当前位置:文档之家› 北京大学线性代数方博汉线代B物院2018秋期中考试题

北京大学线性代数方博汉线代B物院2018秋期中考试题

北京大学线性代数方博汉线代B物院2018秋期中考试题
北京大学线性代数方博汉线代B物院2018秋期中考试题

2019春北京大学网络教育学院线性代数作业答案

春季学期线性代数作业 一、选择题(每题2分,共20分) 1.(教材§1.1,课件第一讲)行列式(B )。 A.13 B.-11 C.17 D.-1 2.(教材§1.3,课件第二讲)下列对行列式做的变换中,(B )不会改变行列式的值。 A.将行列式的某一行乘以一个非零数 B.将行列式的某一行乘以一个非零数后加到另外一行 C.互换两行 D.互换两列 3.(教材§2.2,课件第四讲)若线性方程组无解,则a的值为( D )。 A.1 B.0 C.-1 D.-2 4.(教材§3.3,课件第六讲)下列向量组中,线性无关的是(C )。 A. B. C. D. 5.(教材§3.5,课件第八讲)下列向量组中,(D )不是的基底。 A. B. C. D.

6.(教材§4.1,课件第九讲)已知矩阵,矩阵和矩阵均为n阶矩阵,和均为实数,则下列结论不正确的是( A )。 A. B. C. D. 7.(教材§4.1,课件第九讲)已知矩阵,矩阵,则 ( C )。 A. B. C. D. 8.(教材§4.1,课件第九讲)已知矩阵,为矩阵,矩阵为矩阵,为实数,则下列关于矩阵转置的结论,不正确的是( D )。 A. B. C. D. 9.(教材§4.3,课件第十讲)下列矩阵中,(A )不是初等矩阵。 A. B. C. D. 10.(教材§5.1,课件第十一讲)矩阵的特征值是(B )。 A. B. C. D. 二、填空题(每题3分,共30分)

11.(教材§1.1,课件第一讲)行列式的展开式中,的一次项的系数是 2 。 12.(教材§1.4,课件第三讲)如果齐次线性方程组有非零解,那么的值为0或1 。 13.(教材§2.3,课件第四讲)齐次线性方程组有(填“有”或“没有”)非零解。 14. (教材§3.1,课件第五讲)已知向量则 。 15. (教材§3.3,课件第六讲)向量组是线性无关(填“相关”或“无关”)的。 16. (教材§4.1,课件第九讲)已知矩阵,矩阵,那 么。 17. (教材§4.2,课件第九讲)已知矩阵,那么 。 18. (教材§5.1,课件第十一讲)以下关于相似矩阵的说法,正确的有1,2,4

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αα α α -=___________。 (3) 二阶行列式 2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 , C 1 , D 2 ,

(3)三阶行列式2 31 503 2012985 23 -=()。 A -70; B -63; C 70; D 82。 (4)行列式 000 000 a b a b b a b a =()。 A 4 4 a b -;B () 2 2 2a b -;C 4 4 b a -;D 44 a b 。 (5)n 阶行列式0100 0020 0001000 n n - =()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号:

北大版 线性代数第一章部分课后答案详解

习题1.2: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1)01000020;0001000 n n -L L M M M O M L L (2)00100200100000 n n -L L M O M O M L L ; 解:(1)0100 0020 0001 000 n n -L L M M M O M L L =()()23411n τ-L 123n ????L =()1 1!n n --

线性代数试题及答案.

线性代数(试卷一) 一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。 2. 若 122 21 12 11 =a a a a ,则=1 6 030322211211 a a a a 3。 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CA B =-1。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_ _2___________. 6. 设A为三阶可逆阵,??? ? ? ??=-1230120011 A ,则=*A 7。若A为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1 23453 2011 11111 2 1403 54321=D ,则=++++4544434241A A A A A 9。 向量α=(2,1,0,2)T -的模(范数)______________ 。 10。若()T k 11=α与()T 121-=β正交,则=k

二、选择题(本题总计10分,每小题2分) 1。 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ ? D .r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8? B.8- C. 34?? D.3 4- 3.设向量组A 能由向量组B 线性表示,则( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则 () * kA 等于_____。c )(A *kA )(B *A k n )(C *-A k n 1)(D *A 5。 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____. )(A AC AB = 则 C B =)(B 0=AB ,则0=A 或0=B )(C T T T B A AB =)()(D 22))((B A B A B A -=-+ 三、计算题(本题总计60分.1-3每小题8分,4-7每小题9分) 1。 计算n 阶行列式22221 =D 22222 22322 2 12 2 2-n n 2 222 . 2.设A 为三阶矩阵,* A 为A 的伴随矩阵,且2 1= A ,求* A A 2)3(1--. 3.求矩阵的逆 111211120A ?? ?=- ? ???

