当前位置:文档之家› 现代信号处理复习要点总结

现代信号处理复习要点总结

现代信号处理复习要点总结
现代信号处理复习要点总结

《信号处理技术及应用》复习要点总结

题型:10个简答题,无分析题。前5个为必做题,后面出7个题,选做5个,每个题10分。

要点:

第一章:几种变换的特点,正交分解,内积,基函数;

第二章:信号采样中的窗函数与泄露,时频分辨率,相关分析及应用(能举个例子最好)

第三章:傅里叶级数、傅里叶变换、离散傅里叶变换(DFT)的思想及公式,FFT校正算法、功率谱密度函数的定义,频谱细化分析,倒频谱、解调分析、时间序列的基本原理(可能考其中两个)第四章:一阶和二阶循环统计量的定义和计算过程,怎么应用?

第五章:多分辨分析,正交小波基的构造,小波包的基本概念

第六章:三种小波各自的优点,奇异点怎么选取

第七章:二代小波提出的背景及其优点,预测器和更新器系数计算方法,二代小波的分解和重构,定量识别的步骤

第八章:EMD基本概念(瞬时频率和基本模式分量)、基本原理,HHT的基本原理和算法。看8.3小节。

信号的时域分析

信号的预处理

传感器获取的信号往往比较微弱,并伴随着各种噪声。

不同类型的传感器,其输出信号的形式也不尽相同。

为了抑制信号中的噪声,提高检测信号的信噪比,便于信息提取,须对传感器检测到的信号进行预处理。

所谓信号预处理,是指在对信号进行变换、提取、识别或评估之前,对检测信号进行的转换、滤波、放大等处理。

常用的信号预处理方法

信号类型转换

信号放大

信号滤波

去除均值

去除趋势项

理想低通滤波器具有矩形幅频特性和线性相位特性。

经典滤波器

定义:当噪声和有用信号处于不同的频带时,噪声通过滤波器将被衰减或消除,而有用信号得以保留

现代滤波器

当噪声频带和有用信号频带相互重叠时,经典滤波器就无法实现滤波功能

现代滤波器也称统计滤波器,从统计的概念出发对信号在时域进行估计,在统计指标最优的意义下,用估计值去逼近有用信号,相应的噪声也在统计最优的意义下得以减弱或消除

将连续信号转换成离散的数字序列过程就是信号的采样,它包含了离散和量化两个主要步骤

采样定理:为避免混叠,采样频率ωs必须不小于信号中最高频率ωmax的两倍,一般选取采样频率ωs为处理信号中最高频率的2.5~4倍

量化是对信号采样点取值进行数字化转换的过程。量化结果以一定位数的数字近似表示信号在采样点的取值。

信号采样过程须使用窗函数,将无限长信号截断成为有限长度的信号。

从理论上看,截断过程就是在时域将无限长信号乘以有限时间宽度的窗函数

数字信号的分辨率包括时间分辨率和频率分辨率

数字信号的时间分辨率即采样间隔ρt,它反映了数字信号在时域中取值点之间的细密程度

数字信号的频率分辨率为ρω=2π/T

t e t x X t j d )()(ωω-+∞

-?

=

频率分辨率表示了数字信号的频谱在频域中取值点之间的细密程度 常用的时域参数和指标

1) 均值;2) 均方值;3) 均方根值;4) 方差; 5) 标准差;6) 概率密度函数;7) 概率分布函数; 8) 联合概率密度函数等

有量纲参数指标包括方根幅值、平均幅值、均方幅值和峰值四种 无量纲参数指标包括了波形指标、峰值指标、脉冲指标和裕度指标

有量纲参数指标不但与机器的状态有关,且与机器的运动参数如转速、载荷等有关。

而无量纲参数指标具有对信号幅值和频率变化均不敏感的特点。这就意味着理论上它们与机器的运动条件无关,只依赖于概率密率函数的形状。

所谓相关,就是指变量之间的线性联系或相互依赖关系。

如果信号随自变量时间的取值相似,内积结果就大。反之亦然。可定义信号的相关性度量指标。 ?

+=∞→T

T t

t y t x T

R 0

d )()(1

lim

)(ττ

信号x (t )的自相关函数和自相关系数定义为

t

t x t x T

R T

T x d )()(1

lim

)(0

?

