当前位置:文档之家› 材料失效准则详解

材料失效准则详解

材料失效准则详解
材料失效准则详解

Chapter 2 材料失效理論(Material Failure Theories)

資料來源

1. 吳嘉祥等譯,機械元件設計,第八版,高立圖書有限公司,台北縣,2006,

2. Robert L. Norton, Machine Design An Integrated Approach, 3rd Edition, Pearson Prentice Hall, Person Education Inc., Upper Saddle River, New Jersey, 2006.

1. 材料分類 [1]

延性材料 (Ductile Materials)

● 材料受力延長量(應變)可達5% (或以上)

● 材料對滑動(Slip)之阻抗<對斷裂(Fracture)之阻抗

Material Failure (材料失效)因降伏(Yielding)而發生,此時應力到達Yielding Stress (降伏強度或Yielding Strength) ●

多數延展性材料:σyield 拉伸 ? σyield 壓縮

脆性材料 (Brittle Materials)

● 材料受力伸長量無法達到5%,(材料在應變到達5%前即已失效) ● 材料的斷裂阻抗<滑動阻抗

Material Failure 因斷裂而發生,此時應力到達Ultimate Stress (極限強度或Ultimate Strength)

多數脆性材料:σu 拉伸 < σu 壓縮

2. 延展性材料的材料失效理論(Failure Theories of Ductile Materials) [1] (a)最大法向應力失效理論(Max. Normal Stress Failure Theory) =>若不符合以下三個不等式關係中任何一個,即為Failure

fs ypt 1fs ypc N S N S ≤

≤σ (1a) fs ypt 2fs ypc N S N S ≤

≤σ (1b) fs

ypt 3fs

ypc N S N S ≤

≤σ (1c)

上式中,σ1, σ2, σ3為主應力(Principle Stress),下標t 代表tension (拉伸)、下標c 代表compression (壓縮),其他符號: .上式應用於延性材料

S ypt :拉伸降伏強度、S ypc :壓縮降伏強度、N fs :安全係數 .應用於脆性材料

S ypt 改為S ut (拉伸極限強度)、S yp c 改為S uc (壓縮極限強度)、N fs :安全係數

(b)最大應變能失效理論(Max. Strain Energy Failure Theory) 應變能(Strain Energy)常用U 代表之。

U = 應力所做之功 = 內力所做之功 ()xdydz dV dV,2

1

U zx zx yz xy y y x x =γτ+γτ+εσ+εσ?=

dx, dy, dz 為物體內一個小立方體之尺寸,dv 為此小立方的體積, 故dv=dxdydz

若以主應力來計算:

()dxdydz

2-2E

1U 3132212

32

22

1σσσσσσνσσσ++++?=

定義:單位體積的應變能為u, 故 dv

U u =

故()

[]1332212

32

221

2-2E

1u

σσσσσσνσσσ

++++=

若物體在(1, 2, 3三個主應力方向中的)單一軸向受力試驗中,則在發生Failure 時的單位體積應變能為

()2yp

yp S 2E

1U =

S yp :在單軸向測試中發生Failure 時之應力強度

加上安全係數N fs 因素後: * 若2

fs

yp 1yp

)

N S (

2E

1U

U

=

≤,則不發生Failure ,

亦即, * 若滿足

()2

fs

2

yp 133222

32

22

1N S 2-1

++++σσσσσσνσσσ, (2)

則不會因應變能過高而Failure ,(未達因應變過高而Failure 之條件)

(c)最大畸變能Failure Theory (V on Mises-Hencky 理論)

dy dx dz

畸變能(Distortion Energy), u d ,又稱剪應變能(Shear-Strain Energy) 單位體積應變能(u ) =單位體積應變能(u v ) +單位剪應變能(u d )

定義()321v

3

1σ+σ+σ=

σ,而與

σv 對應的應變為εv ,σv

造成之應變能(u v )為:

()()()()

2

321

v v v v

v v v v v 321v E

6212

3u E 2-12331

23.21

u σ+σ+σν-=

εσ=

∴σν=εεσεσσσ=ε?σ+σ+σ=

=.

++.321

附註:上式中υ代表浦松比,下標v 代表體積。

()

[]1332212

32

22

1

221σσσσσσνσσσ

++-++=

E

u

∴()1

332212

32221

v d E

31u u u σσ-σσ-σσ-σ+σ+σ

ν+=

-=

(3a)

在材料測試中,僅(1, 2, 3三個主應力方向中的)單一軸向受力,若軸向應力強度達S yp 時,發生Failure ,此時的畸變能為

()2

yp

yp

d S 3E

1u ν+=

(3b)

由3a 與3b 兩式可做以下結論:

若要求不因剪應變能(畸變能)過高,而造成Failure ,需有以下條件

2

yp 133221232221S ---≤++σσσσσσσσσ

若再加入安全係數之考量,則不發生Failure 之條件為:

2

fs yp

13322

12

32

22

1N

S ---???

? ??≤++σσσσσσσσσ (3)

(d)最大剪應力Failure 理論(Max. Shear Stress Failure Theory 又稱Tresca-Guest

?????σ+σ=σσ+σ=σσ+σ=σ'

3v 3

'2

v 2'1

v 1主應力 造成體積應變之應力

剪應力

Theory)

物體內部最大剪應力超過單軸向試驗發生Failure 時的主剪應力,即稱發生Failure .

.參見筆記第1-7頁

根據σij (亦即σxx , σyy , σzz , τxy , τyz , τzx )可求出該應力狀態下的主應力σ1,σ2,σ3,及最大剪應力τmax

若σ1,σ2,σ3三個主應力維持σ3≦σ2≦σ1之關係,則

2

-3

1max σστ=

(4a)

Tresca-Guest Failure 理論,同時預測,單軸向應力與剪應力關係如下: 對延展性材料 S ys = 0.5 S yp (4b)

若物體在單軸向試驗發生Failure 時的主剪應力為S ys ,且設計安全係數設定為Nfs ,但因有4a 與4b 二關係式,

故當滿足以下關係式時,不發生Failure

fs yp 31fs

yp N S -N S -≤

≤σσ

(4)

反之,若不滿足

fs

yp 31fs

yp N S -N S -≤

≤σσ關係式,則發生Failure

附註:

V on Mises-Hencky Failure Theory 預測,單軸向應力與剪應力關係如下: 在pure shear 狀況,(亦即 σ1 =τ=-σ3,σ2=0時) 由c 式,(設N fs =1)可得到以下關係式

S 3yp 2

1=σ

但 max 1τ=σ ∴yp

ys max 10.577S

S 3

Sy =?τ==σ

tensile yield strength(伸張降伏強度) shear yield strength(剪應力降伏強度)

.四個Failure 預測理論(a)、(b)、(c)、(d)之比較 [1] 相同點:

四者均假設材料是完全均勻(homogeneous)、無方向性差異(isotropic)、無任何缺陷(defects),包括細微裂紋、氣泡、雜質等(均會造成區域性的應力集中)。 相異點:

1. 最大法向應力Failure 理論,較適合用於脆性材料

2. 其餘三者,適合用於延展性材料

3. 三者中,畸變能Failure 理論與最大剪應力Failure 理論較準確,後二者中又以最大剪應力Failure 理論較保守。

.有關“脆性材料之Failure 理論”,請參閱文獻[2]有關Modified-Mohr Theory 之敘述,pp. 254-261。

Example 2-1 ([1] P. 114)

已知某物體中應力狀態(Stress State)為σx =2000 psi, σy =2000 psi,, τxy =2000 psi, 該物體的材質為#40灰鑄鐵,安全係數定為2.0。

問該物體此時承受之應力是否安全或是否為Failure 狀態?

自p.747, 表14-16

?

