当前位置:文档之家› 概率论与数学建模

概率论与数学建模

概率论与数学建模
概率论与数学建模

概率论与数学建模

概率论与数学建模

基础知识部分 一、概率论:

1、概率:刻化某一事件在一次试验中发生的可能性大小的数。 注:事件指随机事件(可重复、可预测、结果明确) 例如抛骰子,抛一枚硬币。

2、常见的随机变量:X (1)离散型:

泊松分布:k e P X k k k λ

λ-(=)=

,=0、1、2、、、!

实际应用:时间t 内到达的次数;

(小概率事件)一本书中一页中的印刷错误数; 某地区在一天内邮件遗失的信件数; 某一天内医院的急症病人数;

某一地区一个时间间隔内发生交通事故的次数; 一个时间间隔内某种放射性物质发出的经过计数器的α粒子数等等……

(2)连续型:

指数分布:x e x>0

f X λλ???-,()=0,其它

其中>0λ为常数 ,记为)(~λExp X

特点:无记忆性。即是P(/)()X s t X s P X t >+>=>

一个元件已经使用了s 小时,在此情形下,它总共能使用至少s+t 小时的概率,与开始使用时算起它至少能使用t 小时的概率相等,即元件对已使用过s 小时无记忆。

实际应用:(可靠性理论、排队论)许多“等待时间”都服从指数分布;一些没有明显“衰老”迹象的机械元器件(如半导体元件)的寿命也可也用指数分布来描述……

正态分布:x e

f X

∞∞2

2

(-)-2()=

- 记为2X ~N(,)μσ

标准正态分布:X~N(0,1)

正态分布标准化:若),(~2σμN Y ,则)1,0(~N X Y σ

μ

-=,标准化的目

的在于能够方便查阅书后的标准正态分布表。

“3σ“原则:

“3σ“原则被实际工作者发现,工业生产上用的控制图和一

些产品质量指数都是根据3σ原则制定。

3、随机变量的特征数(数字特征):

均值(期望):k k k x p E X xf x dx ∞

???????∑?=1

+-,(离散型)()=(),(连续型)

方差:22

D X =

E X E X ()(())E X E X =-2()(-())

中心极限定理:n X X ,,1 是独立同分布的随机变量序列,且

22(),(),0i i E X D X μσσ==>

则有:)(}{lim 1t t n

n X X P n n Φ=≤-+∞

→σμ

模型一、轧钢中的浪费模型:

问题:将粗大的钢坯制成合格的钢材需要两道工序:粗轧(热轧),形成刚才的雏形;精轧(冷轧),得到规定长度的成品材料。由于受到环境、技术等因素的影响,得到钢材的长度是随机的,大体上呈正态分布,其均值可以通过调整轧机设定,而均方差是由设备的精度决定,不能随意改变。如果粗轧后的钢材长度大于规定长度,精轧时要把多余的部分切除,造成浪费;

而如果粗轧后的钢材长度小于规定长

x

99.7%

(1)

(2)

(3)

μ

度,则造成整根钢材浪费。如何调整轧机使得最终的浪费最小。 (1) 问题概述:成品材料的规定长度已知为l ,粗轧后的钢材长度的

标准差为σ,粗轧后的钢材长度的均值m ,使得当轧钢机调整到m 进行粗轧,然后通过精轧以得到成品材时总的浪费最少。 (2) 问题分析:精轧后的钢材长度记为X ,X 的均值记为m ,X 的

方差为σ,按照题意,),(~2σm N X 。概率密度函数记为f (x ),

当成品钢材的规定长度l 给定后,记x ≥

ι的概率为p ', p '=p (x ≥ι)。在轧钢过程中产生的浪费由两种情况构成:若l X >,则浪费量为l X -;若l X <,则浪费量为X 。注意到当m 很大时,l X >的可能性增加,浪费量同时增加;而当m 很小时,l X <的可能性增加,浪费量也增加,因此需要确定一个合适的m 使得总的浪费量最小。 (3) 模型建立与求解:

这是一个优化模型,建模的关键是选择合适的目标函数,并用 l ,σ,m 把目标函数表示出来。根据前面的分析,粗轧一根钢材平均浪费长度为:

W (x-)f(x)dx+

xf(x)d(x), (1)ι

ι

ι∞

-∞

=??

利用

f(x)dx 1+∞

-∞

=?,xf(x)d(x)m +∞

-∞

=?,和f(x)dx p ι

+∞

'=? 由(1)得:W=m-l p '

以W 为目标函数是否合适?

由于轧钢的最终产品是成品材,浪费的多少不应以每粗轧一根钢材的平均浪费量为标准,而应该用每得到一根成品材浪费的平均长度来衡量。因此目标函数为:

W m

J P P ι=

=-''

因为ι

是已知的常数,所以目标函数可以等价的取为:

m

J(m),(2)P (m)='

其中P (m)=p(x)dx ι

'?

,22

(x-m)-

2e

P(X)=

σ

易见J(m)平均每得到一根成品钢材所需要的刚才长度,问题就转化为求m 使J(m)达到最小。

令x m

m

y ,,,ι

μλσ

σσ

-=

==则(2)式可表为:

(-Z)J()J(Z),(Z=-)(-)(Z)

σμσλμλμφλμφ-===

其中:2y -

2

z

(Z)=(y)dy,(y)=

2φφ∞

ψ?π

可用微分法解J (Z)-

的极值问题。不难推出最优值Z 应满足方程: (Z)Z (Z)

φλ=-ψ (*)

记(Z)F(Z)=(Z), φψ)(Z F 可根据标准正态分布的函数值φ和ψ制成表格式给出图形。

由上表可得方程(*)的根Z*

注:当给定λ>F (0)=1.253时,方程(*)不止一个根,但是可以证得,只有唯一负根Z*<0,才使J (Z)-

取得极小值。

模型二、(美国)一个地区911应急服务中心在过去的一年内平均每月要收到171个房屋火灾电话,基于这个资料的,火灾率被估计为每月171次,下个月收到火灾报警电话只有153个,这表明房屋火灾率实际上实际上是减少了,或是或是它只是一个随机波动?

分析:Xn ——第n-1次和第n 次火灾之间的时间(月),X1…,Xn ,…是独立的且每一个Xn 服从参数为λ的指数分布,λ为报告的房屋火

灾率(月),即是:i x i f(X )=e λ-λ,(Xi>0)

目标:给定λ=171,确定每月收到153次这样的少的电话报警的概率有多大?或者说每月收到153是否属于正常范围内?