±=∞→ττ

自相关分析的应用

信号中的周期性分量在相应的自相关函数中不会衰减,且保持了原来的周期。因此,自相关函数可从被噪声干扰的信号中找出周期成分

在用噪声诊断机器运行状态时,正常机器噪声是由大量、无序、大小近似相等的随机成分叠加的结果,因此正常机器噪声具有较宽而均匀的频谱。当机器状态异常时,随机噪声中将出现有规则、周期性的信号,其幅度要比正常噪声的幅度大得多。用噪声诊断机器故障时,依靠自相关函数 就可在噪声中发现隐藏的周期分量,确定机器的缺陷所在

互相关函数可定义为

t

t y t x T

R T

T xy d )()(1

lim

)(0

?

+=∞→ττ

互相关函数 的性质如下

信号的频域分析

傅里叶变换

)(ωX )(ωφ傅里叶逆变换

ω

ωπ

ω

d )

(21)(t j e X t x ?

+∞

-=

可写成

)

(|)(|)(ωφωωj e

X X =

| |为信号的连续幅值谱, 为信号的连续相位谱

非周期信号的幅值谱| X(w)|和周期信号的幅值谱 Cn 很相似,但两者是有差别的 Cn|的量纲与信号幅值的量纲一样;

| X(w)|的量纲与信号幅值的量纲不一样,它是单位频带dw 上的幅值。 傅里叶变换的性质

相干函数的工程应用

(1) 判断系统输出与某特定输入的相关程度。

利用相干函数可发现系统是否还有其它输入干扰及系统的线性程度。

(2) 谱估计和系统动态特性的测量精度估计。

在计算传递函数的幅频特性及相频特性时,辅以相干函数分析,可以分析出机械系统和基础振动的传递特性,为结构动态分析提供依据。

得到新的长度为N的复序列{ Rn}

对序列{Rn}进行FFT变换,得到中心频率为Wk 带宽W2-W1的细化谱

信号调制与解调分析

当机械出现故障时,信号中包含的故障信息往往以调制的形式出现,提取调制信号的过程就是信号的解调。

由于经典的频谱分辨率低,方差性不好,频谱能量泄露,需要较长的原始数据等不足,需要建立参数模型频谱估计

随机信号Xt的参数模型频谱估计的步骤可以分为以下三步:

(1)对给定的随机信号确定合理的参数模型;

(2)根据信号的自相关函数估计所确定的模型的参数;

(3)用估计出的模型参数计算信号的功率谱密度函数。

自回归(Auto-regressive,AR)模型

AR模型的传递函数中只含有极点,不含有零点,是全极点模型

滑动平均(Moving-average,MA)模型

参数模型的输出是该时刻的输入和以前q个输入的线性组合,称为滑动平均模型,其传递函数中只含有零点,不含有极点,所以MA模型也叫作全零点模型。

自回归滑动平均(Auto-regressive & Moving-average,ARMA)模型

ARMA模型的传递函数既包含零点,又包含极点,所以ARMA模型也叫作极零点模型。

由于AR模型的参数估计可以归结为求解一组线性方程组,计算简单。因此,AR模型便成为研究最多且应用最广的一种参数模型。

循环平稳信号

在非平稳信号中有一个重要的子类,它们的统计量随时间按周期或多周期规律变化,这类信号称为循环平稳信号

严格意义上的循环平稳信号是指时间序列具有周期时变的联合概率密度函数

01

1

(,)(,)

N N

i

i

i i p x t p x t

nT ===+∏∏

对于一个循环平稳的时间序列来说,它的循环频率(包括零循环频率和非零循环频率)可能有多个,所有循环频率的总体构成循环频率集

循环频率包括零值和非零值,其中零循环频率对应信号的平稳部分,非零循环频率则描述了信号的循环平稳特性

一阶循环统计量—循环均值

二阶循环统计量—循环自相关函数

二阶循环密度函数将调制信号分成了低频调制频段和高频载波频段两个相互独立的循环频率域 若高频载波频带中对应的谱峰为最高值,两边的边频带数目较少,则可以确定为调幅信号 若循环频率中心处的谱峰不是最大值,切两边的边频带较多,则是调频信号

窗口傅里叶变换,称为短时傅里叶变换STFT 时间分辨率 和频率分辨率 不可能同时任意小,根据Heisenberg 不确定性原理,

上式中,当且仅当采用了高斯窗函数,等式成立 短时傅里叶变换能够分析非平稳动态信号,其基础是傅里叶变换,更适合分析准平稳(quasi-stationary)信号。

反映信号高频成份需要用窄时窗,而反映信号低频成份需要用宽时窗。短时傅里叶变换不能同时满足这些要求。

“小波”就是小的波形。所谓“小”是指局部非零,波形具有衰减性;“波”则是指它具有波动性,包含有频率的特性。

小波分析的思想来源于伸缩和平移方法。

小波变换的实质就是以基函数 的形式将信号 X (t )分解为不同频带的子信号。 对信号X (t ) 进行小波变换相当于通过小波的尺度因子和时移因子变化去观察信号。