#40灰鑄鐵 ut σ=, uc σ=

由Mohr’s Circle (莫爾園):

psi

000,1010

)

(6)2

4-20

(

)2

-(2

2xy 2

2

y

X ==κ+=

τ+σσ=

γκ

κ

κ

psi 000,22221012)2

(

y

x 1==+=++=κ

κ

κ

γσσσ

psi

y

x 000,22

10

12

)2

(

2==-=++=κ

κ

κγσ

σσ

因為只有x 與y 方向之應力,故為二維應力問題,故σ3 = 0

==fs

ut fs

uc N

N σσ

?N N fs

ut 1fs

uc 滿足否σσσ≤

Example 2-2 的簡化題

假設(a) 12-1例題之應力狀態為某物體之應力狀態,(b)該物體於單一軸向負荷測試中,發生Failure 時的軸向強度S yp 為386Mpa ,(c) N fs 為3.0。試問 (1)若用畸變能Failure 理論來預測,此時是否已達Failure 狀態?

(2)若用最大剪應力Failure 理論來預測,此時是否已達Failure 狀態?

例題12-1應力狀態可寫成:

kpsi 00

040

0620

zz ZY

zx

yz yy yx xz xy xx ij

????

?

?????=??????????σσσσσσσσσ=σ

(1) 畸變能Failure 理論之推測: 據此可推算出三個主應力, , =, 20kpsi 2kpsi 2231=σσ=σ,參見Example 12-1。

由第3式:

()()psi

in

cm cm

m

N

m

N Mpa Note Mps

psi kg

kg

8.144154.21000011

2.28.91

10

110

44410

47.331144.8386

2000220002000

000

22N

S ---2

2

2

2

2

16

2

6

6

8

2

2

2

2

fs yp

133

22

12

3

2

2

2

1=?

?

?

?

=?=?=?????

?

?

?

-+???

? ??++:σσσ

σσ

σσ

σ

σ

=>已達畸變能Failure 條件,預測Failure 會發生#

(2)最大剪應力Failure 理論之推測: 由於 , =, 20kpsi 2kpsi 2231=σσ=σ,S yp = 386 Mpa = 386x144.8 psi ,N fs = 3: 檢算 fs

yp 31fs

yp N S -N -S ≤

σσ≤滿足否 =>

3. 延展性材料與脆性材料之表較(Comparisons on Ductile and Brittle

Materials) [2]

項目與說明延展性材料(Ductile Material) 脆性材料(Brittle Material)

1 應力應變關係Stress-Strain Relationship

2

拉伸試驗Tension to Failure

3

壓縮試驗Compression to

Failure

4 扭轉試驗Torsion to Failure

5

彎曲試驗Bending to Failure

4. 破壞力學理論[2]

●一般材料或多或少都有著小到無法以肉眼看到的細微裂紋(microcrack)之類

的缺陷(defects)。這些裂紋末端非常尖銳(sharp),會造成應力集中(非常高的應力值),應力集中因數(Stress Concentration Factor), K t,之推算如下:

?

?

?

?

?

+

=

c

a

2

1

K

t(5)

●應力在裂紋尖端區域有時會達到降伏(yielding)程度,稱為局部降伏(延展性材

料)或局部破壞(脆性材料)。

二次世界大戰期間一艘新造油輪尚未服勤即斷裂成兩段

●若局部降伏區域相較於零件尺寸是非常小,則線性破壞力學(Linear-Elastic

Fracture Mechanics)可以適用。簡介如下。

●材料破壞的三種模式

在crack 尖端的Yielding ,會造成尖端周圍很小的區域(右圖半徑為r y 的區域)的材料,自彈性(elastic) 行為變為塑性(plastic)行為,而在此區域內的應力值與應力強度因素(Stress Intensity Factor),K ,成正比。

模式 I 應力強度因素,K I ,參見下圖及參數定義, - 當b>>a 時,a K al min no I πσ= (6a)

其中A P

al min no =σ稱為“標稱應力”。

- 如果a/b ≤ 0.4,上式的誤差在10%以內。

- 若b>>a 不成立,亦即crack 寬度a 相較於零件尺寸b 不是非常小,則 a K al

min

no I πσ?β=

(6b)

此處

?

?

? ??π=

βb 2a sec

當crack

逐漸增

長,crack 尖端的K I 值則一直增高(應力也增高),K I 增高達材

模式 I

模式II

模式III

料的一個臨界值,叫做Fracture Toughness (K c )後,crack 長度會迅速增加,直到Failure 發生(斷裂發生)。

● 上述三種破壞模式,各有其K c 值,故理論上一個材料有K Ic 、K IIc 、K IIIc 。 ●

若安全係數為N fs ,針對第一種破壞模式,破壞力學失效理論(Fracture Mechanics Failure Theory)稱:

當滿足以下關係式時,材料不會因第一種模式的破壞(Fracture)而失效(Failure)

fs

Ic I N K K

) (7)

Crack 因受張力而增加長度,但壓縮力對crack 長度則無增長作用。這也是脆性材料壓縮強度高於拉伸強度的原因。

下二圖中,左圖為破壞斷裂現象(斷裂面平整、邊緣尖銳),右圖為造成此破壞斷裂的初始龜裂的放大圖。

多種鋼及鋁的K Ic 值如下表所示。

5. 幾何外形突變導致的應力集中[1]

零件幾何形狀發生突變,會造成應力分佈的重新分配,也會造成應力集中,分靜力狀態與動力狀態。 ●

應力集中將發生在內圓角、開孔、缺口、鍵槽、插銷槽、工具壓痕、表面刮傷、表面雜質等處。

理論的幾何(或靜力)應力集中因素(Static Stress Concentration Factor) K t [2],有些書[1]用K 代表之,參見第5式,K (或K t )之定義如下[1]:

al

min no max t K σσ=

(8a)

σmax 為在幾何形狀突變處(上圖B 點附近)的實際最大應力,σnominal 是在斷面積較小的面上的平均應力。(亦即上圖右半部斷面上的平均應力) ●

安全的設計是要求

fs

yp al min no t N S K ≤

σ? (延展性材料承受靜力負荷) (8b) fs

u al min no t N S K ≤

σ? (脆性材料承受靜力負荷)

(8c)

σmax 為在幾何形狀突變處的實際最大應力

圖a 幾何突變零件承受靜態張力負荷時的K t 値

有幾何形狀突變的零件,當其承受週期性變動負荷而發展成材料疲勞Failure (參見第6節)或破壞Failure(參見第4節)的同時,另一項應力集中現象

--Dynamic Stress Concentration [2]--也可能(在幾何形狀突變附近)同時發生。 - 不同材料對應力集中有著不同的敏感度(Sensitivity),譬如,延展性材料(低強度或較軟),其對應力集中的敏感度,較脆性材料為低,亦即前者較不容易產生嚴重的應力集中現象。

- 但是特殊的是,當材料內notch 的半徑趨近於零時(亦即接近crack 的

狀態

圖b 幾何突變零件承受靜態彎矩負荷時的K t 値

圖c 幾何突變零件承受靜態轉矩負荷時的K t 値

時),應力集中敏感度q 反而降低。

- 材料的缺口敏感度(Notch Sensitivity), q, 實際上是缺口應力集中敏感度,被定義為:

1

K 1K q t f --=

(9a)

式中K f 為Fatigue (Dynamic) Stress Concentration Factor ,稱為疲勞應力集中因數。其計算式可寫成 )

1K (q 1K t f -+= (9b)

而有 1q 0≤≤

t

f K K 1≤≤ 之關係式

(9c)

- 對有幾何形狀突變情形的零件,若承受週期性動態負荷,則先根據幾何尺寸確定其K t 值;然後根據材料,確定其q 值;再根據第9b 式,推算法向應力的K f 值(及剪應力的K fs );然後即可依據下式推算該零件承受之動態標稱應力(Dynamic Nominal Stress), σdyn_nom ,或動態標稱剪應力τdyn_nom 。 al min no f nom _dyn K σ=σ

(10a)

al

min

no fs nom

_dyn

K τ=τ

(10b)

- 鋼材的缺口應力集中敏感度(q)如下圖所示

- 若無法查到q 值,保守的作法是:將K f 以K t

值替代之。

圖d 鋼材的缺口應力集中敏感度(q)

7. 防制機械元件失效(Failure)的設計理論與依據

預設狀況負荷狀態應用理論比較之依據

內部材料無任何

缺陷

延展性材料靜態

最大畸變能失效理論(u d)