建模:i x i f(X )=e λ-λ,λ

μ1)(==n X E ,22

1σλ

=

将1

1

μσλ

λ

=

=

,代入得:

(利用3σ原理): 若要有95%的把握,则:1222n n

σ+++--≤

若要有99%的把握,则:12...33n X X X n n

σ+++--≤

≤ 选择95%的把握得到: 1222...,(1)n n n

n n

X X X λλλλ

-≤+++≤

+

将λ=171,n=153代入(1),有:

1215315321531532153

(171171171171)

X X X -≤+++≤+ 即:121530.75... 1.04X X X ≤+++≤

因此我们的观察值12153...1X X X +++≈是在正常的变化范围之内 结论:断言火灾报警率降低的证据不充分,它可能是正态随机变量的正常结果。当然,若每月都连续这样低,则需重新评估。

灵敏度分析:当λ=171代入(1)得:

1222 (171171171171)

n n n n n X X X -≤+++≤+ 因为对任何的[]n 147199

∈,,区间2171n n

±

总会包含1,即在

[]147199

,之间都属于正常范围。 对于“每月171次”的假设的敏感性分析。去掉特殊性,假设每月的均值是λ,我们有一个月的报警电话次数的观测值n=153,代入(1),有:

1215315321531532153

...X X X λλλλ

-≤+++≤+ 因为对于任何的[]1281178

λ∈,之间153

2153

λ

λ

±

总会包含

1,所以λ=153属于正常的变化范围。

随机过程与数学建模

基础知识部分

随机过程:

热噪声电压:电子元件或器件由于内部微观粒子的随机热骚动所引起的端电压称为热噪声电压。它在任一时刻t 的值是一随机变量,记为V(t),不同时刻对应不同的随机变量,当时间在某区间,譬如在

[]∞0,+

上推移时,热噪声电压表现为一族随机变量,记为:{V(t),t>=0}。由于热骚动的随机性,在相同条件下每次测量都将产生不同的电压——时间函数。这样,不断的独立的测量就可以得到一族不同的电压——时间函数。

设T 是一无限实数集,我们把依赖于参数t T ∈的一族(无限多个)随机变量称为随机过程。记为{X(t), t T ∈}。这时每一个t T ∈,X(t)是一随机变量,T 叫做参数集。

把t 看作为时间,称X(t)为时刻t 时过程的状态,而X(t)=x 或是t=t1时过程处于状态x 。对于一切的t T ∈,X(t)的所有可能的一切值的

t V1(

V2

V3

t

t

t

t

t

全体称为随机过程的状态空间。

马尔可夫链及其基本方程:

将时间离散化为n=0,1,2,…对每个n ,系统的状态用随机变量Xn 表示,设Xn 可以取k 个离散的值Xn=1,2,…k ,且记

i n a n P X i ()=(=)

即状态概率从Xn=i~Xn+1=j 的概率记为 ij n n P P X j X i =+1(=|=),即转移概率。如果1+n X 的取值只取决于Xn

的取值及转移概率,而与X1,X2,…,Xn-1的取值无关,则称这种离散状态按照离散的时间的随机转移过程叫做马尔可夫过程。或者说此过程具有马尔可性或无后效性。 注:还可以这样表示

{}{}n n 12n-1n n n n n n P X x X x X x X x P X x X x x R

≤=≤∈12-1-1-1|=,=,...,=|=,

由状态转移的无后效性和全概率公式可以写出马尔可夫链的基本方程为

k

i j ij j a n a n P i 1

23k =∑=1(+1)=(),,,,..., (1) 并且i a n ()

和ij P 应满足: i

1

a

n ,0,1,2,...0,1,,1,2,...,k

ij ij j n P P i j k

==≥==∑∑k

i=1

()=1 (2)

引入状态概率向量和转移概率矩阵

12k a n a n a n a n P

?ij k k ()=((),(),...,()),{P } 则(1)式可表为:a n+1()=a(n)p (3)

由此可得 :a n n

()=a(0)p (4)

(2)式表明转移矩阵P 是非负矩阵,且P 的行和为1,称为随机矩阵。

说明:对于马尔可夫链模型最基本的问题是构造状态Xn 及写出转移矩阵P ,一旦有了P ,那么给定初始状态概率a (0)就可以用(3)和(4)或计算任意时段n 的状态概率a (n )

模型一:人寿保险公司对受保人的健康状况特别关注,他们欢迎年轻力壮的人投保,患病者和高龄人则需付较高的保险金,甚至被拒之门外。人的健康状态随着时间的推移会发生转变,且转变是随机的,保险公司要通过大量数据对状态转变的概率做出估计,才可能制定出不同年龄、不同健康状况的人的保险金和理陪金数额,下面分两种情况进行讨论: (1)健康与疾病:

n 1X n 0122?==??,健康 ,,,,...,疾病

i n ij n+1n a n P X i P P X j X i =()=(=)---状态概率

(=|=)----状态转移概率

其中(i ,j=1,2)

a n a n-1P a n P a n a n-1P a n P a a +??+?1111221211222212()=()()()=()()(0)=1,(0)=0

若开始处于疾病状态,即a a 12(0)=0,(0)=1,

更一般的12(0)0.25λ=(0)=0.75,a ,当n →∞时,

a n a n 12(),()

的趋向与上面两表相同。 结论:当n →∞时,a n a n 12(),()

趋向于稳定值,与初始状态无关。

(2)健康、疾病、死亡

1,2n 3??

=???

n 健康

X ,疾病 ,=0,1,2,...

,死亡

3

a n a n-1P a n-1P a n-1P a n a n-1P a n-1P a n-1P a (n)a n-1P a n-1P a n-1P a 0a 0a 0++??

++??=++?11112213312112222332

113223333123()=()()()()=()()()()()()给定初始状态:()=1,()=0,()=0

对于例题中的(1)小问,看出从任意状态出发经过有限次的转移都能达到另外的任意状态,而(2)小问中则不能。

正则链定义:一个有k 可状态的马尔可夫链,如果存在正整数N ,使从任意的状态i 经N 次转移都以大于0的概率到达状态j (i ,j=1,2,3,…,k )则称为正则链。

Th1.若马尔可夫链的转移矩阵为P ,则它是正则链的充要条件是存在正整数N ,使N

P >0(指N

P 的每一元素大于零)。

Th2.正则链存在唯一的极限状态概率π=(π1,π2,…,πk ),使得当n

→∞时,a n →()π,π与初始状态概率a(0)无关(π

称为稳定概率或稳定状态分布),满足π=πk

i

i 1=∑=1

π

例如:

??

????????