小波变换的局部化是变化的,在高频处时间分辨率高,频率分辨率低;在低频处时间分辨率低,频率分辨率高,即具有“变焦”的性质,也就是具有自当机器发生故障时,信号所包含机器不同零部件的故障特征频率分布在不同的频带里。

如何提取这些被淹没的微弱信息而实现故障的早期诊断问题,往往使传统的信号分析技术无能为力。 小波变换能够实现信号在不同频带、不同时刻的合理分离。这种分离相当于同时使用一个低通滤波器和若干个带通滤波器而不丢失任何原始信息。为机器零部件故障特征频率的分离、微弱信息的提取以实现早期故障诊断提供了高效、有力的工具。特别要强调,这些优点来自小波变换的多分辨分析和小波基函数的正交性。 适应窗的性质

小波包

小波变换对信号的分解都是对低频逼近信号进行再分解,不再对高频细节信号进行分解。

小波变换分解方式,高频频带信号的时间分辨率高而频率分辨率低,低频频带信号的时间分辨率低而频率分辨率高。

小波包(wavelet packet)提高高频频带信号的频率分辨率 即对高频频带信号进行再分解

连续小波变换

本章介绍三种在工程实际应用中取得了理想效果的连续小波基函数,它们都具有明确的解析表达式。这三种连续小波分别是谐波小波、Laplace 小波和Hermitian 小波

谐波小波是一种复小波,在频域紧支,有明确的函数表达式,其伸缩与平移构成了L2(R)空间的规范正交基。

谐波小波小波具有完全“盒形”的频谱。

谐波小波分解算法是通过信号的快速傅里叶变换(FFT )及其逆变换(IFFT )实现的,算法速度快,

t

?f ?π

41≥??f t ()a

b t -ψ

精度高,因而具有很好的工程应用价值

谐波小波对信号的分析频宽从高频到低频是以1/2关系逐渐减小的,对信号的低频部分划分比较细,而高频部分划分比较粗,这说明谐波小波分解是一种小波分解

为了保证谐波小波的优点,必须进行滤波算法,即谐波小波滤波,谐波小波滤波计算过程并未采用基于隔二抽取的Mallat 算法,因此保证了信号各频段成分点数不变,采样频率不变,这样就可以实现机组同一截面互相垂直两个方向振动信号的轴心轨迹合成。

Laplace 小波具有良好的单边衰减的特性,但是其正交性很差。其频域盒形不好,故滤波特性较差。Laplace 小波相关滤波法能够在强大噪声或其它干扰中准确捕捉到脉冲响应信号,识别出响应波形的参数。

点数较多的滤波器会平滑掉信号中的部分奇异性,所以,奇异性检测需要振荡次数较少的小波,这是选择Hermitian 小波的出发点 只需要少量离散点即可表达,具有很强的时域局部化能力。能保证变换后信号奇异点的时间位置不变

基于第二代小波变换的信号处理

第二代小波的优势有以下四点:

不依赖于傅里叶变换,在时域中完成对双正交小波的构造,具有结构化设计和自适应构造的优点; 构造方法灵活,可以通过提升改善小波函数的特性,从而构造出具有期望特性的小波; 不再是某一给定小波函数的伸缩和平移,它适合于不等间隔采样问题的小波构造; 算法简单,运算速度快,占用内存少,执行效率高,可以分析任意长度的信号。 第二代小波变换的分解过程由三部分组成:剖分、预测和更新 基于插值细分原理的第二代小波分解

二代小波变换的重构过程由三部分组成:恢复更新、恢复预测和合并

冗余第二代小波分解过程由两部分组成:预测和更新

预测 将信号序列中的每一个样本通过冗余预测器,用相邻的 2l N 个样本进行预测,预测误差(){}z n n d l ∈+,1定义为细节信号

更新 由细节信号()n d l 1+,采用冗余更新器,将信号序列中的每一个样本用 个细节信号进行更

新运算,得到逼近信号

冗余第二代小波重构过程由恢复更新和恢复预测组成

EMD 方法的基本原理和算法

第一步 确定时间序列 X(t)的所有局部极值点,然后将所有极大值点和所有极小值点分别用样条曲线连接起来,得到X(t)的上、下包络线。记上、下包络线的均值为m (t )

N l

~

2

基本模式分量(IMF)需要满足的两个条件

一、在整个数据序列中,极值点的数量(包括极大值点和极小值点) 与过零点的数量必须相等,或最多相差不多于一个。

二、在任一时间点上,信号局部极大值确定的上包络线和局部极小值确定的下包络线的均值为零。EMD(经验模式分解)方法则是根据信号本身具有的特性对其频带进行自适应划分,每个基本模式