最大剪應力失效理論( max)

S ypt或S ypc 脆性材料靜態修訂之Mohr失效理論未討論

有氣泡、龜裂、缺口等靜態破壞力學(K I) K Ic

有晶體異位-->滑移-->

細微裂紋

動態、

週期性

疲勞力學(S-N曲線) S yp或S u之%

外型有幾何形狀突變靜態應力集中因數(K t) S yp或S u 詞彙對照

Brittle: 脆性的Compression: 壓縮Concentration: 集中

Crack: 裂紋

Defect: 缺陷Dislocation: 異位Distortion: 扭曲

Ductile: 延展性的Dynamic: 運動的、動態的Elastic: 彈性的Energy: 能量

Factor: 因數

Failure: 失效、損壞Fatigue: 疲勞Fracture: 破壞、斷裂Homogeneous: 均勻的Intensity: 強度Isotropic: 均向性的Linear: 線性的Material: 材料Microcrack: 細微裂紋Nominal: 標稱、公稱Notch: 缺口Plastic: 塑性的Principle: 主要的Sensitivity: 敏感度Shear: 剪力Slip: 滑移、滑動Strain: 應變Strength: 強度Stress: 應力Tensile: 伸張Tension: 拉力Theory: 理論Torsion: 扭轉Ultimate: 極限Yielding: 降伏

第七章 强度失效分析与设计准则

第七章强度失效分析与设计准则————材料力学教案

第七章强度失效分析与设计准则什么是"失效","材料失效"与"构件失效"或"结构失效"有何区别和联系;怎样从众多的失效现象中寻找失效规律;假设失效的共同原因,从而建立失效判据,以及相应的设计准则,以保证所设计的工程构件或工程结构不发生失效,并且具有一定的安全裕度。这即为本章将要涉及的主要问题。 失效的类型很多,本章主要讨论受静荷载作用处于单向应力状态与一般应力状态 下的材料强度失效。 失效与材料的力学行为密切相关,因此研究失效必须通过实验研究材料的力学行为。 实验是重要的,但到目前为止,人类所进行的材料力学行为与失效实验是很有限的。怎样利用有限的实验结果建立多种情形下的失效判据与设计准则,这是本章的重点。 §7-1轴向荷载作用下材料的力学行为 材料失效 1. 应力——应变曲线 为研究材料在常温静载作用下的力学行为需将试验材料按照国家标准作成标准试样。然后,在试验机上进行拉伸试验,试验过程中同时自动记录试样所受的荷载及相应的变形,进而得到自开始加载至试样破断全过程的应力-应变曲线。 应力-应变曲线的形状表征着材料的特定的力学行为,对于不同的材料,应力一应变曲线各不相同,甚至有很大差异。图7一1a、b分别为脆性和韧性金属材料的应力-应变曲线;图7-1c则为塑料的应力-应变曲线。 根据应力一应变曲线,可以得到表征材料力学行为的若干特征性能。 2. 弹性模量 应力一应变曲线上的直线段称为线弹性区。这一区域 内的应力与应变之比称为材料的弹性模量(杨氏模量),它 是应力一应变曲线上直线段的斜率,用E表示。 在应力一应变曲线的非直线段,还可以定义两种模量: 切线模量,即曲线在任意应变处的斜率,用E t表示。 割线模量,,即自原点至曲线上对应于任意应变点连线 的斜率,用E s表示,如图7一2所示。 切线模量与割线模量统称为工程模量,如图7-2所示。

Abaqus中复合材料的累积损伤与失效

纤维增强材料的累积损伤与失效:Abaqus拥有纤维增强材料的各向异性损伤的建模功能(纤维增强材料的损伤与失效概论,19.3.1节)。假设未损伤材料为线弹性材料。因为该材料在损伤的初始阶段没有大量的塑性变形,所以用来预测纤维增强材料的损伤行为。Hashin标准最开始用来预测损伤的产生,而损伤演化规律基于损伤过程和线性材料软化过程中的能量耗散理论。 另外,Abaqus也提供混凝土损伤模型,动态失效模型和在粘着单元以及连接单元中进行损伤与失效建模的专业功能。 本章节给出了累积损伤与失效的概论和损伤产生与演变规律的概念简介,并且仅限于塑性金属材料和纤维增强材料的损伤模型。 损伤与失效模型的通用框架 Abaqus提供材料失效模型的通用建模框架,其中允许同一种的材料应用多种失效机制。材料失效就是由材料刚度的逐渐减弱而引起的材料承担载荷的能力完全丧失。刚度逐渐减弱的过程采用损伤力学建模。 为了更好的了解Abaqus中失效建模的功能,考虑简单拉伸测试中的典型金属样品的变形。如图19.1.1-1中所示,应力应变图显示出明确的划分阶段。材料变形的初始阶段是线弹性变形(a-b段),之后随着应变的加强,材料进入塑性屈服阶段(b-c段)。超过c点后,材料的承载能力显著下降直到断裂(c-d段)。最后阶段的变形仅发生在样品变窄的区域。C点表明材料损伤的开始,也被称为损伤开始的标准。超过这一点之后,应力-应变曲线(c-d)由局部变形区域刚度减弱进展决定。根据损伤力学可知,曲线c-d可以看成曲线c-d‘的衰减,曲线c-d‘是在没有损伤的情况下,材料应该遵循的应力-应变规律曲线。

图19.1.1-1 金属样品典型的轴向应力-应变曲线 因此,在Abaqus中失效机制的详细说明里包括四个明显的部分: ●材料无损伤阶段的定义(如图19.1.1-1中曲线a-b-c-d‘) ●损伤开始的标准(如图19.1.1-1中c点) ●损伤发展演变的规律(如图19.1.1-1中曲线c-d) ●单元的选择性删除,因为一旦材料的刚度完全减退就会有单元从计算中移除(如图19.1.1-1 中的d点)。 关于这几部分的内容,我们会对金属塑性材料(金属塑性材料的损伤与失效概论,19.2.1节)和纤维增强材料(纤维增强符合材料的损伤与失效概论,19.3.1节)进行分开讨论。 网格依赖性 在连续介质力学中,通常是根据应力-应变关系建立材料本构模型。当材料表现出导致应变局部化的应变软化行为时,有限元分析的结果带有强烈的网格依赖性,能量的耗散程度取决于网格的精简程度。在Abaqus中所有可使用损伤演化模型都使用减轻网格依赖性的公式。这是通过在公式中引入特征长度来实现的,特征长度作为一个应力-位移关系可以表达本构关系中软化部分,它与单元尺寸有关系。在此情况下,损伤过程中耗散的能量不是由每个单位体积衡量,而是由每个单位面积衡量。这个能量值作为另外一个材料参数,用来计算材料发生完全损伤时的位移。这是与材料断裂力学中临界能量释放率的概念一致的。此公式确保了合适能量的耗散以及最大程度减轻网格的依赖。

PCB失效分析技术及部分案例

PCB失效分析技术及部分案例 作为各种元器件的载体与电路信号传输的枢纽,PCB已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题。 对于这种失效问题,我们需要用到一些常用的失效分析技术,来使得PCB在制造的时候质量和可靠性水平得到一定的保证,本文总结了十大失效分析技术,供参考借鉴。 1.外观检查 外观检查就是目测或利用一些简单仪器,如立体显微镜、金相显微镜甚至放大镜等工具检查PCB的外观,寻找失效的部位和相关的物证,主要的作用就是失效定位和初步判断PCB 的失效模式。外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。另外,有许多PCB的失效是在组装成PCBA后才发现,是不是组装工艺过程以及过程所用材料的影响导致的失效也需要仔细检查失效区域的特征。 2.X射线透视检查 对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X 射线透视系统来检查。X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。目前的工业X光透视设备的分辨率可以达到一个微米以下,并正由二维向三维成像的设备转变,甚至已经有五维(5D)的设备用于封装的检查,但是这种5D的X光透视系统非常贵重,很少在工业界有实际的应用。 3.切片分析 切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB

有限元分析方法和材料断裂准则

一、有限元模拟方法 金属切削数值模拟常用到两种方法,欧拉方法和拉格朗日方法。欧拉方法适合在一个可以控制的体积内描述流体变形,这种方法的有限元网格描述的是空间域的,覆盖了可以控制的体积。在金属切削过程中,切屑形状的形成过程不是固定的,采用欧拉方法要不断的调整网格来修改边界条件,因此用欧拉方法进行动态的切削过程模拟比较困难。欧拉方法适用于切削过程的稳态分析(即“Euler方法的模拟是在切削达到稳定状态后进行的”[2]),仿真分析之前要通过实验的方法给定切屑的几何形状和剪切角[1]。 而拉格朗日方法是描述固体的方法,有限元网格由材料单元组成,这些网格依附在材料上并且准确的描述了分析物体的几何形状,它们随着加工过程的变化而变化。这种方法在描述材料的无约束流动时是很方便的,有限元网格精确的描述了材料的变形情况。实际金属切削加工仿真中广泛采用的拉格朗日方法,它可以模拟从初始切削一直到稳态的过程,能够预测切屑的形状和工件的残余应力等参数[2]。但是用这种方法预定义分离准则和切屑分离线来实现切屑和工件的分离,当物质发生大变形时常常使网格纠缠,轻则严重影响了单元近似精度,重则使计算中止或者引起严重的局部变形[1]。 为了克服欧拉描述和拉格朗日描述各自的缺点,Noh和Hirt在研究有限差分法时提出了ALE(Arbitrary Lagrange-Euler)描述,后来又被Hughes,liu和Belytschko等人引入到有限元中来。其基本思想是:计算网格不再固定,也不依附于流体质点,而是可以相对于坐标系做任意运动。由于这种描述既包含Lagrange的观点,可应用于带自由液面的流动,也包括了Euler观点,克服了纯Lagrange 方法常见的网格畸变不如意之处。自20世纪80年代中期以来,ALE描述己被广泛用来研究带自由液面的流体晃动问题、固体材料的大变形问题、流固祸合问题等等。金属的高速切削过程是一个大变形、高应变率的热力祸合过程,正适合采用ALE方法。 采用ALE方法进行高速切削仿真克服了拉格朗日方法和欧拉方法需要预先定义分离线、切屑和工件分离准则,假定切屑形状等缺点,避免了网格畸变以及网格再划分等问题,使切屑和工件保持良好的接触,使计算易于收敛[1][4]。 二、材料断裂准则 在金属切削成形有限元模拟中提出了多种切屑分离准则,这些准则可以分为两种类型:物理准则和几何准则。 优点: 几何分离准则需要预定义加工路径,在加工路径上判断刀尖与刀尖前单元节点的距离变化来判断分离与否。当两点的距离小于某个临界值时,刀尖前单元的节点被分成两个,其中一个节点沿前刀面向上移动形成切屑,另一个保留在加工表面上形成己加工表面[1][2]。。 物理分离准则是基于刀尖前单元节点的应力、应变及应变能等物理量定义分离条件,当单元中的该物理量的值超过给定材料的对应值时,单元节点就会分离[2]。(物理标准主要是基于制定的一些物理量的值是否达到临界值而进行判断的,主要有基于等效塑性应变准则、基于应变能密度准则、断裂应力准则等[5])。 Carroll和Strenkowski使用了等效塑性应变作为物理分离准则的标准,在一些有限元软件中该标准的演化得到了应用,ABAQUS/Explicit中的剪切失效准则(shear failure)就是这样一种物理准则,它根据单元积分点处的等效塑性应变值是否到达预设值来判断材料是否失效[1]。 缺点:

各类材料失效分析方法

各类材料失效分析方法 Via 常州精密钢管博客 失效分析是一门发展中的新兴学科,近年开始从军工向普通企业普及,它一般根据失效模式和现象,通过分析和验证,模拟重现失效的现象,找出失效的原因,挖掘出失效的机理的活动。在提高产品质量,技术开发、改进,产品修复及仲裁失效事故等方面具有很强的实际意义。 失效分析流程 图1 失效分析流程 各种材料失效分析检测方法 1 PCB/PCBA失效分析 PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。

图2 PCB/PCBA 失效模爆板、分层、短路、起泡,焊接不良,腐蚀迁移等。 常用手段· 无损检测: 外观检查,X射线透视检测,三维CT检测,C-SAM检测,红外热成像表面元素分析: 扫描电镜及能谱分析(SEM/EDS) 显微红外分析(FTIR) 俄歇电子能谱分析(AES) X射线光电子能谱分析(X PS) 二次离子质谱分析(TOF-SIMS)· 热分析:· 差示扫描量热法(DSC) 热机械分析(TMA) 热重分析(TGA) 动态热机械分析(DMA) 导热系数(稳态热流法、激光散射法) 电性能测试: · 击穿电压、耐电压、介电常数、电迁移· 破坏性能测试: 染色及渗透检测

2 电子元器件失效分析 电子元器件技术的快速发展和可靠性的提高奠定了现代电子装备的基础,元器件可靠性工作的根本任务是提高元器件的可靠性。 图3 电子元器件 失效模式 开路,短路,漏电,功能失效,电参数漂移,非稳定失效等 常用手段· 电测:连接性测试电参数测试功能测试 无损检测: 开封技术(机械开封、化学开封、激光开封) 去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) 微区分析技术(FIB、CP) 制样技术: 开封技术(机械开封、化学开封、激光开封) 去钝化层技术(化学腐蚀去钝化层、等离子腐蚀去钝化层、机械研磨去钝化层) 微区分析技术(FIB、CP) 显微形貌分析: 光学显微分析技术 扫描电子显微镜二次电子像技术 表面元素分析: 扫描电镜及能谱分析(SEM/EDS) 俄歇电子能谱分析(AES)

失效分析报告样板

材料理化检验报告 金相实验室理化检验报告 送验单位 送验品名 检验项目 数 量 编 号 日 期 2 13CrMo44(φ88.9mm ×10mm ) 钢管弯头 1#(弯头内管试样) 2#(弯头外管试样) 金相组织

一、金相组织分析 参照GB/T13238-91《金属显微组织检验方法》、GB/T13299-91《钢的显微组织评定方法》GB6394-2002《金属平均晶粒度测定法》,对送检钢管样品的材质进行了金相显微组织检验。 13CrMo44钢的化学成分与我国的15CrMo钢相近,其显微组织应为铁素体和珠光体(有时存在少量的粒状贝氏体)。对送检的金相试样,进行磨制、抛光后经4%硝酸酒精浸蚀,在光学金相显微镜下进行检验,拍摄的显微组织照片如图1—6所示。 国标要求脱碳层二者之和小于0.6mm,还可使用。 按照GB6394-86对钢管的实际晶粒度,内管试样(1#)和外管试样(2#)的晶粒均较细,晶粒度为????级。 二、结论 对照GB5310-1995《高压锅炉用无缝钢管》的标准,该钢管的金相组织符合使用要求。 实验者:审核:

1#图1内管试样内壁×100 1#图2 内管试样外壁×100 1#图3 内管试样中部×200

2#图4 外管试样内壁×100 2#图5外管试样外壁×100 2#图6外管试样中部×200

引用标准一览: 1.GB/T13291—91 金属显微组织检验方法 2.GB/T13299—91 钢的显微组织评定方法 3.GB224—87 钢中脱碳层深度测定法 4.GB6394—2002 金属平均晶粒度测定法 5.GB5310—1995 高压锅炉用无缝钢管 6.

《材料失效分析》实验教案2014上.