(完整版)线性代数试题和答案(精选版)

线性代数习题和答案 第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有 一个是符合题目要求の,请将其代码填在题后の括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0の数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵Aの秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误の是() A.η1+η2是Ax=0の一个解 B.1 2 η1+ 1 2 η2是Ax=bの一个解

最新标准答案 北京大学春季学期线性代数作业资料

2016年春季学期线性代数作业 一、选择题(每题2分,共36分) 1.(教材§1.1B)。 A.6 B.5 C.10 D.7 2.(教材§1.1)行列式A)。 C.0 3.(教材§1.2)行列式D)。 A.40 B.-40 C.10 D.-10 4.(教材§1.3)下列对行列式做的变换中,(A)会改变行列式的值。 A.将行列式的某一行乘以3 B.对行列式取转置 C.将行列式的某一行加到另外一行 D.将行列式的某一行乘以3后加到另外一行 5.(教材§1.3)行列式(2/9)。 (提示:参考教材P32例1.3.3) A.2/9 B.2/3 C.2/9 D. 3/4 6.(教材§1.4B)。 A.2/3 B.1 C.-2/3 D.1/3

7.(教材§2.2)矩阵 2110 2311 3441 1132 ?? ?? ?? ?? ?? - ?? 的秩是(D)。 A.1 B.2 C.3 D.4 8.(教材§2.2 a的值为(C)。 A.-1 B.-2 C.-3 D.0 9.(教材§3.1)已知向量 B)。 10.(教材§3.3 C)。A. B. D.向量组A 11.(教材§3.3)下列向量组中,线性无关的是(C)。 12.(教材§3.3)下列向量组中,线性相关的是(D)。

13.(教材§4.1n 结论不正确的是(C)。 B. C. 14.(教材§4.1A)。 A. B. C. 15.(教材§4.1)已知矩阵,矩阵,则下列关于矩阵转置的结论,不正确的是(D)。 A. B. C. 16.(教材§4.2)已知矩阵A)。 17.(教材§4.3)下列矩阵中,(B)不是初等矩阵。 A. B. C. D. 18.(教材§5.1的特征值是(C)。 B.

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

北京大学线性代数2016期末考试题

线性代数B期末试题-2016年秋第一题(20分):令A∈M n[?]为一可逆矩阵,u,v∈?n,定义分块矩阵 C=?A u v?0? 1)(10分)求u,v的一个充分必要条件使得矩阵C可逆。 2)(10分)在1)的条件满足的情况下求C?1。 第二题(20分): 1)(10分)求a的取值范围,使得矩阵 A=?1a a a1a a a1? 正定。 2)(10分)判断下列矩阵是否正定(给出判断依据): A=?32250 12 1 0211?1003?,B=?32240000 00001111?,C=? 2?1 ?1200?10 0?10 02?1 ?12 ? 第三题(15分):令矩阵A,B∈M n(?)。 1)(5分)设A是对称正定矩阵,B是对称矩阵,证明存在可逆矩阵P使得P?AP=I且P?BP为对角矩阵。 2)(10分)设A和B均为对称半正定矩阵,证明存在可逆矩阵P使得P?AP和P?BP为对角矩阵。如果B仅 是对称矩阵,同样的结论是否成立?如果成立,给出证明,否则给出一个反例。 第四题(15分):令L=D2+2D+1为线性空间V=<1,sin(x),cos(x)?sin(x)> 上的线性变换,求其在基{1,sin (x),cos(x)?sin(x)}下的矩阵。 第五题(10分):证明任何一个秩为r的矩阵总可以写成r个秩为1的矩阵之和。 第六题(10分):在?2中,对于任意α,β∈?2,定义二元函数 (α,β)=a1b1?a1b2?a2b1+4b1b2 求证(α,β)是?2的一个内积,并求?2关于该内积的一个标准正交基。 第七题(10分):对任一矩阵C,我们定义range(C)为矩阵C列向量组生成的线性空间,定义ker (C)为齐次线性方程组Cx=0的解空间。?m是标准内积空间。 1)(5分)令A∈M m×n(?),证明ker(A?)⊕range(A)=?m。 2)(5分)令矩阵A∈M m×n(?),β∈range(A)??m,γ∈?n,d∈?。证明下面的两个命题为等价 命题: a.线性方程组Ax=β的任何一个解x都满足γ?x=d。 b.存在一个向量α∈?m,使得γ=A?α,d=β?α。

