而变短。当声波的波长与扬声器的几何尺寸可比拟时,由于声波的绕射特性及干涉特性,扬声器辐射的声波将出现明显的指向性。扬声器的指向性是表征扬声器在不同方向上辐射声波的能力,且与频率有关,高频声音具有较强的指向性,低频声指向性相对较弱。 超重低音、重低音音箱,扬声器的发声方向无限制,音箱可以放置于听音区的任何位置。 全频、中高频、高频音箱,扬声器的发声方向尽量正对听音位置。若因结构、外观形态等限制,无法正对听音者位置,需要设计声音反射装置,以减小指向性带来的声音衰减。 扬声器发声方向与听音者方向不大于90°,可采用以下声波反射装置。 尽量避免扬声器发声与听音者方向超过90°。 扬声器的选用 扬声器的选型及与音箱箱体的配合,直接决定了音箱系统的音质状况。

常见音箱结构设计及选用教学提纲

常见音箱结构设计及 选用

常见音箱结构设计及选用 1、音箱设计流程 产品规划与造型设计:确认音箱用途、定位、使用场景与方式、外形大小等——声学设计:音箱总体方案设计、扬声器选型、音质效果评估——结构设计:音箱的箱体设计、扬声器结构设计——开模具——样机:音箱性能测试与评价、音箱性能优化与改进——音箱系统音质调试 2、音箱的分类及简要特性 音箱又称扬声器系统,是将扬声器装到专门设计的箱体内,并用分频网络把输入信号分频以后分别送给相应的扬声器的一种系统。因此,音箱由扬声器、分频网络、扬声器箱共同组成。 音箱按伴音模式分为:单声道、立体声(2.0系统)、2.1声道系统、 3.0/3.1声道系统、家庭影院(5.1、7.1等环绕声)系统; 按产品形态可以分为:有源音箱、无源音箱; 按用途分为:书架式、落地式、监听式、电影立体声、大功率扩声、有线广播、防水、迷你型、返送式、带角架型、对讲型、拐角式、球型无指向式、高音半固定式、调相式等音箱。 按扬声器箱分为: 封闭箱:固定式、书架式; 倒相式:倒相管式、阻尼倒相式、分布倒相式、R-J式、卡鲁逊式、曲径式、后加载号筒式、折叠号筒式、空纸盆式 号筒障板式、前加载号筒式 利用反射的扬声器箱:角隅式、JBL式 指向性的扬声器箱:无指向性障板、球形箱、声柱;

最为普及的是封闭式声箱和倒相式声箱。封闭式声箱是为了达到隔离扬声器后面声波的目的,而将扬声器的后面完全封闭起来的声箱;倒相式声箱是将扬声器后面所发声波加以充分利用的一种声箱。 扬声器中使用最广泛的是电动式纸盆扬声器,由于其振膜面积可以做得比较大,能够得到比较大的振幅,所以具有低声频重放下限频率低的特点,同时结构简单、成本低,多年以来都是扬声器生产中的主流。 3、音箱设计的总体技术要求(倒相箱) 3.1 音箱发声的指向性 声波在传播中会产生反射, 绕射和干涉等现象, 并具有一定的传播规律。扬声器辐射声波的波长随频率的增加而变短。当声波的波长与扬声器的几何尺寸可比拟时,由于声波的绕射特性及干涉特性,扬声器辐射的声波将出现明显的指向性。扬声器的指向性是表征扬声器在不同方向上辐射声波的能力,且与频率有关,高频声音具有较强的指向性,低频声指向性相对较弱。 超重低音、重低音音箱,扬声器的发声方向无限制,音箱可以放置于听音区的任何位置。 全频、中高频、高频音箱,扬声器的发声方向尽量正对听音位置。若因结构、外观形态等限制,无法正对听音者位置,需要设计声音反射装置,以减小指向性带来的声音衰减。 扬声器发声方向与听音者方向不大于90°,可采用以下声波反射装置。

2021年常见音箱结构设计及选用

常见音箱结构设计及选用 欧阳光明(2021.03.07) 1、音箱设计流程 产品规划与造型设计:确认音箱用途、定位、使用场景与方式、外形大小等——声学设计:音箱总体方案设计、扬声器选型、音质效果评估——结构设计:音箱的箱体设计、扬声器结构设计——开模具——样机:音箱性能测试与评价、音箱性能优化与改进——音箱系统音质调试 2、音箱的分类及简要特性 音箱又称扬声器系统,是将扬声器装到专门设计的箱体内,并用分频网络把输入信号分频以后分别送给相应的扬声器的一种系统。因此,音箱由扬声器、分频网络、扬声器箱共同组成。 音箱按伴音模式分为:单声道、立体声(2.0系统)、2.1声道系统、3.0/3.1声道系统、家庭影院(5.1、7.1等环绕声)系统; 按产品形态可以分为:有源音箱、无源音箱; 按用途分为:书架式、落地式、监听式、电影立体声、大功率扩声、有线广播、防水、迷你型、返送式、带角架型、对讲型、拐角式、球型无指向式、高音半固定式、调相式等音箱。 按扬声器箱分为:

封闭箱:固定式、书架式; 倒相式:倒相管式、阻尼倒相式、分布倒相式、R-J式、卡鲁逊式、曲径式、后加载号筒式、折叠号筒式、空纸盆式 号筒障板式、前加载号筒式 利用反射的扬声器箱:角隅式、JBL式 指向性的扬声器箱:无指向性障板、球形箱、声柱; 最为普及的是封闭式声箱和倒相式声箱。封闭式声箱是为了达到隔离扬声器后面声波的目的,而将扬声器的后面完全封闭起来的声箱;倒相式声箱是将扬声器后面所发声波加以充分利用的一种声箱。 扬声器中使用最广泛的是电动式纸盆扬声器,由于其振膜面积可以做得比较大,能够得到比较大的振幅,所以具有低声频重放下限频率低的特点,同时结构简单、成本低,多年以来都是扬声器生产中的主流。 3、音箱设计的总体技术要求(倒相箱) 3.1 音箱发声的指向性 声波在传播中会产生反射, 绕射和干涉等现象, 并具有一定的传播规律。扬声器辐射声波的波长随频率的增加而变短。当声波的波长与扬声器的几何尺寸可比拟时,由于声波的绕射特性及干涉特性,扬声器辐射的声波将出现明显的指向性。扬声器的指向性是表征扬

关于喇叭音腔设计的基本原理

关于喇叭音腔设计的基本原理 新闻出处:21ic 发布时间: 2007-10-20 lldwsw 发布于 2007-10-20 9:39:00 关于喇叭的音腔设计,基本上我们停留在一个概念上,而没有一套完整的理论指导。我们知道的音腔设计,往往是如下的理解: 1:要有音腔,起扩音用,至于为什么要有音腔,则不明白。 2:音腔要求密封,若密封不好,则导致低音很差。 3:音腔孔不能开的太大,若开的太大,会导致音量变小。 以上三点是我们最常关心的,我们往往按要求去做,没有问过为什么。 本人试着用射频理论推导喇叭音腔设计: 对比天线与喇叭 天线喇叭 媒质真空空气 作用电能转换成电磁场能量电能转换成声音能量 主要器件天线喇叭 附属器件匹配电路音腔 原理电磁场理论震动波理论 目的获得最大的能量输出,合适的频响最大的能量输出,合适的频响 结论只有合适的天线和合适的匹配电路,才能获得最大的能量和合适的频响只有高效的喇叭和合适的音腔,才能获得最大的能量和合适的频响 通过以上,我们基本上清楚,喇叭跟天线具有类似的功能,就是起能量转换作用,其中喇叭是关键器件,它是电能到声能的根本,但是附属器件音腔决定了它的最大输出功率和频率响应,接下来我们主要讨论音响系统是如何获得最大能量的。 先举一个例子,我们用手拍空气,对空气做功基本上等于0,假如我们拿一把特别大的扇子,扇不动,对空气做功也等于0。 对空气做功其实就是对空气发生,假如这个频率在我们能够听到的范围内,就是声音了。 那么通过上面的例子可以说明,用手对空气做功有一个极点,也就是说有一个最大值。我们用以下公式来看:

P = F × V P为功率,对外界做功的功率,F为力的大小,V为速度。 这个公式说明F太小,或者V太小,都不可能对外做功,只有两个值乘积项决定对外的功率。 接下来我们看看喇叭是不是跟手一样,就是一个振膜加一个动力线圈,振膜决定这个扇子的面积大小,动力线圈相当于人的力。 因为喇叭的振膜是不可能变的,除非换个喇叭,在喇叭振膜,电能信号的频率一定的情况下,我们来描述这个音响系统应该如何提高输出能量: 对比P = F × V公式,我们对喇叭提出一个具体对外做功的简易公式。 因为F正比振膜面积(S),所以写成 F =K × S,K为系数。 V由喇叭的动力线圈决定,动力线圈的动力由电场产生,动力线圈的阻力由两部分产生,一是空气对振膜的阻力(K×S),反对振膜震动,而是喇叭自身振膜的弹力反对振膜震动(Fz)。 对于音响系统来说K×S一般远远小于Fz。这个原因如下。看一个音响系统,动不动就是100W之类的,而声音大小也没有多少,据说一个人一年高声唱歌,产生的能量只能烧一壶水,可见声音的能量还是很少很少的,绝大部分的音响系统,它的能量都消耗在喇叭上,发热了。 所以空气不能影响动力线圈,可以认为V一定。 那么公式就成了P =K × S * V 因为信号一定,喇叭的振膜面积S也一定,若想改变P,则只能改变K,目的是提高K,其实K就由音腔决定,如下: 假如我们现在的空气密度增加一倍,则K增加一倍,假如只对一部分空气做功,则产生的力就能提升,这是因为空气动力学原理dV / V = dF / F,也就是说在一定的空间内对空气做功,空气体积的变化跟力的变化成正比。这个就是音腔原理,就是要划出一部分空气,提高K值,让喇叭对这部分空气做功,产生声音,之后这部分能量再传到整个空间中,在这儿音腔当作了能量传递的中间环节。 以上合理的解释了上面提到的第一点,为什么要有音腔,对于2,3都可以类似的分析,对于2,还需要分析声音的相位问题,因为喇叭有两面,可以当作两个音源来考虑,相位差180°,对于第三点,可以整合到第一点里,都是影响K值。 主要针对便携式小音腔设计,比如手机,随身听之类。

相关主题
文本预览
相关文档 最新文档