课程教案 课程名称:材料失效分析实验 任课教师:刘先兰 所属院(部):机械工程学院 教学班级: 2011级金属材料工程教学时间:2013—2014学年第二学期 湖南工学院

《材料失效分析》实验 实验课程编码: 学时:6 适用专业:金属材料工程 先修课程:材料科学基础、材料力学性能、金属塑性成型原理、现代材料检测技术等 考核方式: 一、实验课程的性质与任务 帮助学生进一步理解所学知识,加深对一般工程结构和机械零件失效分析的基础知识、基本方法和基本技能的掌握;能够利用所学的知识建立失效分析方法和思路(故障树);熟悉判断失效零件裂纹源的方法;熟知各类断裂件的断口形貌及断裂机制,分析各种断裂类型、起裂点及断裂过程。 二、实验项目 实验一材料失效中的金相分析法实验(2学时) 实验二零件失效的宏观分析法(2学时) 实验三静载荷作用下的金属材料断裂失效断口分析(2学时) 三、实验报告要求 每个实验均应写实验报告。按统一格式,采用统一封面和报告纸。实验报告内容应包括实验名称、目的、内容和理论基础、实验设备(名称、规格及型号)及材料名称,实验步骤、实验结果、结果分析。 四、其它要求 实验中,注重知识、能力、素质的协调发展,突出学生的创新精神与创新能力的培养。 五、教材和参考资料 1教材: 《材料失效分析》,庄东汉主编.华东理工大学出版社. 2.参考资料: [1]《机械零件失效分析》,刘瑞堂编,哈尔滨工业大学出版社.. [2]《材料成形与失效》,王国凡主编,化学工业出版社. [3]《材料现代分析方法》,左演声主编,北京工业出版社. [4] 《断口学》,钟群鹏主编,高等教育出版社. [5] 《金属材料及其缺陷分析和失效分析100例》,候公伟主编,机械工业出版社.

材料失效分析

材料失效分析

关于散装无铅焊料的脆性到塑形断裂的 转变温度的研究 姓名:肖升宇专业:材料科学与工程学号:0926000333 摘要 断裂韧性的散装锡,锡铜无铅焊料,锡银和测量功能温度通过一个摆锤冲击试验(冲击试验)。韧脆断裂转变他们发现,即急剧变化,断裂韧性,相比没有转变为共晶锡铅。过渡温度高纯锡,Sn-0.5%铜和Sn-0.5%铜(镍)合金在- 125℃含有Ag的焊料显示过渡在较高温度:在范围78到45–°–°C最高转变温度45℃–°测定锡- 5%银,这是球以上的只有30–°角的增加的银内容变化的相变温度较高的值,这可能与高SnAg3颗粒体积分数的焊料的量。这些结果被认为是非常重要的选择最好的无铅焊料组合物。 简介 由2006年七月份。铅的使用电子在欧洲将被禁止,以及无铅焊料应取代锡铅焊料,常用于微电子领域超过50年。许多以Sn为基体的焊料针对于过去几年进行深入研究,如锡银,铜,Sn-Ag-Cu等等,特别是关于其可靠性,工作是远远没有完成。自从这个“软”铅被从焊料中提取出来之后,导致无铅焊料不容易变行和增长了当地积累的应力水平,这也增加了裂缝成核的概率。这显着影响着主要焊点的失效模式,即焊料疲劳。这是众所周知的一些金属松动的低温延性,并表现出脆性断裂模式。因此,韧性到脆性转变温度是一个重要参数。

至于我们的知识,只有现有无铅合金的数据,见迈耶[1],显示出锡5%银的转变温度为-25°,相比没有过渡锡,铅-1.5Ag93.5%。这其实是相当令人失望,因为许多标准热 循环试验开始温度低至-40甚至-60℃,这会影响故障模式。此外,这个温度范围也有一些应用程序,例如航天。“本文的目的是研究几大部分含铅量焊料的脆性到韧性骨折转变温度。 实验 众所周知的一个摆锤冲击试验,“摆锤试验”,用以确定在断裂消耗的能源量,这是一个断裂韧性的措施材料,如温度的功能。“实验装置如图1所示。 对7种合金材料做了测试,结果如下: ·99.99wt.%Sn ·Sn-0.7wt.%Cu, ·Sn-0.7wt.%Cu (0.1wt.%Ni) ·Sn-3wt%Ag-0.5wt%Cu, ·Sn-4wt%Ag-0.5wt%Cu ·Sn-5wt%Ag ·Sn-37wt.%Pb,作为参考 根据所进行的测试ASTM E23标准的V型缺口样品大小为 10x10x55mm。对于某些样本大小为5x5x55mm的合金被使用,由于只有有限的物质可用。锤能量为50J和冲击速度为3.8米/秒。能源锤358J被用于多次测量时吸收能量大于50J。结果是由截面样品表面正

材料失效准则详解

Chapter 2 材料失效理論(Material Failure Theories) 資料來源 1. 吳嘉祥等譯,機械元件設計,第八版,高立圖書有限公司,台北縣,2006, 2. Robert L. Norton, Machine Design An Integrated Approach, 3rd Edition, Pearson Prentice Hall, Person Education Inc., Upper Saddle River, New Jersey, 2006. 1. 材料分類 [1] 延性材料 (Ductile Materials) ● 材料受力延長量(應變)可達5% (或以上) ● 材料對滑動(Slip)之阻抗<對斷裂(Fracture)之阻抗 ● Material Failure (材料失效)因降伏(Yielding)而發生,此時應力到達Yielding Stress (降伏強度或Yielding Strength) ● 多數延展性材料:σyield 拉伸 ? σyield 壓縮 脆性材料 (Brittle Materials) ● 材料受力伸長量無法達到5%,(材料在應變到達5%前即已失效) ● 材料的斷裂阻抗<滑動阻抗 ● Material Failure 因斷裂而發生,此時應力到達Ultimate Stress (極限強度或Ultimate Strength) ● 多數脆性材料:σu 拉伸 < σu 壓縮 2. 延展性材料的材料失效理論(Failure Theories of Ductile Materials) [1] (a)最大法向應力失效理論(Max. Normal Stress Failure Theory) =>若不符合以下三個不等式關係中任何一個,即為Failure fs ypt 1fs ypc N S N S ≤ ≤σ (1a) fs ypt 2fs ypc N S N S ≤ ≤σ (1b) fs ypt 3fs ypc N S N S ≤ ≤σ (1c) 上式中,σ1, σ2, σ3為主應力(Principle Stress),下標t 代表tension (拉伸)、下標c 代表compression (壓縮),其他符號: .上式應用於延性材料

复合材料失效模式分析

复合材料失效模式分析 ★★★★★微谱检测:中国权威检测机构★★★★★ ------专业进行复合材料失效模式分析https://www.doczj.com/doc/229240337.html, 微谱检测是国内最专业的未知物剖析技术服务机构,拥有最权威的图谱解析数据库,掌握最顶尖的未知物剖析技术,建设了国内一流的分析测试实验室。首创未知物剖析,成分分析,配方分析等检测技术,是未知物剖析技术领域的第一品牌! 上海微谱化工检测技术有限公司,是一家专业从事材料分析检测技术服务的机构,面向社会各业提供各类材料样品剖析、配方分析、化工品检验检测、单晶硅纯度检测及相关油品测试服务。 本公司由高校科研院所教授博士领衔、多个专业领域专家所组成的技术团队具有长期从事材料分析测试的经验,技术水平和能力属国内一流。通过综合性的分离和检测手段对未知物进行定性鉴定与定量分析,为科研及生产中调整配方、新产品研发、改进生产工艺提供科学依据。 微谱检测与同济大学联合建立微谱实验室,完全按照CNAS国家认可委的要求建设,通过CMA国家计量认证,并依据CNAS-CL01:2006、CNAS-CL10和《实验室资质认定评审准则》进行管理,微谱实验室出具的检测数据均能溯源到中国国家计量基准。 微谱检测的分析技术服务遍布化工行业,从原材料鉴定、化工产品配方分析,到产品生产中的工业问题诊断、产品应用环节的失效分析、产品可靠性测试,微谱检测都可以提供最专业的分析技术服务。 微谱检测深耕于未知物剖析技术领域内的创新,以振兴民族化工材料产业为己任! 微谱检测可以提供塑料制品,橡胶制品,涂料,胶粘剂,金属加工助剂,清洗剂,切削液,油墨,各种添加剂,塑料,橡胶加工改性助剂,水泥助磨剂,助焊剂,纺织助剂,表面活性剂,化肥,农药,化妆品,建筑用化学品等产品的成分分析,配方分析,工艺诊断服务。