1231230.8 0.18 0.02(π,π,π)=(π,π,π)0.65 0.25 0.10 0 1

3

i

i 1=∑=1

π

由上面方程组可求得,123π=(π,π,π)=(0,0,1)

注:这能够满足我们这样的一种想法:由于随机波动,我们不能期望当系统稳定时状态变量将停留在一个数值上。我们能达到的最好的希望是状态变量的概率分布将趋于一个极限分布。

吸收链:马尔可夫链存在一种状态,系统一旦进入该状态不再会转移到其他状态,并且系统从其他任何状态出发最终都会转移到该状态。 吸收链的定义:转移概率Pij=1的状态i 称为吸收状态,如果马尔可夫链至少含一个状态,并且从每一个非吸收状态出发,能以正的概率经过有限次转移到达某个吸收状态,则称这个马尔可夫链为吸收链。

模型二:

一个宠物商店出售容量为15L 的水族箱,每个周末商店老板要盘点存货,开出订单。商店的订货策略是如果存货为0,就在这个周末进3个新的15L 水族箱。如果,只要商店还保存一个存货,就不在进新的。这个策略是基于商店平均每周销售一个水族箱的事实提出的。这个策略是不是能够保证防止商店缺货时顾客需要水族箱而无货销售的损失?

分析:商店在每个销售周的开始存货在1个到3个之间,一周销售的个数依赖于供给和需求两方面,需求是每周平均一个,但是是随机波动的。完全在某些周需求大于供给,即使在一周的开始就有3个水族箱的最大库存。我们希望计算需要超过供给的概率。

要解决此问题需给出关于需求的概率特征的假设,假设潜在的购买者在每周以一定的概率随机到达。

因此,在一周内潜在的购买者的数目均值为1的泊松分布。 建模与求解: 符号:

n n n n S n D n X S ===第周之初水族箱的供给第周之内水族箱的需求

状态变量,表明在这个销售周一开始 库存水族箱的数目。

假设:

n-1n-1n n-1n-1n-1n-1n 1

n D S S S D D S z S 3

e

P D k k 012k -<=-≥==若,则若,则(=)=

,,,,...!

目标:计算n n P

D S {>} 注:n D 与模型的动态有关,将被用来构成转移状态矩阵P 。

已知状态空间n X {123}∈,

,设0X =3 先确定P :

n n n n n P{D 0}0.368P{D 1}0.368P{D 2}0.184P{D 3}0.061P{D 0}0.019

========>=,, 所以,若n

X 3=,则

n+1n n+1n n+1P{X 1}P{D 2}0.184P{X 2}P{D 1}0.368P{X 3}10.1840.3680.448

==========--=

其余的状态转移概率可以类似的计算,的得:

P ????=??

????

0.368 0 0.6320.368 0.368 0.2640.184 0.368 0.448

所以 n n n P{D >S }=P{D >3}=0.019

可以看出n n P{D >S }的概率依赖于n ,更具体的说,它依赖于n X ,若n X =3,则

n n n P{D >S }=P{D >3}=0.019

等等,为了得到关于需求多么经常超过供给的更好的想法,我们需要更多关于n X 的信息,现在我们想找到一个唯一的渐进稳定的概率向量π,故我们有

P 123123(π,π,π)=(π,π,π)

得: π=123(π,π,π)=(0.285,0.263,0.452)

即当n →∞时,近似有

n n n P{X 1}0.285P{X 2}0.263P{X 3}0.452

======

0.44

0.3

3

i i=1

1

π=∑

所以,根据全概率公式,有:

3

n n n n i=1

P{D >S }=P(D >S |i)P i 0.2630.0190.4520.105

n n X X ==??+?=∑()

=0.2640.285+0.080

即在长时间的运行中,需求将有10%的时间超过供给。

数学建模案例分析—主成分分析的应用--概率统计方法建模

§8 主成分分析的应用 主成分分析的基本思想是通过构造原变量的适当的线性组合,以产生一系列互不相关的新变量,从中选出少数几个新变量并使它们尽可能多地包含原变量的信息(降维),从而使得用这几个新变量替代原变量分析问题成为可能。即在尽可能少丢失信息的前提下从所研究的m 个变量中求出几个新变量,它们能综合原有变量的信息,相互之间又尽可能不含重复信息,用这几个新变量进行统计分析(例如回归分析、判别分析、聚类分析等等)仍能达到我们的目的。 设有n 个样品,m 个变量(指标)的数据矩阵 (1)1112 1(2)21222()12m m n m n n n nm x x x x x x x x X x x x x ??? ?? ? ? ? ?== ? ? ? ? ????? 寻找k 个新变量12,,,()k y y y k m ≤ ,使得 1、1122,(1,2,,)l l l lm m y a x a x a x l k =+++= 2、12,,k y y y 彼此不相关 这便是主成分分析。主成分的系数向量12(,,,)l l l lm a a a a = 的分量lj a 刻划出第j 个变量关于第l 个主成分的重要性。 可以证明,若12(,,,)T m x x x x = 为m 维随机向量,它的协方差矩阵V 的m 个特征值为 120m λλλ≥≥≥≥ ,相应的标准正交化的特征向量为12,,,m u u u ,则 12(,,,)T m x x x x = 的第i 主成分为(1,2,,)T i i y u x i m == 。 称1 / m i j j λλ =∑为主成分(1,2,,)T i i y u x i m == 的贡献率, 1 1 /k m j j j j λλ ==∑∑为主成分 12,,k y y y 的累计贡献率,它表达了前k 个主成分中包含原变量12,,,m x x x 的信息量大 小,通常取k 使累计贡献率在85%以上即可。当然这不是一个绝对不变的标准,可以根据实 际效果作取舍,例如当后面几个主成分的贡献率较接近时,只选取其中一个就不公平了,若都选入又达不到简化变量的目的,那时常常将它们一同割舍。 计算步骤如下: 1、由已知的原始数据矩阵n m X ?计算样本均值向量12?(,,,)T m x x x x μ== ; 其中1 1(1,2,,)n i ij j x x i m n ===∑

数学建模与计算机的重要性

数学建模与计算机的联系及重要性 摘要:在当今科技发达的今天,计算机已经得到了广泛的应用,也为数学建模的计算提供了有力工具。本文浅谈了数学建模与计算机在人类生产和生活中的重要性。 关键词:数学建模计算机重要性 当今社会计算机已经被广泛的应用了,在计算机的协助下许多问题的求解变得简单、方便、快捷。而数学建模是把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。在科技迅猛发展的今天计算机和数学建模在人类的生存和发展中都具有举足轻重的作用。 一、数学建模与计算机息息相关 其一、我们在模型求解时,有些计算单纯的用纸和笔是难以完成的,这就需要利用计算机上机计算、编制软件、绘制图形等,当结果通过计算机算出后也必须通过打印机随时进行输出。其二、数学建模的学习对计算机能力的培养也起着极大推动作用,如报考计算机方向的研究生时,对数学的要求非常高;在进行计算机科学的研究时,也要求有极强的数学功底才能写出具有相当深度的论文,计算机科学的发展也是建立在数学基础之上的,许多为计算机的发展方面做出杰出贡献的人,在数学方面也颇有造诣。我们在遇到一些实际问题时往往需要计算机和数学建模同时应用才能解决问题,否则问题将无法进行。数学问题与计算机通常采用一些数学软件(lingo,Matlab,MathCAD 等等)的命令来描述算法,既简单又容易操作。例如下面有这样一道