分量所占据的频带带宽不是人为决定的,而是取决于每个基本模式分量所固有的频率范围。

EMD方法得到了一个自适应的广义基,基函数不是通用的,没有统一的表达式,而是依赖于信号本身,是自适应的,不同的信号分解后得到不同的基函数,与传统的分析工具有着本质的区别。因此可以说,经验模式分解方法是基函数理论上的一种创新。

EMD方法以信号的局部极大值和局部极小值定义的包络线的均值作为信号的局部均值,只利用了信号中极值点的信息,局部均值的精度较低,且包络的求取需要两次三次样条插值,计算速度较慢。

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

常见的信号处理滤波方法

低通滤波:又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC 低通滤波器的功能。 适用范围:单个信号,有高频干扰信号。 一阶低通滤波的算法公式为: Y(n)X(n)(1)Y(n 1)αα=+-- 式中: α是滤波系数;X(n)是本次采样值;Y(n 1)-是上次滤波输出值;Y(n)是本次滤波输出值。 滤波效果1: 红色线是滤波前数据(matlab 中生成的正弦波加高斯白噪声信号) 黄色线是滤波后结果。 滤波效果2:

matlab中函数,相当于一阶滤波,蓝色是原始数据(GPS采集到的x(北)方向数据,单位m),红色是滤波结果。 一阶滤波算法的不足: 一阶滤波无法完美地兼顾灵敏度和平稳度。有时,我们只能寻找一个平衡,在可接受的灵敏度范围内取得尽可能好的平稳度。

互补滤波:适用于两种传感器进行融合的场合。必须是一种传感器高频特性好(动态响应好但有累积误差,比如陀螺仪。),另一传感器低频特性好(动态响应差但是没有累积误差,比如加速度计)。他们在频域上互补,所以进行互补滤波融合可以提高测量精度和系统动态性能。 应用:陀螺仪数据和加速度计数据的融合。 互补滤波的算法公式为: 1122Y(n)X (n)(X (n)Y(n 1))αα+=+-- 式中:1α和2α是滤波系数;1X (n)和2X (n)是本次采样值;Y(n 1)-是上次滤 波输出值;Y(n)是本次滤波输出值。 滤波效果 (测试数据): 蓝色是陀螺仪 信号,红色是加 速度计信号,黄 色是滤波后的 角度。

. 互补滤波实际效果: .

卡尔曼滤波:卡尔曼滤波器是一个“optimal recursive data processing algorithm (最优化自回归数据处理算法)”。对于解决很大部分的问题,它是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测。 首先,用于测量的系统必须是线性的。 (k)(k 1)(k)(k)X AX BU w =-++ (k)(k)(k)Z HX v =+ (k)X 是系统k 时刻的状态,(k)U 是系统k 时刻的控制量。(k)Z 是系统k 时 刻的测量值。A 和B 为系统参数,(k)w 和(k)v 分别表示过程和测量的噪声,H 是测量系统参数。 在进行卡尔曼滤波时: 首先进行先验预测: (k 1|k)(k |k)(k)(k)X AX BU w +=++ 计算先验预测方差: '(k 1|k)(k |k)(k)P AP A Q +=+ 计算增益矩阵: (k 1)(k 1|k)'/((k 1|k)'(k 1))Kg P H HP H R +=++++ 后验估计值: (k 1|k 1)(k 1|k)(k 1)(Z(k 1)(k 1|k))X X Kg HX ++=++++-+ 后验预测方差: (k 1|k 1)(1(k 1))(k 1|k)P Kg H P ++=-++ 其中,(k)Q 是系统过程激励噪声协方差,(k)R 是测量噪声协方差。 举例说明: (下文中加粗的是专有名词,需要理解) 预测小车的位置和速度的例子(博客+自己理解):