材料失效准则的定义

有些材料类型中有关于失效准则的定义,但是也有些材料类型没有失效准则的材料类型,这时需要额外的失效准则定义,与材料参数一块定义材料特性。需要用到*mat_add_erosion关键字,对于这个关键字有几个需要注意的地方。 1、材料的通用性破坏准则:` 材料通常为拉破坏或者剪切破坏,静水压是以压为正,拉为负,所以静水压破坏就是给出最小的承受压力,当然需要小于0(即拉力),如果静水压小于该值,则材料破坏。相反,应力则是以压为负,拉为正,故最大主应力或最大等效应力或最大剪应力破坏等等都是给出最大的应力极限,当然大于0,如果拉应力大于该值,则材料破坏,无论是*MAT_ADD_EROSION,还是材料内部自带的破坏准则还是其他软件,都遵循以上准则。注意:屈服不是失效。 2、单元失效模拟的功能与目的 单元删除功能是为了克服有限元本身的缺陷而提出的一项方法,由于有限元本身是基于连续介质力学的,而在连续介质力学中,所研究的物体需要是连续的,既物质域在空间中连续。在这样的理论假设框架下,单元本身是不会消失的。然而在实际情况下,由于损伤断裂的存在,势必会使得一些单元消失或者完全的失效,所以为了能够模拟这种情况,DYNA 提供了单元失效功能。 破坏、失效、断裂,都是工程性的概念,它表示在达到某一准则后,结构、构件、或者构件中的某一部分,从结构中退出工作,不再影响整体结构的受力。而从有限元概念上说,对上述机制的模拟,基本手段都是一样的,就是当满足某一指标(比如某个应变大小)后,将一个单元或者一个积分点的质量、刚度和应力、应变都设为零(或者非常接近与零),这样它在整体结构计算中就不再发挥作用,进而实现了退出工作机制的模拟。所以,无论是把纤维模型中的某个纤维、或者分层壳模型中的某一层、或者实体模型中的某个积分点,或者结构中的某个单元,让其不再参与整体结构计算,都可以达到模拟破坏退出工作的目的。而所谓单元生死技术,是上述基本概念在有限元程序中的一个“打包”应用。它除了让单元不再参与计算外,一般还有一个重要的附加功能,就是对仅和“被杀死”单元相连的“孤岛”节点,让其自由度不再参与整体结构计算,以减少计算困难。而后来有限元程序的前后处理又不断改进,可以做到在后处理里面“看不到”已杀死的单元,这样就显得更加真实。但正因为这些包装,使得很多人反而忘记了所谓单元生死技术的基本概念。 所以,不要被单元生死吓到,即便是有限元程序不提供“单元生死”功能,通过适当的设计单元质量、刚度和应力应变矩阵,也可以实现单元生死同样的效果。至于构件的部分或局部破坏(诸如钢筋的断裂),更是有多种实现方法,使用者可以灵活掌握。 3、关于关键字参数 这个参数有两行参数,第一行:MID(MID - 待失效的材料编号),excl(排除数字,任意假设);第二行:PFAIL(失效压力),SIGPI(失效主应力),SIGVM(失效等效应力,一般指抗拉强度),EPSPI(失效主应变),EPSSH(失效剪应变),SIGTH(极限应力),IMPULSE (失效应力冲量),FAILTM(失效时间)。 其中excl为排除数字,这个数字可以任意定义,如果第二行某个参数和这个数据相同,那么该参数定义的失效准则就被忽略。(第二行可以定义很多准则)。不选用其它失效准则不能留空,必须要填排除数字。 关于PFAIL 关键字的说明:此关键字表示物体的静水压破坏,即各个方向受到相同压力时的破坏准则,其中压为正,拉为负,一般材料尤其是混凝土材料都是拉伸破坏,故此参数一般定义为负数,对于大小比较的是代数值的大小,因此当低于此准则即拉应力超过允许数值,材料即宣告破坏(类似抗压强度)。当实际的静水压力(其实应该是拉力)小(大?) 于此值(代数大小),材料即宣告破坏。

材料失效分析报告报告材料

上海应用技术学院 研究生课程(论文类)试卷 2 0 15 / 2 0 16 学年第二学期 课程名称:材料失效分析与寿命评估 课程代码:NX0102003 学生姓名:丁艳花 专业﹑学号:材料化学工程 156081101 学院:材料科学与工程学院

凝汽器铁管管壁减薄的失效分析报告 1.失效现象描述 秦山第三核电公司1#700M W重水堆核能发电机组2A凝汽器。该凝汽器从2002年8月起投入使用,实际运行时间8年左右。根据资料记载,1#机组第3次例行大修时,管外壁减薄程度较轻,但在第4次例行大修时发现管外壁减薄程度加深,在2010年5月第5次例行大修时发现部分钛管外壁减薄现象相当明显。各机组凝汽器缺陷管主要分布在冷凝管塔式分布的最外侧。据专业人员介绍,大修后对缺陷管抽管检查后发现,管壁减薄主要集中在支撑板处,减薄位置和减薄程度各不相同。如果让异常减薄缺陷管继续运行,有可能引起管穿孔的泄漏事件。 2.背景描述 凝汽器是大型汽轮机循环设备中的重要环节。其中的冷凝管起到将蒸汽凝结成水的作用,是凝汽器中的核心部件。冷凝管一旦发生破损将导致冷却水泄露并污染循环水,从而会对整个系统的正常运行造成严重影响。因此冷凝管的选材质量决定了凝汽器的安全可靠性与使用寿命。工业纯钛作为冷凝管最常用的材料,具有良好的力学性能与耐蚀性能。在复杂运行工况下,纯钛材料仍有可能发生磨损、腐蚀等常见的材料失效现象,引发冷凝管破损并导致冷却水泄露并污染循环水,由此对凝汽器的正常运行带来安全隐患。若不找到这一过早失效的真正起因,并采取有效的防护措施,最终必将导致钛管泄漏,不但经济损失巨大,甚至有可能引发重大安全事故。 国内关于凝汽器钛管的案例的产生原因大致可分为以下几类: 第一类,由于相关方面施工建造时就存在不当操作或不当设计导致运行中出现落物砸伤或凝汽器自身运行故障。如国华太仓发电超临界机组发生凝汽器钛管泄露导致冷凝水水质不合格,其原因在于上部低压加热器表面隔板未按规定安装,导致隔板掉落砸伤引起泄露。再如未充分考虑到钛管共振问题由于钛管本身管壁极薄(0.5mm到0.7mm),强烈的震动极易导致铁管破裂引起泄露,这点在宝钢电厂与大亚湾核电站的运行中已经得到了证实此外还存在着钛管板间焊接质量不良,