题就是利用数学软件lingo 求解的。 例1 某工厂有两条生产线,分别用来生产M 和P 两种型号的产品,利润分别为200元每个和300元每个,生产线的最大生产能力分别为每日100和120,生产线没生产一个M 产品需要1个劳动日(1个工人工作8小时称为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该工厂每天共计能提供160个劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大? 解 设两种产品的生产量分别为1x 和2x ,则该问题的数学模型 为: 目标函数 12max 200300z x x =+ 约束条件 1212100,120,160, 0,1,2. i x x x x x i ≤??≤??+≤??≥=? 编写LINGO 程序如下: MODEL: SETS: SHC/1,2 /:A,B,C,X; YF/1,2,3 /:J; ENDSETS DATA: A=1,2 ; B=100,120; C=200,300; ENDDATA

数学建模与计算机关系研究

数学建模与计算机关系研究 【摘要】高等数学与计算机教学具有内在相关性,尤其是在数学建模应用中,根据计算机学科发展来发挥数学建模理论的作用及效果,有助于增强学生对高等数学的理解和应用能力。基于此,本文笔者就从高等数学建模理论与计算机技术的关系研究入手,来阐述建模嵌入在计算机辅助教学中的重要潜力。 【关键词】计算机;高等数学;教学改革;数学建模 1.高等数学与计算机学科发展 有人说,计算机技术的发展可以省去学习数学的麻烦,即便是很多专业计算机教师也抱有同样的想法。然而,对于计算机应用领域及实践中,计算机技术确实给很多从业者带来了便捷与高效,但计算机技术不等于数学,更不能替代数学。从高等数学教学实践来看,对于我们常见的数学概念,如比率、概率、图像、逻辑、误差、机会,以及程序等知识的认识,很多行业都在进行数字化、数量化转变,对数学知识的应用也日益广泛。从这些应用中,数学理论及知识,尤其是数学基本理论研究就显得更为重要。数学,在数学知识的应用中,更需要从练习中来提升对数学知识及概念的理解,也需要通过练习来提升运算能力。如果对数学概念及方法应用的不过,对数学单调性的知识缺乏深刻的认识,就会影响数学知识在实践应用中出现偏差。计算机技术的出现,尤其是程序化语言的应用,使得数学知识在表达与反映中能够依据不同的应用灵活有效、准确的运算,从而减少了不必要的验证,也提升了数学在各行业中的应用效率。 数学软件学科的发展,成为计算机重要的辅助教学的热门领域,也使得计算机技术能够发挥其数学应用能力。在传统的数学教学中,逻辑与直观、抽象与具体始终是研究的矛盾主体,如有些太简单的例子往往无法进行全面的计算;有些复杂的例子又需要更多的计算量。在课堂表现与讲解中,对于理性与感性知识的认知,学生缺乏有效的理解和应用,而强大的计算机运算功能却能够直观的表达和弥补这些缺陷,并依托具体的演示过程中来营造概念间的差异性,帮助学生从中领会知识及方法。在计算机的辅助教学下,教师利用对数学理论课题或应用课题,从鲜活的思维及形象的表达上借助于软件来展现,让学生从失败与成功中得到知识的应用体验,从而将被动的知识学习转变为主动的参与实践,更有助于通过实践来激发学生的创新精神。这种将数学教学思维与逻辑与计算机技术的融合,便于从教学中调整教学目标,依据学生所需知识及专业需求来分配侧重点。数学建模就是从数学学科与计算机学科的融合与实践中帮助学生协作学习,提升自身的能力。 2.信息技术是高等数学应用的产物 现代信息技术的发展及应用无处不在,对数学知识的渗透也是日益深入。当前,各行业在多种协作、多种专业融合中,借助于先进的信息技术都可以实现畅通的表达与物化。如天气预报技术、卫星电视技术、网络通讯技术等都需要从数

数学建模竞赛简介

数学建模竞赛简介 数学建模就是建立、求解数学模型的过程和方法,首先要通过分析主要矛盾,对各种实际问题进行抽象简化,并按照有关规律建立起变量,参数间的明确关系,即明确的数学模型,然后求出该数学问题的解,并通过一定的手段来验证解的正确性。 数学建模竞赛于1985年起源于美国,起初竞赛题目通常由工业部门、军事部门提出,然后由数学工作者简化或修正。1989年我国大学生开始参加美国大学生数学建模竞赛,1990年我国开始创办我国自己的大学生数学建模竞赛。1993年国家教委(现教育部)高教司正式发文,要求在全国普通高等学校中开展数学建模竞赛。从1994年开始,大学生数学建模竞赛成为教育部高教司和中国工业的应用数学学会共同主办,每年一届的,面向全国高等院校全体大学生的一项课外科技竞赛活动。2010年全国共有30省(市、自治区)九百多所院校一万多个队三万多名大学生参赛,成为目前全国高等学校中规模最大的课外科技活动。数学建模竞赛是教育主管部门主办的大学生三大竞赛之一。 现在的竞赛题目来源于更广泛的领域,都是各行各业的实际问题经过适当简化,提炼出来的极富挑战性的问题,每次两道题,学生任选一题,可以使用计算机、软件包,可以参阅任何资料(含上网参阅任何资料)。竞赛以三人组成的队为单位,三人之间通力合作,在三天三夜内完成一篇论文。不给论文评分,而是按论文的水平为四档:全国一等奖、全国二等奖、赛区一等奖,赛区二等奖,成功参赛奖。我校于2001年开始参加这项竞赛活动。多次获全国一等奖、二等奖、湖北赛区一等奖、二等奖。 数学建模竞赛活动培养了学生的创造力、应变能力、团队精神和拼搏精神,适应了21世纪经济发展和人才培养的挑战。不少参加过全国大学生数学建模竞赛的同学都深有感触,他们说:“参加这次活动是我们大学四年中最值得庆幸的一件事,我们真正体会这几年内学到了什么,自己能干什么。”“那不寻常的三天在我们记忆中留下了永恒的一瞬,真是一次参赛,终身受益。”团队精神贯穿在数学建模竞赛的全过程,它往往是成败的关键。有些参赛队员说:“竞赛使我们三个人认识到协作的重要性,也学会了如何协作,在建模的三天中,我们真正做到了心往一处想,劲往一处使,每个人心中想的就是如何充分发挥自己的才华,在短暂的时间内做出一份尽量完善的答卷。三天中计算机没停过,我们轮流睡觉、轮流工作、轮流吃饭,可以说是抓住了每一滴可以抓住的时间。”“在这不眠的三天中,我们真正明白了团结就是力量这个人生真谛,而这些收获,将会伴随我们一生,对我们今后的学习,工作产生巨大的影响。”