数字信号处理总结与-习题(答案

对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。4、)()(5241 n R x n R x ==,只有 当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞ ∑ 6、用来计算N =16点DFT ,直接计算需要(N 2 )16*16=256_次复乘法,采用基2FFT 算法, 需要__(N/2 )×log 2N =8×4=32 次复乘法。7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并 联型的运算速度最高。9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是__N 1+N 2-1_。11、N=2M 点基2FFT ,共有 M 列蝶形, 每列有N/2 个蝶形。12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表达式分别是h(n)=h 1(n)*h 2(n), =H 1(e j ω )× H 2(e j ω )。19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。 1、下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( y(n)=x(n 2 ) ) A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法能用于设计FIR 高通滤波4、因果FIR 滤波器的系统函数H(z)的全部极点都在(z = 0 )处。6、已知某序列z 变换的收敛域为|z|<1,则该序列为(左边序列)。7、序列)1() (---=n u a n x n ,则)(Z X 的收敛域为(a Z <。8、在对连续信号均匀 采样时,要从离散采样值不失真恢复原信号,则采样周期T s 与信号最高截止频率f h 应满足关系(T s <1/(2f h ) ) 9、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 (16=N )。10、线性相位FIR 滤波器有几种类型( 4) 。11、在IIR 数字滤波器的设计中,用哪种方法只适 合于片断常数特性滤波器的设计。(双线性变换法)12、下列对IIR 滤波器特点的论述中错误的是( C )。 A .系统的单位冲激响应h(n)是无限长的B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限z 平面(0<|z|<∞)上有极点 13、有限长序列h(n)(0≤n ≤N-1)关于τ= 2 1 -N 偶对称的条件是(h(n)=h(N-n-1))。14、下列关于窗函数设计法的说法中错误的是( D )。A.窗函数的截取长度增加,则主瓣宽度减小,旁瓣宽度减小 B.窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关 C.为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加 D.窗函数法不能用于设计FIR 高通滤波器 15、对于傅立叶级数而言,其信号的特点是(时域连续非周期,频域连续非周期)。

信号处理知识点总结

第一章信号 1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体 2.信号的特性:时间特性,频率特性 3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号 若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号 4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的 5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限 6.信号的频谱有两类:幅度谱,相位谱 7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析 第二章连续信号的频域分析 1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数 2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位 4.周期信号频谱的特点:离散性,谐波性,收敛性 5.周期信号由无穷多个余弦分量组成 周期信号幅频谱线的大小表示谐波分量的幅值 相频谱线大小表示谐波分量的相位 6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和 7.非周期信号可看成周期趋于无穷大的周期信号 8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少 9.非周期信号频谱的特点:非周期信号也可以进行正交变换; 非周期信号完备正交函数集是一个无限密集的连续函数集; 非周期信号的频谱是连续的; 非周期信号可以用其自身的积分表示 10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号 11.周期信号的傅里叶变换:周期信号:一个周期绝对可积à傅里叶级数à离散谱 非周期信号:无限区间绝对可积à傅里叶变换à连续谱 12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合 脉冲函数的位置:ω=nω0 , n=0,±1,±2, ….. 脉冲函数的强度:傅里叶复指数系数的2π倍 周期信号的傅立叶变换也是离散的; 谱线间隔与傅里叶级数谱线间隔相同 13.信号的持续时间与信号占有频带成反比 14.信号在时域的翻转,对应信号在频域的翻转 15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念 0.1信号、系统与信号处理 1?信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号能量信号/功率信号 连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类: 2?系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3. 信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理, 而且也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 精选

PrF ADC DSP DAC PoF (1)前置滤波器 将输入信号X a(t )中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次X a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术 ----- D igitalSignalProcessing 另一层是狭义的理解,为数字信号处理器----- DigitalSignalProcesso。 0.5课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号 频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessin)信号对象主要是随机信 号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1 ?按自变量与函数值的取值形式是否连续信号可以分成哪四种类型?

数字信号处理学习心得体会

数字信号处理学习心得 体会

数字信号处理学习心得 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基 2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响

应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的

数字信号处理知识点归纳整理

数字信号处理知识点归纳整理 第一章时域离散随机信号的分析 1.1. 引言 实际信号的四种形式: 连续随机信号、时域离散随机信号、幅度离散随机信号和离散随 机序列。本书讨论的是离散随机序列 ()X n ,即幅度和时域都是离散的情况。随机信号相比随机变量多 了时 间因素,时间固定即为随机变量。随机序列就是随时间n 变化的随 机变量序列。 1.2. 时域离散随机信号的统计描述 1.2.1 概率描述 1. 概率分布函数(离散情况) 随机变量 n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤ (1) 2. 概率密度函数(连续情况) 若 n X 连续,概率密度函数: ()()n n X X n n F x,n p x ,n x ?=

? (2) 注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。 当讨论随机序列时,应当用二维及多维统计特性。 ()()()()1 21 21 2,,,1 21122,, ,1 2 ,,,1 2 12,1,,2, ,,,,,,1,,2, ,,,1,,2, ,,N N N x X

X N N N N x X X N x X X N N F x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤?= ??? 1.2.2 数字特征 1. 数学期望 ()()()()n x x n n m n E x n x n p x ,n dx ∞ -∞ ==????? (3) 2. 均方值与方差 均方值: ()()22 n n x n n E X x n p x ,n dx ∞ -∞ ??=??? (4) 方差: ()()()222 2x n x n x n E X m n E X m n σ????=-=-???? (5)