关于dyna中材料失效准则的定义

关于dyna中材料失效准则的定义 有些材料类型中有关于失效准则的定义,但是也有些无失效准则的材料类型,这个时候需要额外的定义失效准则,与材料参数一块定义材料特性。用到*mat_add_erosion关键字,对于这个关键字有几个需要注意的地方。 1、材料的通用性准则: 材料通常为拉破坏或者剪切破坏,静水压是以压为正,拉为负,所以静水压破坏就是给出最小的承受压力,当然需要小于0(即拉力),如果静水压小于该值,则材料破坏。相反,应力则是以压为负,拉为正,故最大主应力或最大等效应力或最大剪应力破坏等等都是给出最大的应力极限,当然大于0,如果拉应力大于该值,则材料破坏,无论是MAT_ADD_EROSION,还是材料内部自带的破坏准则还是其他软件,都遵循以上准则。注意:屈服不是失效。 2、单元失效模拟的功能与目的 单元删除功能本身是为了克服有限元本身的缺陷的一项方法,由于有限元本身就是基于连续介质力学的,而在连续介质理学中,所研究的物体需要是连续的,既物质域在空间中连续。在这样的理论假设框架下,单元本身是不会消失的。然而在实际情况下,由于损伤断裂的存在,势必会使得一些单元消失或者完全的失效,所以为了能够模拟这种情况,DYNA提供了单元失效功能。 破坏、失效、断裂,都是工程性的概念,它表示在达到某一准则后,结构、构件、或者构件中的某一部分,从结构中退出工作,不再影响整体结构的受力。而从有限元概念上说,对上述机制的模拟,基本手段都是一样的,就是当满足某一指标(比如某个应变大小)后,将一个单元或者一个积分点的质量、刚度和应力、应变都设为零(或者非常接近与零),这样它在整体结构计算中就不再发挥作用,进而实现了退出工作机制的模拟。所以,无论是把纤维模型中的某个纤维、或者分层壳模型中的某一层、或者实体模型中的某个积分点,或者结构中的某个单元,让其不再参与整体结构计算,都可以达到模拟破坏退出工作的目的。而所谓单元生死技术,是上述基本概念在有限元程序中的一个“打包”应用。它除了让单元不再参与计算外,一般还有一个重要的附加功能,就是对仅和“被杀死”单元相连的“孤岛”节点,让其自由度不再参与整体结构计算,以减少计算困难。而后来有限元程序的前后处理又不断改进,可以做到在后处理里面“看不到”已杀死的单元,这样就显得更加真实。但正因为这些包装,使得很多人反而忘记了所谓单元生死技术的基本概念。. 所以,不要被单元生死吓到,即便是有限元程序不提供“单元生死”功能,通过适当的设计单元质量、刚度和应力应变矩阵,也可以实现单元生死同样的效果。至于构件的部分或局部破坏(诸如钢筋的断裂),更是有多种实现方法,使用者可以灵活掌握。 3、关于关键字参数 这个参数有两行参数,第一行:MID(MID待失效的材料编号)excl(排除数字,任意假设);第二行:PFAIL(失效压力)SIGPI(失效主应力)SIGVM(失效等效应力,一般指抗拉强度)EPSPI(失效主应变)EPSSH(失效剪应变)SIGTH(极限应力)IMPULSE(失效应力冲量)FAILTM(失效时间) 其中excl为排除数字,这个数字可以任意定义,如果第二行某个参数和这个数据相同,那么该参数定义的失效准则就被忽略。(第二行可以定义很多准则)。不选用其它失效准则不能留空,必须要填排除数字。 关于PFAIL关键字的说明:此关键字表示物体的静水压破坏,即各个方向受到压力时的破坏准则,其中压为正,拉为负,一般材料尤其是混凝土材料都是拉伸破坏,故此参数一般定义为负数,对于大小比较的是代数值的大小,因此当低于此准则即拉伸力超过允许数值,

失效分析报告

南京XXXX 大学失效分析报告 姓名: XXXX学号:XXXXXXXX 学院:X 专业:X 题目:X 2015年11月南京

一、背景 有5根要求分析的螺栓如图1,其中有2根是失效的(1根已断裂1根已近断裂),另3根外表完好;5根螺栓材料、规格、处理方式是相同的,材料是SCM432、表面经过磷化处理、强度等级为10.9;且称失效件之工作寿命在400小时以内,是作为发动机零件且同发动机一起进行台架试验的时候断裂的,螺栓安装方法为:扭距40N.M,再拧三个90°即270°,工作温度为100℃以内,受力方式为链接两个零件间的分离力;其它诸如热处理工艺、表面处理工艺、螺栓成形加工方式、具体工作状况、具体规格等均不明;且断裂件螺栓断口已有较严重的污染、与之相匹配的另一断口未收到(因为另一半断口可能存在更多信息于失效分析亦非常重要),对失效分析有一定的负面影响,要求分析螺栓的断裂原因。 图1来样宏观形貌(其中黄色标识为失效零件)

二、样品信息 样品名称 螺栓 样品型号 不明 样品数量 5 材料 SCM432 处理方式 不明 三、样品化学成分 元素 C Si Mn P S Cr Mo Ni Cu Wt% 0.31 0.070 0.94 0.014 0.005 0.21 0.086 0.029 0.079 四、硬度测试 根据GB/T 4340.1-2009、GB/T 230.1-2009、ASTME140-05对样品进行硬度测试,设备为HVS-1000和HDI-1875,测得结果如下: 根据GB/T3098.1-2000得标准为320~380HV 、32~39HRC ,所以试样硬度正常。 五、宏观断口分析 5根要求分析的螺栓如图1,其中有2根黄色标识是失效的(1根已断裂1根已近断裂),两根失效零件的失效部位类似均离顶端相同距离,应属螺栓受力部位之第一根螺齿根部;图2显示“已近断裂”之零件之失效部位形貌,有明显裂纹;图3显示断裂之断口形貌有较严重的污染现象;清洗后断口形貌如图4,从断口来看,属低周高应力弯曲疲劳;有两个分别呈半圆形A 及月牙形B 且较为平坦的断口部分,隐约可见贝壳花样,面积约占整个断口 50%, 断口中间部位C 较为粗糙亦约占50%; A 及B 区属疲劳断的断裂源区及扩展区,断裂源于螺栓的螺纹齿根部(图4黄色箭头所指),A 区与B 区断口部分在整个断口部位呈对称现象;C 区属瞬断区,可见服役受力较大;C 区及齿根部形貌如图5、6,瞬断区基本呈45度角,齿根部并未发现明显的宏观裂纹;图7及图8 分别为A 及B 区之断口形貌可见有较多的台阶状特征;A 区的断裂源区形貌如图9、扩展区如图10; C 区的微观断口形貌如图11、12可见韧窝状特征;B 区的断裂源区形貌如图13、扩展区如图14;断口侧面垂直处表面形貌可见图15、16有较 测试部位 1 2 3 平均值 零件表面HRC 33.4 33.7 33.6 33.6 零件心部HV1 331 337 335 334

复合材料失效分析

复合材料失效分析

————————————————————————————————作者: ————————————————————————————————日期:

复合材料失效分析 1、简介 随着生产和科学技术的发展,越来越多的复合材料广泛应用于我们的生活。因为复合材料热稳定性好、比强度/比刚度高、抗疲劳性能好等诸多优点,故其广泛应用于航空航天、汽车工业、制造业及医学等领域,而技术的全新要求和产品的高要求化,但客户对高要求产品及工艺理解不一,于是复合材料断裂、开裂、爆板分层、腐蚀等之类失效频繁出现,常引起供应商与用户间的责任纠纷,所以导致了严重的经济损失。目前进而越来越多的企业、单位对于复合材料失效分析有了一个全面的认识,因为通过失效分析手段,可以查找产品失效的根本原因及机理,从而提高产品质量、工艺改进及责任仲裁等方面。 2、服务对象 复合材料生产厂商:通过失效分析,查找产品失效产生可能原因的设计、生产、工艺、储存、运输等阶段,深究产品失效机理,为提升产品良率及优化生产工艺方面提供理论依据。 经销商或代理商:及时为其来料品质进行有效管控,为产品品质责任进行公正界定提供依据。 整机用户:跟进并对产品工艺及可靠性提供改进意见,提升产品良率及核心竞争力。 3、产生效益

1)通过失效分析可及时让生产商及经销商等了解产品状况,并对其产品失效提供有效预防政策; 2)提供产品及工艺改进意见,提升产品良率及产品竞争力; 3)明确引起复合材料产品失效的责任方,为司法仲裁提供依据。 4、主要失效模式(但不限于) 开裂、腐蚀、爆板分层、开路(线路、孔)、变色失效等。 PCB界面失效????FPC开路失效