数学建模-微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用

大学生数学建模竞赛的由来与发展

大学生数学建模竞赛的由来和发展 自古以来,各种竞赛方式历来是各行各业培养、锻炼和选拔人才的重要手段。凡竞赛实际上都有准备阶段、临场发挥和赛后总结、提高三个阶段。参赛者通过这三个阶段来接受挑战并锻炼提高自己。当然,也不是参加竞赛的人都能成为人才,获得优胜的选手参赛者如果不善于总结自己的长处和缺点,不断提高的话,也未必能发展成为优秀人才。诚然,如果太强调竞赛的功利性,也可能产生各种各样的弊病,副作用会大过正作用,使竞赛变了味,也就可能失去了培养、锻炼和选拔人才的功能。 就培养选拔科技人才而言,各种学科的竞赛也起到了很大的作用。就数学科学来说,很多国家都有面向中学生或大学生的数学竞赛,甚至还有国际或地区性的数学竞赛。例如,就后者而言,有从1959年开始举办的中学生国际奥林匹克数学竞赛(The International Mathematical Olympiad (IMO), 有兴趣的读者可以访问网址http://www.imo.math.ca/), 有从1994年开始举办的国际大学生数学竞赛(International Mathematics Competition for Universtiy Students, IMC, 有兴趣的读者可以访问网址https://www.doczj.com/doc/227185590.html,/ ), 北美(美国和加拿大)普特南大学生数学竞赛(The William Lowell Putnam Mathematical Competition, 有兴趣的读者可以访问网址https://www.doczj.com/doc/227185590.html,/或https://www.doczj.com/doc/227185590.html,/ )。 因为大学生数学建模竞赛诞生于美国,而且其源起与普特南数学竞赛有关,加之这个竞赛是培养出许多优秀数学家和科学家的竞赛,所以在本章,我们从普特南数学竞赛谈起。 本章包括普特南(Putnam)数学竞赛、大学生数学建模竞赛、为什么要参加大学生数学建模竞赛和怎样参加大学生数学建模竞赛四节。 1 普特南(Putnam)数学竞赛 普特南和他的想法 W. L. 普特南(William Lowell Putnam, 1861 ~ 1924, 美国律师和银行家), 1882年毕业于哈佛大学。他深信在正规大学的学习中组队竞赛的价值. 他在哈佛毕业生杂志1921年12月那期上写了一篇文章中阐述了大学间智力竞赛的价值和优点。在他去世后,他的遗霜Elizabeth Lowell Putnam (1862-1935)于1927年建立了“普特南大学间对抗纪念基金(William Lowell Putnam Intercollegiate Memorial Fund)”。第一个由该基金资助的是校际英语竞赛。由该基金资助的第二次试验性竞赛是于1933年举行的10名哈佛大学的学生和10名西点军校的学生间一次数学竞赛。由于那次竞赛十分成功,于是就产生了举行所有感兴趣的大学和学院都可以参加的类似的年度竞赛的想法。但是直到1935年Elizabeth去世都没有举行过这样的竞赛。到了1938年才决定由美国数学协会来管理这个基金和组织了第一次正式的竞赛。 普特南数学竞赛 现在普特南数学竞赛的时间是每年12 月第一周的星期六,共进行两试,每试3 小时、6道题,每题10分。该竞赛是彻底闭卷的考试, 在限定的时间内主要测试参赛者思维敏捷、推理和计算的能力。竞赛分个人和团体(组队),一个学校可以组织一个由三名学生组成队,名列前茅者有奖金奖励。竞赛前几年,团体前三名的奖金分别为$500、$300 和$200,个人前五名每人可获奖金$50,并成为Putnam 会员(Putnam fellow)。近年来,奖励团体前五名的大学的数学系的奖金分别为$25000(每个队员可得到$1000奖金)、$20000(每个队员可得到$800奖金)、$15000(每个队员可得到$600奖金)、$10000(每个队员可得到$400奖金) 和$5000(每个队员可得到$200奖金)。个人前五名每人可获奖金$2500,并成为Putnam 会员。5-15名每人可获奖金$1000,16-26名每人可获奖金$250。当然更重要的不是金钱奖励,而是

数学建模案例分析消费分布规律的分类概率统计方法建模

§7 消费分布规律的分类 为研究辽宁、浙江、河南、甘肃、青海5省份在某年城镇居民生活消费的分布规律,需要用调查资料对这5个省分类.数据见下表: 其中,X 1:人均粮食支出; X 2:人均副食品支出; X 3:人均烟、酒、茶支出; X 4:人均其它副食品支出; X 5:人均衣着商品支出; X 6:人均日用品支出; X 7:人均燃料支出; X 8:人均非商品支出. 在科学研究、生产实践、社会生活中,经常会遇到分类的问题.例如,在考古学中,要将某些古生物化石进行科学的分类;在生物学中,要根据各生物体的综合特征进行分类;在经济学中,要考虑哪些经济指标反映的是同一种经济特征;在产品质量管理中,要根据各产品的某些重要指标而将其分为一等品,二等品等等. 这些问题可以用聚类分析方法来解决. 聚类分析的研究内容包括两个方面,一是对样品进行分类,称为Q 型聚类法,使用的统计量是样品间的距离;二是对变量进行分类,称为R 型聚类法,使用的统计量是变量间的相似系数. 设共有n 个样品,每个样品i x 有p 个变量,它们的观测值可以表示为 n i x x x x pi i i i ,,2,1),,,,(21 == 一、样品间的距离 下面介绍在聚类分析中常用的几种定义样品i x 与样品j x 间的距离. 1、 Minkowski 距离 m m p k kj ki j i x x x x d 11 ][),(∑=-= 2、绝对值距离 ∑=-=p k kj ki j i x x x x d 1),( 3、欧氏距离 21 21][),(∑=-=p k kj ki j i x x x x d 二、变量间的相似系数 相似系数越接近1,说明变量间的关联程度越好.常用的变量间的相似系数有 1、 夹角余弦