数字信号处理学习心得

数字信号处理学习心得 XXX ( XXX学院XXX班) 一、课程认识和内容理解 《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。 数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下: 第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。 第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。 第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。 第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂

基FFT算法。 第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。 第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。 第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器 二、专业认识和未来规划 通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。 对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层

数字信号处理课程总结(全)

数字信号处理课程总结 以下图为线索连接本门课程的内容: ) (t x a ) (t y a ) (n x 一、 时域分析 1. 信号 ? 信号:模拟信号、离散信号、数字信号(各种信号的表示及关系) ? 序列运算:加、减、乘、除、反褶、卷积 ? 序列的周期性:抓定义 ? 典型序列:)(n δ(可表征任何序列)、)(n u 、)(n R N 、 n a 、jwn e 、)cos(θ+wn ∑∞ -∞ =-= m m n m x n x )()()(δ 特殊序列:)(n h 2. 系统 ? 系统的表示符号)(n h ? 系统的分类:)]([)(n x T n y = 线性:)]([)]([)]()([2121n x bT n x aT n bx n ax T +=+ 移不变:若)]([)(n x T n y =,则)]([)(m n x T m n y -=- 因果:)(n y 与什么时刻的输入有关 稳定:有界输入产生有界输出 ? 常用系统:线性移不变因果稳定系统 ? 判断系统的因果性、稳定性方法 ? 线性移不变系统的表征方法: 线性卷积:)(*)()(n h n x n y = 差分方程: 1 ()()()N M k k k k y n a y n k b x n k === -+ -∑∑

3. 序列信号如何得来? ) (t x a ) (n x 抽样 ? 抽样定理:让)(n x 能代表)(t x a ? 抽样后频谱发生的变化? ? 如何由)(n x 恢复)(t x a ? )(t x a = ∑ ∞ -∞ =--m a mT t T mT t T mT x ) ()] (sin[ ) (π π 二、 复频域分析(Z 变换) 时域分析信号和系统都比较复杂,频域可以将差分方程变换为代数方程而使分析简化。 A . 信号 1.求z 变换 定义:)(n x ?∑∞ -∞ =-= n n z n x z X )()( 收敛域:)(z X 是z 的函数,z 是复变量,有模和幅角。要其解析,则z 不能取让)(z X 无穷大的值,因此z 的取值有限制,它与)(n x 的种类一一对应。 ? )(n x 为有限长序列,则)(z X 是z 的多项式,所以)(z X 在z=0或∞时可 能会有∞,所以z 的取值为:∞<

DSP期末复习总结整理

DSP期末复习整理 第一章绪论 1、基本概念(digital signal processing;digital signal processor;DSP技术) ①Digital Signal Processing:数字信号处理的理论和方法 ②Digital Signal Processor:用于数字信号处理的微处理器 ③DSP技术:用通用或专用的DSP处理器来完成数字信号处理的方法与技术 2、数字信号处理的优势 与模拟信号处理相比具有的优势:灵活性、精度高、可靠性好、可重复性好、抗干扰性能好、可以实现自适应算法、数据压对原信号缩影响小、可大规模集成。 3、DSP器件的结构特点 ①采用哈佛结构和改善的哈佛结构:程序空间和数据空间分开编址,允许同时取指令(来自程序存储器)和取操作数(来自数据存储器),效率高。允许程序存储器与数据存储器之间进行数据传送。 ②采用多总线结构:总线越多,可完成的功能就越复杂。 ③采用流水线技术 ④配有专用的硬件乘法-累加器 ⑤具有特殊的DSP指令 ⑥快速的指令周期 ⑦硬件配置强 ⑧支持多处理器结构 ⑨省电管理和低功耗 4、什么是定点DSP,什么是浮点DSP,要求在TI网站上查找主流的定点DSP型号和浮点DSP型号。 定点DSP:数据以定点格式工作的DSP芯片称为定点DSP芯片; TI公司:TMS320C1x/C2x、TMS320C2xx/C5x、TMS320C54xx/C62xx 浮点DSP:数据以浮点格式工作的DSP芯片称为浮点DSP芯片。 TI公司:TMS320C3x/C4x/C67x DSP有定点与浮点两种。 定点:数据格式用整数和小数表示。大多是16位的,要考虑溢出范围,小数点的位置。 浮点:数据格式用尾数和指数表示。一般都是32位的,表示范围大,不需要考虑溢出,精度高,处理速度更快。 5、掌握利用定点DSP表述浮点数据的Q格式。如Q15数据2000H表示的十进制数值是多少?0.125用Q15表示值是多少? 定点数据表示:Qn.m n:整数位数。 m:小数位数。 例:Q0.15 D15 D14 D13‥‥‥D1 D0 6、DSP器件的性能评价标准:传统评价标准,应用型评价标准,核心算法评价标准。 ①传统的性能评价方法:MIPS:每秒执行百万条指令 MOPS:每秒执行百万次操作 MACS:每秒执行乘-累加次数 ②应用型评价指标:使用完整的应用或一组应用来评价处理器的性能。如语音编码、