试用一个典型案例说明材料失效分析与基础学科及应用学科之间的关系

中原油田全油田有100多口井套管腐蚀穿孔,30多口井报废,200多口井套管待修。油井套管的最大穿孔速度为0.48mm/年。 对现场取出损坏的套管进行解剖分析。 1.套管腐蚀形貌:套管内壁分布腐蚀坑,腐蚀沿管轴纵向延伸呈马蹄形,其横断面为上宽下窄的梯形深谷状,管壁穿孔处周边锐利,界面清晰。从总体上看,套管内壁都附着黑色粘性油污,无明显腐蚀产物堆积,主要表现为坑蚀穿孔,并有一定的流体冲刷作用。 2.腐蚀产物XRD分析 取套管内壁物质,洗去油污,再用丙酮清洗吹干,进行X射线衍射分析。套管内壁腐蚀产物中主要有FeCO3和CaCO3,夹杂有NaCl和硫酸亚铁。腐蚀产物的主要成分为碳酸物,显示出套管、油管腐蚀与CO2腐蚀有关。 3.油套管材质的金相和非金属夹杂分析 采用电子探针分析仪进行钢基、夹杂物定性、定量和 元素面分析。 分析发现,大量细小球形暗灰色颗粒为Al2O3,短条状为ZnS,材质中夹杂物以二者为主。同时经电子探针元素定量分析表明,随着向腐蚀坑底的深入,表层元素中氧、硫、氯、钙、镁含量在增大。说明生成的腐蚀产物有氧化物、硫化铁、碳酸钙、碳酸镁等,并随腐蚀深入呈增加趋势。 4.腐蚀试验 (一)用油田水样对套管钢和油管钢进行了动态和静态腐蚀试验,温度50o C密闭除氧试验时间7天。结果表明:动态腐蚀速度远远大于静态腐蚀速度。(二)在此基础上又进行了不同流速对腐蚀影响的试验,说明介质流动能较大的

增加体系的腐蚀。 (三)不同CO2分压下,Q235钢在3℅NaCl熔液中的腐蚀速度。表明CO2压力越大,腐蚀越严重。 结论: (1).复杂断块油田套管腐蚀失效主要是油井高矿化度产出水中CO2腐蚀作用的结果。 (2).套管的局部腐蚀破裂形态与钢材中夹杂物的局部分布、流体冲刷有密切关系。 (3).综合对腐蚀形态特征的观察判断,腐蚀产物的分析,材质金相非金属夹杂分析,可以找到套管腐蚀失效的主要原因。 由上面该案例的分析可以看出,材料失效分析与基础学科及应用学科之间有密不可分的关系。在进行分析的过程中会用到物理、化学、数学等基础学科。用到化学中的电镜对腐蚀形貌进行分析;会用到数学中的数学分析,对腐蚀速度等进行分析;会涉及到物理学中的结构方面的知识;还会用到地理学进行环境分析等等。在进行失效分析过程中还会用到应用学科,如计算机类,会用到计算机进行一系列的数值分析,图像分析;还会用到应用化学中的环境检测,质量检测等技术。总之,在进行腐蚀材料失效分析时,会综合运用到基础学科的知识和应用学科的技术。 2、试用两个实际的失案例说明材料实效分析的重要性。(既有文字说明,又有图片说明,不少于800字) 案例一:一起来自水管腐蚀失效的案例:广东某钢管公司铺设的自来水管使用六年后发生穿孔泄露。 1.本起穿孔失效发生的地点和环境无规律性,对穿孔管道进行仔细观察,典型的宏观外貌是穿孔部位有一直径为10mm的锈瘤,呈黄褐色,用硬器易刮除,刮除后露出的水管外壁基本平整,可见水从管内渗出。 在锈瘤的外围是一圈黄色锈迹,锈迹外是镀锌层,其上可见分散的白色粉末。现场观察到的形貌还有一个特点,就是同一根管若出现几处结瘤,这些结瘤点的连线与水管轴向平行。 2.水样检测及钢管材质检测 取该镇两个不同地点的水样,进行PH检测以及腐蚀性检测,并与实验室水进行比较。 项目取水点1 取水点2 实验室用水 PH 6.15 6.23 6.41

多向复合材料层压板的失效分析

多向复合材料层压板的失效分析 玻璃纤维层压板 纤维增强复合材料层压板的失效是由损伤的积累而导致的。与材料、层合板叠合顺序以及环境相关,失效是一个复杂和相互作用的分离的损伤模式的集合。主要的损伤模式有横向、纵向裂纹的形成,还有倾向于在试样自由边缘起始的分层。但是,最终的复合材料层压板失效在本质上与纤维断裂有关。因此,多向层合板的最终失效可以归结为单层的失效和/或层与层之间的分离或分层。 一、单层拉伸失效 层压板中包括不同纤维方向的铺层。在单一荷载拉伸下,损伤积累的一般顺序是90度层的横向(层内)裂纹的形成。在横向开裂的开始阶段,可以观察到非线性变形,这在应力-应变曲线中已知为“弯折”。弯折的形成是由于开裂层在裂纹附近经历了应力松弛,而在那个区域受限制的铺层承担增加的应力。使用韧性树脂系时,横向裂纹的发展将会延迟。不仅基体的延性,而且基体与纤维的结合质量也会影响横向裂纹的形成。横向裂纹的形成具有以下特点:当承受的载荷增大时,横向裂纹在与之垂直方向上的密度逐渐增加,并最终达到饱和裂纹密度状态。 二、层的压缩失效 复合材料层压板在压缩载荷下的失效模式有一些不同于拉伸载荷下的失效模式。压缩下的主要损伤模式首先是0度层纤维的屈曲,然后是分层和子层的依次屈曲。试验研究结果表明,剪切挠曲是一种可能的失效模式。剪切挠曲是层合板中主要承力纤维的弯折失效。它可由一带屈曲的断裂纤维来表征。这些纤维同时经历了剪切和压缩变形。 一般认为,在纯单向压缩失效观察到的“弯折带”失效机制仍然可用。纯单向试验中包括较少的约束,而在一个多向层合板中由于其他层的支撑,压缩失效程度将有所限制。 三、层的剪切失效 这种失效模式可以在±45度层合板的纯纵向拉伸中很好地观察到。作用于每层的载荷几乎为纯剪切,等于施加应力的一半。检查表明,平行于和相交于纤维的剪切失效均存在。失效试样表现出一定程度的分层。 四、分层 分层会引起层压板强度和刚度的变化,通常这种变化呈下降趋势,当分层达到一定程度时,将导致实际使用性能的丧失。作为分析,需要了解在什么载荷水平下会发生分层。 层间的裂纹扩展(分层)是复合材料损伤中最常见的。层间富含树脂,因而其开裂的断裂能比穿过纤维的层外开裂的断裂能要低几个数量级。

材料失效

/FAIL/BIQUAD 失效模型 在RADIOSS 中/FAIL/BIQUAD 是使用非常方便的用于描述延性材料破坏的模型。对于三轴力(stress triaxiality )的材料应力破坏面可以通过两条双曲线来描述。而这两条双曲线是通过用户提供的5组实验的数据(破坏应变)RADIOSS 自动拟合的。在默认的情况下,即/FAIL/BIQUAD 中S-Flag =1,那么使用以下的两条双曲线来分段的描述材料破坏面: ()21f x ax bx c =++ ()22f x dx ex f =++ 这里a, b, c, d, e, f 是双曲线的系数, x 是三轴力( stress triaxiality ),()1f x ,()2f x 是分段破坏应变. 双曲线的系数a, b, c, d, e, f 由RADIOSS 通过用户输入的c1-c5 这5组实验数据来自动拟合的。

拟合的双曲线系数也会在*0000.out文件中打印出来以供校验。 Bi-Quadratic FAILURE -------------------- c1. . . . . . . . . . . . . . . . . . .= 0.2419E+00 c2. . . . . . . . . . . . . . . . . . .= 0.1900E+00 c3. . . . . . . . . . . . . . . . . . .= 0.1585E+00 c4. . . . . . . . . . . . . . . . . . .= 0.1437E+00 c5. . . . . . . . . . . . . . . . . . .= 0.1394E+00 COEFFICIENTS OF FIRST PARABOLA ----------------------------- a . . . . . . . . . . . . . . . . . . .= 0.9180E-01 b . . . . . . . . . . . . . . . . . . .= -0.1251E+00 c . . . . . . . . . . . . . . . . . . .= 0.1900E+00 COEFFICIENTS OF SECOND PARABOLA ----------------------------- d . . . . . . . . . . . . . . . . . . .= 0.3753E-01 e . . . . . . . . . . . . . . . . . . .= -0.9483E-01 f . . . . . . . . . . . . . . . . . . .= 0.1859E+00 这里用户需要输入的c1 – c5分别是下列实验中得到的塑性破坏应变。 c1单轴压缩实验中得到的材料破坏应变

相关主题
文本预览
相关文档 最新文档