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

数值线性代数北大版问题详解全

数值线性代数习题解答 习题1 1.求下三角阵的逆矩阵的详细算法。 [解] 设下三角矩阵L的逆矩阵为T 我们可以使用待定法,求出矩阵T的各列向量。为此我们将T按列分块如下: 注意到 我们只需运用算法1·1·1,逐一求解方程 便可求得 [注意]考虑到存空间的节省,我们可以置结果矩阵T的初始状态为单位矩阵。这样,我们便得到如下具体的算法: 算法(求解下三角矩阵L的逆矩阵T,前代法) 2.设为两个上三角矩阵,而且线性方程组 是非奇异的,试给出一种运算量为的算法,求解该方程组。 [解]因,故为求解线性方程组 ,可先求得上三角矩阵T的逆矩阵,依照上题的思想我们很容易得到计算的算法。于是对该问题我们有如下解题的步骤:(1)计算上三角矩阵T的逆矩阵,算法如下: 算法1(求解上三角矩阵的逆矩阵,回代法。该算法的的运算量为)

(2)计算上三角矩阵。运算量大约为. (3)用回代法求解方程组:.运算量为; (4)用回代法求解方程组:运算量为。 算法总运算量大约为: 3.证明:如果是一个Gauss变换,则也是一个Gauss变换。 [解]按Gauss变换矩阵的定义,易知矩阵是Gauss变换。下 面我们只需证明它是Gauss变换的逆矩阵。事实上 注意到,则显然有从而有 4.确定一个Gauss变换L,使 [解] 比较比较向量和可以发现Gauss变换L应具有 功能:使向量的第二行加上第一行的2倍;使向量的第三行加上第一行的2倍。于是Gauss变换如下 5.证明:如果有三角分解,并且是非奇异的,那么定理1·1·2中的L和U都是唯一的。

[证明]设,其中都是单位下三角阵, 都是上三角阵。因为A非奇异的,于是 注意到,单位下三角阵的逆仍是单位下三角阵,两个单位下三角阵的乘积仍是单位下三角阵;上三角阵的逆仍是上三角阵,两个上三角阵的乘积仍是上三角阵。因此,上述等将是一个单位下三角阵与一个上三角阵相等, 故此,它们都必是单位矩阵。即,从而 即A的LU分解是唯一的。 6.设的定义如下 证明A有满足的三角分解。 [证明]令是单位下三角阵,是上三角阵。定义如下 容易验证: 7.设A对称且,并假定经过一步Gauss消去之后,A具有如下形式 证明仍是对称阵。 [证明] 根据Gauss变换的属性,显然做矩阵A的LU分解的第一步中的Gauss变换为

线性代数试卷及答案

《 线性代数A 》试题(A 卷) 试卷类别:闭卷 考试时间:120分钟 考试科目:线性代数 考试时间: 学号: 姓名: 题号 一 二 三 四 五 六 七 总 分 得分 阅卷人 一.单项选择题(每小题3分,共30分) 1.设A 经过初等行变换变为B ,则( ).(下面的(),()r A r B 分别表示矩阵,A B 的秩)。 () A ()()r A r B <; () B ()()r A r B =; ()C ()()r A r B >; () D 无法判定()r A 与()r B 之间的关系。 2.设A 为 (2)n n ≥阶方阵且||0A =,则( )。 () A A 中有一行元素全为零; () B A 有两行(列)元素对应成比例; () C A 中必有一行为其余行的线性组合; () D A 的任一行为其余行的线性组合。 3. 设,A B 是n 阶矩阵(2n ≥), AB O =,则下列结论一定正确的是: ( ) () ;A A O B O ==或 ()AX B B 的每个行向量都是齐次线性方程组=O 的解. ();C BA O = ()()().D R A R B n +≤ 4.下列不是n 维向量组12,,...,s ααα线性无关的充分必要条件是( ) () A 存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++≠;