数字信号处理第三章总结

3.4系列的Z 变换与连续信号的拉普拉斯变 换、傅里叶变换的关系 序列的Z 变换与连续信号的拉普拉斯变换、傅里叶变换的关系 拉普拉斯变换 拉普拉斯逆变换 傅里叶变换 傅里叶逆变换 序列x(n)的Z 变换 逆Z 变换 抽样信号的拉普拉斯变换 []?∞ ∞--==dt e t x t x LT s X st a )()()([]? ∞ +∞ --==j j st a dt e t x s X LT t x σσ)()()(1 Ω +=j s σ[]?∞ ∞ -Ω-==Ωdt e t x t x FT j X t j )()()([]?∞ ∞-Ω-Ω Ω=Ω=d e j X j X FT t x t j )()()( 1Ω =j s ()()n n X z x n z ∞ -=-∞ =∑ ,2,1,0,)(21)(1 ±±==?-n dz z z X j n x c n π()()()()()∑∑? ?∑?∞ -∞ =-∞ -∞=∞ ∞ --∞ ∞--∞ -∞=∞∞ --∧ ∧∧ = -=-==??????=n nsT a n st a st n a st a a a e nT x dt e nT t nT x dt e nT t nT x dt e t x t x LT s X δδ)()()(

抽样序列的z 变换为 3.4.1拉氏变换与Z 变换变换的关系就是复变量s 平面到复变量z 平面的映射: 令 s=σ+j Ω, z=re j ω 得到: re j ω =e (σ+j Ω)T =e σT e j ΩT , 因而 r=e σT , ω=ΩT 3.4.2 ω= ΩT Ω=0 、π/T 、3π/T 、 Ω0与ω的对应关系 Ω变化时与ω的对应关系 s 平面到z 平面的映射是多值映射。 (傅里叶变换是拉普拉斯变换在虚轴的特例,即s =j Ω,因而映射 到z 平面上为单位圆,代入 抽样序列的z 变换 sT e z =()[]()∑∞ -∞ =-= =n n z n x n x ZT z X ) (()e ?() (e )(2.89) sT sT a z X z X X s ===

数字信号处理期末重点复习资料答案

1、对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字信号。 2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性 卷积。 5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是 ()n h n ∞ =-∞ <∞∑ 6、用来计算N =16点DFT ,直接计算需要(N 2)16*16=256_次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32 次复乘法。 7、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型_和 并联型_四种。 8、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型的运算速度最高。 9、数字信号处理的三种基本运算是:延时、乘法、加法 10、两个有限长序列 和 长度分别是 和 ,在做线性卷积后结果长度是 __N 1+N 2-1_。 11、N=2M 点基2FFT ,共有 M 列蝶形,每列有N/2 个蝶形。 12、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对 13、数字信号处理的三种基本运算是: 延时、乘法、加法 14、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。 16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。 17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。 18、单位脉冲响应分别为 和 的两线性系统相串联,其等效系统函数时域及频域表 达式分别是h(n)=h1(n)*h2(n), =H1(ej ω)×H2(ej ω)。 19、稳定系统的系统函数H(z)的收敛域包括 单位圆 。 20、对于M 点的有限长序列x(n),频域采样不失真的条件是 频域采样点数N 要大于时域采样点数M 。

信号处理知识点总结

信号处理知识点总结 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

第一章信号 1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体 2.信号的特性:时间特性,频率特性 3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号 若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的 5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限 6.信号的频谱有两类:幅度谱,相位谱 7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析 第二章连续信号的频域分析 1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数 2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和 3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位 4.周期信号频谱的特点:离散性,谐波性,收敛性 5.周期信号由无穷多个余弦分量组成 周期信号幅频谱线的大小表示谐波分量的幅值