计算机模拟在数学建模中的应用

第22卷第1期海南大学学报自然科学版Vol . 22 No . 1 2004 年 3 月NATURAL SCIENCE JO URNAL OF HAINAN UNIVERSITY Mar . 2004 文章编号:1004 - 1729 (2004) 01 - 0089 - 07 计算机模拟在数学建模中的应用 欧宜贵,李志林,洪世煌 (海南大学信息科学技术学院 , 海南海口 570228) 摘要:阐述了计算机模拟在数学建模中的作用,给出了蒙特卡洛方法和离散系统模拟方法实 现的具体过程,并通过具体的实例分析,说明计算机模拟方法在数学建模中的有效性. 关键词:计算机模拟;数学建模;蒙特卡洛方法;离散系统; Matlab 6. 0 中图分类号: O 141文献标识码: A 1概述 计算机科学技术的迅猛发展,给许多学科带来了巨大的影响.计算机不但使问题的求解变 得更加方便、快捷和精确,而且使得解决实际问题的领域更加广泛.计算机适合于解决那些规模大、难以解析化以及不确定的数学模型.例如对于一些带随机因素的复杂系统,用分析方法建模 常常需要作许多简化假设,与面临的实际问题可能相差甚远,以致解答根本无法应用,这时模拟几乎成为人们的唯一的选择.在历届的美国和中国大学生的数学建模(MCM)中,学生们经常用到计算机模拟方法去求解、检验等.计算机模拟(computer simulation)是建模过程中较为重要的一 类方法(见文献[ 1 ]) . 所谓计算机模拟,就是用计算机程序在计算机 上模仿各种实际系统的运行过程,并通过计算了解 系统随时间变化的行为或特性.它是在已经建立起 的数学、逻辑模型之上,通过计算机实验,对一个 系统按照一定的决策原则或作业规则,由一个状 态变换为另一个状态的行为进行描述和分析. 计算机模拟实质上是计算机建模,而计算机模 型就是计算机方法和理论(如程序、流程图、算法 等) ,它是架于计算机理论和实际问题之间的桥梁. 它与数学建模的关系如图 1 : 一般说来,在下列情况中,计算机模拟能有效 地解决问题.图1计算机模拟流程图 1) 难于用数学公式表示的系统 ,或者没有建立和求解数学模型的有效方法; 收稿日期: 2003 - 09 - 02

数学建模的作用意义

数学建模的背景: 人们在观察、分析和研究一个现实对象时经常使用模型,如展览馆里的飞机模型、水坝模型,实际上,照片、玩具、地图、电路图等都是模型,它们能概括地、集中地反映现实对象的某些特征,从而帮助人们迅速、有效地了解并掌握那个对象。数学模型不过是更抽象些的模型。 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子(称为数学模型),然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个全过程就称为数学建模。 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。 数学建模日益显示其重要作用,已成为现代应用数学的一个重要领域。为培养高质量、高层次人才,对理工、经济、金融、管理科学等各专业的大学生都提出“数学建模技能和素质方面的要求”。 数学建模在现代社会的一些作用 (1)在一般工程技术领域,数学建模仍然大有用武之地。在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段。(2)在高新技术领域,数学建模几乎是必不可少的工具。无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段。数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一。在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台。国际上一位学者提出了“高技术本质上是一种数学技术”的观点。 (3)数学迅速进入一些新领域,为数学建模开拓了许多新的处女地。随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生。一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础。在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地。马克思说过,一门科学只有成功地运用数学时,才

微积分方法建模2经济增长模型--数学建模案例分析

§2 经济增长模型 发展经济、增加生产有两个重要因素,一是增加投资(扩大厂房、购买设备、技术革新等), 二是增加劳动力。恰当调节投资增长和劳动力增长的关系,使增加的产量不致被劳动力的增长抵消,劳动生产率才能不断提高,从而真正起到发展经济的作用。为此,需要分析产量、劳动力和投资之间变化规律,从而保证经济正常发展。 记 )(t Q —某地区、部门或企业在t 时刻的产量 )(t L —某地区、部门或企业在t 时刻的劳动力 )(t K ?某地区、部门或企业在t 时刻的资金 )(t Z —每个劳动力在t 时刻占有的产量(劳动生产率) 一、道格拉斯(Douglas )生产函数 由于现在关心的是产量、劳动力、投资的相对增长量,不是绝对量, 所以定义 ,)0()()(Q t Q t i Q =)0()()(L t L t i L = ,)0()()(K t K t i K = (1) 分别称为产量指数、劳动力指数和投资指数。 在正常的经济发展过程中这三个指数都是随时间增长的,但它们之间的关系难以从机理分析 得到,只能求助统计资料.Douglas 从大量统计数据中发现下面的规律: 如果令 )()(ln )(t i t i t K L =ξ,) ()(ln )(t i t i t K Q =ψ (2) 则散点),(ψξ在ψξ~平面直角坐标系上的图象大致如下

即大多数点靠近一条过原点的直线,这提示ξ和ψ的关系为 )10(<<=γγξ ψ (3) 上式代入得 )()()(1t i t i t i K L Q γγ-= (4) 记)0()0()0(1--=γγK L Q a ,则由(1)、(4),可得 )0,10(),()()(1><<=-a t K t aL t Q γγγ (5) 这就是经济学中著名的Douglas 生产函数,它表明产量与劳动力、投资之间的关系。由(5)有 K K L L Q Q )1(γγ-+= (6) (6)表明年相对增长量Q Q 、L L 、K K 之间呈线性关系。且1→γ说明产量增长主要靠劳动力的增长;0→γ说明产量增长主要靠投资的增长。称γ是产量对劳动力的弹性系数。 二、劳动生产率增长的条件 定义 )()()(t L t Q t Z =—劳动生产率,则L L Q Q Z Z -=,由(6)代入 则 ))(1(L L K K Z Z --=γ (7) 可见,只要L L K K >,就能保证0>Z Z ,即劳动生产率的提高需要由投资的相对增长大于劳动力的相对增长为前提条件。 问题:考虑到物价上升因素我们记物价上升指数为)((t P 设)1)0(=P ,则产品的表面价值)(t y 、实际价值)(t Q 和物价指数)(t P 之间满足)(t y )()(t P t Q =。 (1)导出)(t y 、)(t Q 、)(t P 的相对增长率之间的关系,并作解释。 (2)设雇佣工人数目为)(t L ,每个工人工资为),(t W 企业的利润简化为产品的收入)(t y 中扣除工人的工资和固定成本,企业应雇佣多少工人能使利润最大。

数学建模比赛的选拔问题

数学建模比赛的选拔问题 卢艳阳 王伟 朱亮亮 (黄河科技学院通信系,) 摘要 本文是关于全国大学生数学建模竞赛选拔的问题,依据数学建模组队的要求,每队应具备较好的数学基础和必要的数学建模知识、良好的编程能力和熟练使用数学软件等的综合实力,在此前提下合理的分配队员,利用层次分析法,建立合理分配队员的数学模型,利用MATLAB ,LONGO 工具求出最优解。、 问题一:依据建模组队的要求,合理分配每个队员是关键,主要由团队精神、建模能力、编程能力、论文写作能力、思维敏捷以及数学知识等等,经过讨论分析,确定良好的数学基础、建模能力,编程能力为主要参考因素。 问题二:根据表中所给15人的可参考信息,我们对每个队员的每一项素质进行加权,利用层次分析法选出综合素质好的前9名同学,然后利用0-1规划的相关知识对这9人进行合理分组,利用MATLAB 、LINGO 得到其中一个如下的分 组:'1s 、10s 、4s ;2s 、11s 、14s ;6s 、13s 、8s 问题三:我们将所选出的这9名同学和这个计算机编程高手的素质进行量化加权,然后根据层次分析法,利用MATLAB 工具进行求解,得出了最佳解。由于我们选取队员参考的是这个人的综合素质,而不是这个人的某项素质,并由解出的数据可以看出这个计算机编程高手不能被直接录用。所以说只考虑某项素质,而不考虑其他的素质的同学是不能被直接录用的。 问题四:根据前面三问中的分组的思路,我们通过层次分析法先从所有人中依据一种量化标准选出符合要求的高质量的同学,然后利用0-1变量进行规划,在根据实际问题的约束,对问题进行分析,然后可以得出高效率的分组。