() B 不存在一组不全为零的数12,,...,s k k k 使得1122...s s k k k O ααα+++= 12(),,...,s C ααα的秩等于s ; 12(),,...,s D ααα中任意一个向量都不能用其余向量线性表示 5.设n 阶矩阵(3)n ≥1...1................1a a a a a a A a a a ?? ? ? ?= ? ? ???,若矩阵A 的秩为1n -,则a 必为( )。 ()A 1; () B 11n -; () C 1-; () D 11 n -. 6.四阶行列式 1 1 2 2334 4 0000 000 a b a b b a b a 的值等于( )。 ()A 12341234a a a a b b b b -; ()B 12341234a a a a b b b b +; () C 12123434()()a a b b a a b b --; () D 23231414()()a a b b a a b b --. 7.设A 为四阶矩阵且A b =,则A 的伴随矩阵* A 的行列式为( )。 ()A b ; () B 2b ; () C 3b ; () D 4b 8.设A 为n 阶矩阵满足23n A A I O ++=,n I 为n 阶单位矩阵,则1 A -=( ) () n A I ; ()3n B A I +; ()3n C A I --; ()D 3n A I + 9.设A ,B 是两个相似的矩阵,则下列结论不正确的是( )。 ()A A 与B 的秩相同; ()B A 与B 的特征值相同; () C A 与B 的特征矩阵相同; () D A 与B 的行列式相同;

(完整版)线性代数试卷及答案详解

《线性代数A 》试题(A 卷) 试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:

《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分) 二、填空题(每小题3分,共18分)

1、 256; 2、 132465798?? ? --- ? ???; 3、112 2 112 21122 000?? ?- ? ?-?? ; 4、 ; 5、 4; 6、 2 。 三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法: 2312112 01012 010******* 12101 141103311033102321102721 002781 002780 11410 101440 10144001103001103001103---?????? ? ? ? -??→-??→-- ? ? ? ? ? ?--? ?? ?? ?-?????? ? ? ? ??→--??→-??→-- ? ? ? ? ? ??????? ―――――(6分) 所以1 278144103X A B -?? ?==-- ? ??? .―――――(8分) 四.解:对向量组12345,,,,ααααα作如下的初等行变换可得: 12345111 4 3111431132102262(,,,,)21355011313156702262ααααα--???? ? ? ----- ? ? = → ? ? --- ? ? ? ?---???? 11 1 431 2 12011310 1131000000 0000000000 0000--???? ? ? ---- ? ? →→ ? ? ? ? ? ?? ???――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩 12345{,,,,}ααααα=2(8分)

线性代数试题及答案[1]

(试卷一) 一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。 2. 若 122 21 1211=a a a a ,则=1 6 030 32221 1211 a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则 CA B =-1 。 4. 若A 为n m ?矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________ 5. 设A 为86?的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为 __2___________。 6. 设A 为三阶可逆阵,???? ? ? ?=-12 30120011 A ,则=* A 7.若A 为n m ?矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是 8.已知五阶行列式1 2 3 4 5 3201111111 2 1403 54321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T -的模(范数)______________。 10.若()T k 11 =α与()T 12 1 -=β正交,则=k 二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ D.r s < 2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A) A.8 B.8- C. 3 4 D.3 4-

3.设向量组A 能由向量组B 线性表示,则( d ) A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则 () * kA 等于_____。c )(A * kA )(B * A k n )(C * -A k n 1 )(D *A 5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。 )(A AC AB = 则 C B = )(B 0=AB ,则0=A 或0=B )(C T T T B A AB =)( )(D 22))((B A B A B A -=-+ 三、计算题(本题总计60分。1-3每小题8分,4-7每小题9分) 1. 计算n 阶行列式2 222 1 = D 2 222 2 22322 2 122 2-n n 222 2 。 2.设A 为三阶矩阵,* A 为A 的伴随矩阵,且2 1= A ,求* A A 2) 3(1 --. 3.求矩阵的逆 1112 1112 0A ?? ?=- ? ?? ? 4. 讨论λ为何值时,非齐次线性方程组21231231 231 x x x x x x x x x λλλλλ?++=? ++=??++=? ① 有唯一解; ②有无穷多解; ③无解。 5. 求下非齐次线性方程组所对应的齐次线性方程组的基础解系和此方程组的通解。 ??? ??=++=+++=+++5 221322431 43214321x x x x x x x x x x x 6.已知向量组() T 32 01 1=α、() T 53 1 12=α、 () T 13 11 3-=α、

北大版-线性代数第一章部分课后标准答案详解

北大版-线性代数第一章部分课后答案详解

————————————————————————————————作者:————————————————————————————————日期:

习题1.2: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1)01000020;0001000 n n -L L M M M O M L L (2)00100200100000 n n -L L M O M O M L L ; 解:(1)0100 0020 0001 000 n n -L L M M M O M L L =()()23411n τ-L 123n ????L =()1 1!n n --

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一 个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1。设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B。-(m+n) C。 n-m D。 m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于( ) A。 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ?? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3。设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A*中位于(1,2)的元素是( ) A。–6 B。 6 C. 2 D. –2 4。设A是方阵,如有矩阵关系式AB=AC,则必有() A。A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B。 2 C. 3 D. 4 6。设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( ) A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C。有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2—β2)+…+λs(αs—β s)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λs αs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中( ) A.所有r—1阶子式都不为0 B.所有r—1阶子式全为0 C。至少有一个r阶子式不等于0 D。所有r阶子式都不为0 8。设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是( ) A。η1+η2是Ax=0的一个解B。1 2 η1+ 1 2 η2是Ax=b的一个解

(完整版)历年全国自考线性代数试题及答案

浙02198# 线性代数试卷 第1页(共25页) 全国2010年7月高等教育自学考试 试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A *表示A 的伴随矩阵;R (A )表示矩阵A 的秩;|A |表示A 的行列式;E 表示单位矩阵。 1.设3阶方阵A=[α1,α2,α3],其中αi (i=1,2,3)为A 的列向量, 若|B |=|[α1+2α2,α2,α3]|=6,则|A |=( )A.-12 B.-6 C.6 D.12 2.计算行列式 =----3 23 2 020005 1020203 ( )A.-180 B.-120C.120 D.180 3.设A =? ? ? ???4321,则|2A *|=( )A.-8 B.-4C.4 D.8 4.设α1,α2,α3,α4都是3维向量,则必有 A. α1,α2,α3,α4线性无关 B. α1,α2,α3,α4线性相关 C. α1可由α2,α3,α4线性表示 D. α1不可由α2,α3,α4线性表示 5.若A 为6阶方阵,齐次线性方程组Ax =0的基础解系中解向量的个数为2,则R (A )=( )A .2 B 3C .4 D .5 6.设A 、B 为同阶矩阵,且R (A )=R (B ),则( )A .A 与B 相似 B .|A |=|B | C .A 与B 等价 D .A 与B 合同 7.设A 为3阶方阵,其特征值分别为2,l ,0则|A +2E |=( )A .0 B .2C .3 D .24 8.若A 、B 相似,则下列说法错误..的是( )A .A 与B 等价 B .A 与 B 合同C .|A |=|B | D .A 与B 有相同特征 9.若向量α=(1,-2,1)与β= (2,3,t )正交,则t =( )A .-2 B .0C .2 D .4 10.设3阶实对称矩阵A 的特征值分别为2,l ,0,则( )A .A 正定 B .A 半正定C .A 负定 D .A 半负定 二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。 1l.设A =??? ? ? ?????-421023,B =??????--010112,则AB =________. 12.设A 为3阶方阵,且|A |=3,则|3A -l |=________. 13.三元方程x 1+x 2+x 3=0的结构解是________. 14.设α=(-1,2,2),则与α反方向的单位向量是______. 15.设A 为5阶方阵,且R (A )=3,则线性空间W ={x |Ax =0}的维数是______. 16.设A 为3阶方阵,特征值分别为-2,21 ,l ,则|5A -1|=_______. 17.若A 、B 为同阶方阵,且Bx =0只有零解,若R (A )=3,则R (AB )=________. 18.二次型f (x 1,x 2,x 3)=21x -2x 1x 2+2 2x -x 2x 3所对应的矩阵是________.

线性代数试题及答案

线性代数试题及答案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

04184线性代数(经管类)2 一、 二、单选题 1、 A:-3 B:-1 C:1 D:3 做题结果:A 参考答案:D 2、 A:abcd B:d C:6 D:0 做题结果:A 参考答案:D 3、 A:18 B:15 C:12 D:24 做题结果:A 参考答案:B 4、 A:-3 B:-1 C:1 D:3 做题结果:A 参考答案:D 6、 A:18 B:15 C:12 D:24 做题结果:A 参考答案:B 20、 A:k-1 B:k C:1 D:k+1 做题结果:A 参考答案:B 21、 行列式D如果按照第n列展开是【】 A., B., C. 做题结果:A