相频谱线大小表示谐波分量的相位 6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和 7.非周期信号可看成周期趋于无穷大的周期信号 8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少 9.非周期信号频谱的特点:非周期信号也可以进行正交变换; 非周期信号完备正交函数集是一个无限密集的连续函数集; 非周期信号的频谱是连续的; 非周期信号可以用其自身的积分表示 10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号 11.周期信号的傅里叶变换:周期信号:一个周期绝对可积à傅里叶级数à离散谱 非周期信号:无限区间绝对可积à傅里叶变换à连续谱 12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合 脉冲函数的位置:ω=nω0 , n=0,±1,±2, ….. 脉冲函数的强度:傅里叶复指数系数的2π倍 周期信号的傅立叶变换也是离散的; 谱线间隔与傅里叶级数谱线间隔相同 13.信号的持续时间与信号占有频带成反比 14.信号在时域的翻转,对应信号在频域的翻转

数字信号处理心得体会

数字信号处理心得体会 各位读友大家好!你有你的木棉,我有我的文章,为了你的木棉,应读我的文章!若为比翼双飞鸟,定是人间有情人!若读此篇优秀文,必成天上比翼鸟! 1数字信号处理学习心得体会《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式,而信息则是信号所含有的具体内容。一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。四单元的课程我们重点理解基2FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。

五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要

数字信号处理知识点整理Chapter

第三章 自适应数字滤波器 3.1 引言 滤波器的设计都是符合准则的最佳滤波器。 维纳滤波器参数固定,适用于平稳随机信号的最佳滤波;自适应滤波器参数可以自动地按照某种准则调整到最佳。 本章主要涉及自适应横向滤波器.....、自适应格型滤波器........、最小二乘自适应滤波器.......... 。 3.2 自适应横向滤波器 自适应...线性组合....器.和自适应....FIR ...滤波器...是自适应信号......处理的基础..... 。 3.2.1 自适应线性组合器和自适应FIR 滤波器 自适应滤波器的矩阵表示式 滤波器输出: ()()()1 N m y n w m x n m -== -∑ n 用j 表示,自适应滤波器的矩阵形式为 T T j j j y ==X W W X 式中 1212,,,, ,,,T T N N w w w x x x ????==???? W X L L 误差信号表示为 T T j j j j j j j e d y d d =-=-=-X W W X 与维纳滤波相同,先考虑最小均方误差准则: () 2222T T j j j j dx xx E e E d y E e ??????=-=-+???????? R W W R W 2 j E e ????称为性能函数 ....,将其对每个权系数求微分,形成一个与权系数相同的列向量: 2221 222,,, T j j j j xx dx N E e E e E e w w w ????????????????????==-??????? R W R L 令梯度为零,可得最佳权系数 此时最小均方误差为:

数字信号处理课程总结

绪论 绪论部分概括性地介绍了数字信号处理的基本概念,实现方法,特点,以及涉及的理论、实现技术与应用这四个方面。 信号类别: 1.连续信号(模拟信号) 2.时域离散 ,其幅度取连续变量,时间取离散值 3.幅度离散信号,其时间变量取连续值,幅度取离散值 4.数字信号,幅度和时间都取离散值 数字信号处理的四个方面可以抽象成两大方面的问题:(1)数字信号处理的研究对象(2)数字信号处理的一般过程。 1. 数字信号处理的研究对象 研究用数字信号或符号的序列来表示信号并用数字的方法处理这些序列,从而得到需要的信号形式。 2. 数字信号处理的一般过程(注:数字信号处理技术相对于模拟信号处理技术存在诸多优点,所以对于 模拟信号,往往通过采样和编码形成数字信号,再采用数字信号处理技术进行处理) 1)信号处理过程(不妨假设待处理信号为模拟信号) ()()A/DC D/AC a a t t y x ???→??→??→??→??→???→ 预滤波数字信号处理平滑滤波 ()a x t :模拟信号输入 预滤波:目的是限制带宽(一般使用低通滤波器) ○ 1采样:将信号在时间上离散化 A/DC :模/数转换??→○2量化:将信号在幅度上离散化(量化中幅度值=采样幅度值) ○ 3编码:将幅度值表示成二进制位(条件2s c f f ≥) 数字信号处理:对信号进行运算处理 D/AC :数/模转换(一般用采样保持电路实现:台阶状连续时间信号→在采样时刻幅度发生跳变 ) 平滑滤波:滤除信号中高频成分(低通滤波器),使信号变得平滑 ()y a t :输入信号经过处理后的输出信号 有处理过程可见数字信号处理的特点: 1)灵活性 2)高精度和高稳定性 3)便于大规模集成 4)可以实现模拟系统无法实现的诸多功能 最后对信号处理的发展的肯定和展望 第一章 时域离散信号和时域离散系统

相关主题
文本预览
相关文档 最新文档