数学建模在计算机专业的应用

应用一图论算法 图论在计算机处理问题中占有重要地位,现实中的很多问题最终都可以转化成图论问题,或者要借助图结构来存储和处理。但是怎么把一张图存入计算机就要涉及到数学建模的知识。 比如下面一张图: 如果要求出从节点v1到节点v5的所有路径,就可以借助计算机来很轻松的解决。但前提条件是,必须要把图以一种计算机可以理解的形式存进去,即要把它抽象为数学问题。 在此,我们需要定义一些关于图的概念,以便更好的描述问题。 边与顶点的关系有如下几种典型情况: 简单图:无自回环,无重边的图。

无向图:边没有指向,1212e .i i i i i ψ ()={v ,v }=v v 此时称边e i 与顶点12i i v ,v 关联,称顶点1i v 与顶点2i v 邻接。 有向图:边有指向,1212e .i i i i i ψ ()=(v ,v )=v v 下面是具体涉及到图如何存储的问题: 1. 图G(V,E)的关联矩阵x R=(r )ij n m ,若G(V,E)为无向图, 1 2i j ij i j j i j j v e r v e e v e e ??=??? 与不关联与关联,为非自回环 与关联,为自回环 若G(V,E)为有向图, 01 2i j ij i j i j v e r v e v e ??=??? 与不关联是的起点 是的终点 因此该图可以用关联矩阵表示出来,如下所示 110000********* 10100100110100000111R ?? ? ? ?= ? ? ?? ? 这样,我们就可以以矩阵的形式将图存入计 算机

2. 邻接矩阵 图G(V,E)的邻接矩阵xn A=(a )ij n ,若G(V,E)为无向图,ij a =从 i v 到的j v 边数,若不邻接,取0;若G(V,E)为有向图,ij a =从 i v 到j v 的有向边数,若无,取0. 01100100111 00110110101110A ?? ? ? ? = ? ? ?? ? 应用二 动态规划问题 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家R.E.Bellman 等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。也是信息学竞赛中选

数学建模中计算机模拟运用方法研究

数学建模中计算机模拟运用方法研究 摘要:通过对实际问题的非线性、离散、连续三种类型的数学建模解决问题的分析与研究,给出了利用计算机模拟实验验证数学建模有效性的方法,从而使数学建模在解决实际问题中得到更有效的应用。 关键词:计算机模拟;数学建模;技术运用;研究分析 在现阶段信息技术发展的过程中,人们可以利用数学模型方法的设计解决现实中的实际问题,通过对现阶段计算机模拟在数学建模中的运用分析可以发现,其技术形式取得了较大的成就。通过数学与计算机技术的稳定结合,可以实现数学技术的稳定构建,因此,在计算机技术快速发展的今天,计算机及数学建模逐渐成为技术运用中较为重要的途径。通过对实际问题的构建,可以通过计算机模拟技术对于较难解决、而又重要的问题进行系统性的分析。在计算机运用的过程中,不仅可以使问题求解体现出方便、快捷以及精准性的特点,而且也可以使实际问题得到充分性的解决。通过计算机模拟或是计算机程序模拟运用中可以解决实际的问题,并在建立数学、逻辑等模型设计的基础上,可以通过计算机实验对系统资源进行科学化的规定,从而为计算机模拟与数学模型的构建提供稳定支持。 1、计算机模拟及数学建模的概述分析 1.1、计算机模拟 计算机模拟是利用计算机对一个系统使用过程所建立的模型,通过该模型的运用可以进行实验项目的设计。并通过对该系统行为的控制分析,对不同的数据资源进行评估。对于计算机模拟系统而言,其主要是将系统分析以及运筹学作为基础,所模拟的对象以及用途相对广泛,在模拟中可以实现从简单到复杂、从一个变量到多个变量的变化,在交通、经济、生活以及医疗等管理中均得到了广泛性的运用。 1.2、数学建模 对于数学建模而言,主要是运用数学模型解决相关问题,也就是在一组备选数据分析的过程中,选择合理性的数据资源。在现阶段数学模型构建的过程中,其中的空间作为主要的内容,在空间相对应位置设计的基础上,结合了限制条件的保护机制,所选择的模型分为线性以及非线性两种,其中的线性模型以及非线性模型是由变量的阶层所决定的[1]。 2、计算机模拟在数学建模中所解决的问题 第一,对于一些难以在计算环境中进行实验以及观察的数学建模而言,只能运用计算机进行模拟,例如,太空飞行中的数据研究。

对中国大学生数学建模竞赛历年成绩的分析与预测

2012年北京师范大学珠海分校数学建模竞赛 题目:对中国大学生数学建模竞赛历年成绩的分析与预测 摘要 本文研究的是对自数学建模竞赛开展以来各高校建模水平的评价比较和预测问题。我们将针对题目要求,建立适当的评价模型和预测模型,主要解决对中国大学生数学建模竞赛历年成绩的评价、排序和预测问题。 首先我们用层次分析法来评价广东赛区各校2008年至2011年及全国各大高校1994至2011年数学建模成绩,从而给出广东赛区各校及全国各大高校建模成绩的科学、合理的评价及排序;其次运用灰色预测模型解决广东赛区各院校2012年建模成绩的预测。 针对问题一,首先我们对比了2008到2011年参加建模比赛的学校,通过分析我们选择了四年都参加了比赛的学校进行合理的排序(具体分析过程见表13),同时对本科甲组和专科乙组我们分别进行排序比较。在具体解决问题的过程中,我们先分析得出影响评价结果的主要因素:获奖情况和获奖比例,其中获奖情况主要考虑国家一等奖、国家二等奖、省一等奖、省二等奖、省三等奖,我们采用层次分析法,并依据判断尺度构造出各个层次的判断矩阵,对它们逐个做出一致性检验,在一致性符合要求的情况下,通过公式与matlab求得各大学的权重,总结得分并进行排序(结果见表11);在对广东赛区各高校2012建模成绩预测问题中,我们采用灰色预测模型,我们以华南农业大学为例,得到该校2012年建模比赛获奖情况为:省一等奖、省二等奖、省三等奖及成功参赛奖分别为5、9、8、8(其它各高校预测结果见表10)。 针对问题二,我们对全国各院校的自建模竞赛活动开展以来建模成绩排序采用与问题一相同的数学模型,在获奖情况考虑的是全国一等奖、全国二等奖。运用matlab求解,结果见表12。 针对问题三,我们通过对一、二问排序的解答及数据的分析,得出在对院校进评价和预测时还应考虑到各院的师资力量、学校受重视程度、学生情况、参赛经验等因素,考虑到这些因素,为以后评价高校建模水平提供更可靠的依据。 关键词:层次分析法权向量灰色预测模型模型检验 matlab