22、 关于n个方程的n元齐次线性方程组的克拉默法则,说法正确的是【】 A:如果行列式不等于0,则方程组必有无穷多解B:如果行列式不等于0,则方程组只有零解C:如果行列式等于0,则方程组必有唯一解D:如果行列式等于0,则方程组必有零解做题结果:A 参考答案:B 23、 已知三阶行列D中的第二列元素依次为1、2、3,它们的余子式分别为-1、1、2,则D的值为。【】A:-3 B:-7 C:3 D:7 做题结果:A 参考答案:A 24、 A:0 B:1 C:-2 D:2 做题结果:A 参考答案:C 25、 A:abcd B:d C:6 D:0 做题结果:A 参考答案:D 26、 A:a≠2 B:a≠0 C:a≠2或a≠0 D:a≠2且a≠0 做题结果:A 参考答案:D 27、 A., B., C., D. 做题结果:B 参考答案:B 28、 A:-2|A| B:16|A| C:2|A| D:|A| 做题结果:A 参考答案:B 29、

大一线性代数期末试题及答案

,考试作弊将带来严重后果! 线性代数期末考试试卷及答案 1. 考前请将密封线内填写清楚; 所有答案请直接答在试卷上(或答题纸上); .考试形式:开(闭)卷; 单项选择题(每小题2分,共40分)。 .设矩阵22, B 23, C 32A ???为矩阵为矩阵为矩阵,则下列矩阵运算无意义的是 【 】 A . BAC B. ABC C . BCA D. CAB 设n 阶方阵A 满足A 2 +E =0,其中E 是n 阶单位矩阵,则必有 【 】 A. 矩阵A 不是实矩阵 B. A=-E C. A=E D. det(A)=1 设A 为n 阶方阵,且行列式det(A)=1 ,则det(-2A)= 【 】 A. 2- B. ()n 2- C. n 2- D. 1 设A 为3阶方阵,且行列式det(A)=0,则在A 的行向量组中 【 】 A.必存在一个行向量为零向量 B.必存在两个行向量,其对应分量成比例 C. 存在一个行向量,它是其它两个行向量的线性组合 D. 任意一个行向量都是其它两个行向量的线性组合 .设向量组321,,a a a 线性无关,则下列向量组中线性无关的是 【 】 A .133221,,a a a a a a --- B. 212132,,a a a a - C. 32322,2,a a a a + D. 1321,,a a a a -

6.向量组(I): )3(,,1≥m a a m Λ线性无关的充分必要条件是 【 】 A.(I)中任意一个向量都不能由其余m-1个向量线性表出 B.(I)中存在一个向量,它不能由其余m-1个向量线性表出 C.(I)中任意两个向量线性无关 D.存在不全为零的常数0,,,111≠++m m m a k a k k k ΛΛ使 7.设a 为n m ?矩阵,则n 元齐次线性方程组0=Ax 存在非零解的充分必要条件是 【 】 A .A 的行向量组线性相关 B . A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 8.设i a 、i b 均为非零常数(i =1,2,3),且齐次线性方程组?? ?=++=++00 332 211332211x b x b x b x a x a x a 的基础解系含2个解向量,则必有 【 】 A.03221= b b a a B.02121≠ b b a a C. 33 2211b a b a b a == D. 02 131= b b a a 9.方程组12312312321 21 3 321 x x x x x x x x x a ++=? ?++=??++=+? 有解的充分必要的条件是 【 】 A. a=-3 B. a=-2 C. a=3 D. a=1 10. 设η1,η2,η3是齐次线性方程组Ax = 0的一个基础解系,则下列向量组中也为该方程组的一个基础解系的是 【 】 A. 可由η1,η2,η3线性表示的向量组 B. 与η1,η2,η3等秩的向量组 C.η1-η2,η2-η3,η3-η1 D. η1,η1-η3,η1-η2-η3 11. 已知非齐次线性方程组的系数行列式为0,则 【 】 A. 方程组有无穷多解 B. 方程组可能无解,也可能有无穷多解 C. 方程组有唯一解或无穷多解 D. 方程组无解 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个 【 】 A.互不相同的特征值 B.互不相同的特征向量 C.线性无关的特征向量 D.两两正交的特征向量 13. 下列子集能作成向量空间R n 的子空间的是 【 】 A. }0|),,,{(2121=a a a a a n Λ B. }0| ),,,{(1 21∑==n i i n a a a a Λ

相关主题
文本预览
相关文档 最新文档