数学建模案例分析3 随机性人口模型--概率统计方法建模

§3 随机性人口模型 如果研究对象是一个自然村落或一个家族人口,数量不大,需作为离散变量看待时,就利用随机性人口模型来描述其变化过程。 记 ()t Z —时刻t 的人口数(只取整数值) ()()()n t Z p t p n ==—人口为n 的概率 模型假设 1、在[]t t t ?+, 出生一人的概率与t ? 成正比,记作t b n ?,出生二人及二人以上的概 率为()t o ?; 2、在[]t t t ?+, 死亡一人的概率与t ? 成正比,记作t d n ?,死亡二人及二人以上的概率为()t o ?; 3、出生与死亡是相互独立的随机事件; 4、进一步设n b 和n d 均为与n 成正比,记,,n d n b n n μλ==λ和μ分别是单位时间内 1=n 时一个人出生和死亡的概率。 模型建立 由假设3~1,可知()n t t Z =?+可分解为三个互不相容的事件之和:()1-=n t Z 且t ?内出生一人;()1+=n t Z 且t ? 内死亡一人;()n t Z =且t ?内无人出生或死亡。按全概率公式 ()()()()t d t b t p t d t p t b t p t t p n n n n n n n n ?-?-+?+?=?+++--1)(1111 即 ()() ()()())(1111t p d b t p d t p b t t p t t p n n n n n n n n n +-+=?-?+++-- 令0→?t ,得关于()t p n 的微分方程 ()()()()t p d b t p d t p b dt dp n n n n n n n n +-+=++--1111 又由假设4,方程为 ()()()()()()t np t p n t p n dt dp n n n n μλμλ+-++-=+-1111 (1) 若初始时刻)0(=t 人口为确定数量0n ,则()t p n 的初始条件为 ()? ? ?≠== 00 ,0,10n n n n p n (2)

简单数学建模100例54297

“学”以致用 -----简单数学建模步骤 数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。但是在生活中又有多少实际问题是可以直接套用公式的呢?数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的. 一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备。 二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。 三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等)。 四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。 五.模型检验与应用把模型解析得到的结果与实际情况对比,以检验其合理和有效性,检验后获取的正确模型对研究的实际问题给出预报或对类似实际问题进行分析、解释,以供决策者参考称为.

— 2

第一关:接触数学建模 【 1 】一副扑克牌有54张,从中任取 多少张,可以保证一定有5张牌的花色 是一样的? 分析除去大、小鬼还有52张牌,其中4种花色各13张.运气最好的情况下所取 的5张牌都是同一花色的,哪运气不佳时至少要取多少张牌,才能保证一定有5张牌的花色是一样的呢? 假设假定至少要取N张,才能保证一定有5张牌的花色是一样的. 模型逆向地思维 解析在运气最不好的情况下,每种花色各4张,再加大、小鬼2张,共取18张是保证一定没有5张牌的花色一样的最大可能。 所以442119 N=?++=张就可以保证一定有5张牌的花色是一样的. 检验在很多情况下采用逆向地思维,可以使解题思路清晰、便捷. 练习题公园里准备对300棵珍稀树木依次从1—300进行编号,问所有的编号中“1”共会出现的几次? — 3

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模案例分析--概率统计方法建模9习题四

习题四 1、在一个人数很多的团体中普查某种疾病,为此要抽验N 个人的血,可以用两种方法进行。(1)将每个人的血分别检验,这就需要验N 次;(2)按k 个人一组进行分组,把从k 个人抽来的血混合在一起进行检验,如果这混合血液呈阴性反应,就说明这k 个人的血都呈阴性反应,这样,这k 个人的血就只需验一次。若呈阳性,则再对这k 个人的血分别进行化验。这样,k 个人的血总共要化验k+1次。假设每个人的血呈阳性的概率为p ,且这些人的试验反应是相互独立的。试说明当p 较小时,选取适当的k ,按第二种方法可以减少化验的次数。并说明当k 取什么值时最适宜? 2、人群中有健康人和病人两类,病人可以通过与健康人接触将疾病传染给健康人。任何两人之间的接触是随机的,当健康人与病人接触时是否被感染也是随机的。如果通过实际数据或经验掌握了这些随机规律,试估计平均每天有多少健康人被感染。 3、某商店要订购一批商品零售,设购进价1c ,售出价2c ,订购费0c (与数量无关)。随机需求量r 的概率密度为p(r),每件商品的贮存费为3c (与时间无关)。问如何确定订购量才能使商店的平均利润最大。这个平均利润是多少?为使这个平均利润为正值,需要对订购费0c 加什么限制? 4、若零件寿命服从指数分布,证明不存在预防性更换策略。又问,若失效率r(t)为减函数,是否会存在预防性更换策略? 5、用连续热轧方法制造钢材时要经过两道工序,第一道是粗轧(热轧),形成钢材的雏形;第二道是精轧(冷轧),得到规定长度的钢材。粗轧时由于设备,环境等方面随机因素的影响,钢材冷却后的长度大致上呈正态分布,其均值可以在轧制过程中由轧机调整,而其均方差则是由设备的精确度决定的,不能随意改变。精轧时把多出规定的部分切掉,但是如果发现粗轧后的钢材已经比规定长度短,则整根报废。精轧设备精度很高,可以认为轧出的成品材完全符合规定长度要求。根据轧制工艺的要求,要在成品材规定长度l 和粗轧后钢材长度的均方差σ已知的条件下,确定粗轧后的均值m ,使得当轧机调整到m 进行粗轧,再精轧后得到成品材时的浪费最少。 6、若上题中钢材粗轧后,长度在l l 与1之间时降级使用(比如经济价值上每一根降级材相当于α根成品材)。长度小于1l 才整根报废。试选用合适的目标函数建立优化模型,使某种意义下的浪费量最小。 7、某种水泥在凝固时放出的热量Y (卡/克)与其中的四种化学成分X 1,X 2,X 3,X 4有关,现有13个水泥样品的样本数据列于下表:

相关主题
文本预览
相关文档 最新文档